首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The observational investigation of the evolution of the star formation activities of early-type galaxies (ETGs) with redshifts helps us to understand the formation and evolution of this kind of galaxies. Combined with the highresolution images from HST/ACS (Hubble Space Telescope/Advanded Camera for Surveys) of the GEMS (Galaxy Evolution fromMorphology and SEDs) survey and the multi-band data from Spitzer, GALEX (Galaxy Evolution Explorer) and so on in the CDFS (Chandra Deep Field South) field, a complete sample including 456 ETGs with their redshifts in the range of 0.2 ≤ z ≤ 1.0 is selected on the basis of morphology, color and stellar mass. By using the stacking technique, the ultraviolet and infrared average luminosities of sample galaxies are measured, and the star formation rates of ETGs are estimated. The results indicate that the star formation rates of ETGs are relatively low (< 3 M yr−1) and decrease with decreasing redshifts. The mass contributed by the star formation since z = 1 is less than 15%. The analyses of stellar populations also confirm that the bulk of the population of massive ETGs was formed in the early universe (z > 2).  相似文献   

2.
ALMA will be the premier instrument for the study of galaxy evolution in the early universe—enabling studies of the gas content, dynamics and dynamical masses, and star formation with unparalleled resolution and sensitivity. Galaxy evolution and AGN growth in the early universe are believed to be strongly driven by merging and dynamical interactions. Thus, a full exploration of the environmental influence is absolutely essential. The Cosmic Evolution Survey (COSMOS) is specifically designed to probe the correlated coevolution of galaxies, star formation, active galactic nuclei (AGN) and dark matter (DM) large-scale structure (LSS) over the redshift range z>0.5 to 3. In this contribution I review the characteristics of the COSMOS survey and very exciting initial results on mapping large scale structure in galaxies and dark matter. The survey includes multi-wavelength imaging and spectroscopy from X-ray to radio wavelengths covering a 2 square degree equatorial field. Given the very high sensitivity and resolution of these datasets, COSMOS will provide unprecedented samples of objects at z>3 for followup studies wit ALMA.  相似文献   

3.
The results of deep radio, sub-mm and X-ray observations of samples of high redshift (z∼1) clusters are presented. These reveal significant excesses of active galaxies associated with the clusters at all three wavelengths. The cluster radio source population shows evolution consistent with the (1+z)3 evolution typical of many AGN classes. A large fraction of the AGN are hosted by apparently passive early-type galaxies, often with a close companion. These results essentially constitute the detection of a counterpart of the Butcher-Oemler effect for both strongly star bursting galaxies and AGN. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
We explore the role of active galactic nuclei (AGN) in establishing and/or maintaining the bimodal colour distribution of galaxies by quenching their star formation and hence, causing their transition from the blue to the red cloud. Important tests for this scenario include (i) the X-ray properties of galaxies in the transition zone between the two clouds and (ii) the incidence of AGN in post-starbursts, i.e. systems observed shortly after (<1 Gyr) the termination of their star formation. We perform these tests by combining deep Chandra observations with multiwavelength data from the All-wavelength Extended Groth strip International Survey (AEGIS). Stacking the X-ray photons at the positions of galaxies  (0.4 < z < 0.9)  not individually detected at X-ray wavelengths suggests a population of obscured AGN among sources in the transition zone and in the red cloud. Their mean X-ray and mid-infrared (IR) properties are consistent with moderately obscured low-luminosity AGN, Compton thick sources or a mix of both. Morphologies show that major mergers are unlikely to drive the evolution of this population but minor interactions may play a role. The incidence of obscured AGN in the red cloud (both direct detections and stacking results) suggests that black hole (BH) accretion outlives the termination of the star formation. This is also supported by our finding that post-starburst galaxies at z ≈ 0.8 and AGN are associated, in agreement with recent results at low z . A large fraction of post-starbursts and red cloud galaxies show evidence for at least moderate levels of AGN obscuration. This implies that if AGN outflows cause the colour transformation of galaxies, then some nuclear gas and dust clouds either remain unaffected or relax to the central galaxy regions after quenching their star formation.  相似文献   

5.
The abundance patterns of the most metal‐poor stars in the Galactic halo and small dwarf galaxies provide us with a wealth of information about the early Universe. In particular, these old survivors allow us to study the nature of the first stars and supernovae, the relevant nucleosynthesis processes responsible for the formation and evolution of the elements, early star‐ and galaxy formation processes, as well as the assembly process of the stellar halo from dwarf galaxies a long time ago. This review presents the current state of the field of “stellar archaeology” – the diverse use of metal‐poor stars to explore the high‐redshift Universe and its constituents. In particular, the conditions for early star formation are discussed, how these ultimately led to a chemical evolution, and what the role of the most iron‐poor stars is for learning about Population III supernovae yields. Rapid neutron‐capture signatures found in metal‐poor stars can be used to obtain stellar ages, but also to constrain this complex nucleosynthesis process with observational measurements. Moreover, chemical abundances of extremely metal‐poor stars in different types of dwarf galaxies can be used to infer details on the formation scenario of the halo and the role of dwarf galaxies as Galactic building blocks. I conclude with an outlook as to where this field may be heading within the next decade. A table of ~ 1000 metal‐poor stars and their abundances as collected from the literature is provided in electronic format (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Luminous and Ultraluminous infrared galaxies (ULIRGs) contain the most intense regions of star formation in the local universe. Because molecular gas is the fuel for current and future star formation, the physical properties and distribution of the warm, dense molecular gas are key components for understanding the processes and timescales controlling star formation in these merger and merger remnant galaxies. We present new results from a legacy project on the Submillimeter Array which is producing high resolution images of a representative sample of galaxies with log L FIR >11.4 and D<200 Mpc.  相似文献   

7.
Research on two-dimensional (2-D) properties of galaxies is a significant component of the study of galaxy formation and evolution. Through the spatial distribution of physical properties (derived from integrated luminosity and spectroscopy) of galaxies, we are allowed to realize the inner environment and evolution history of each individual galaxy and finally answer how galaxies were assembled. In this paper, with reviewing previous work, we present a proposal for study on 2-D properties of nearby galaxies. In our prospective work, we will make use of multi-wavelength data covering a range from ultraviolet to far-infrared to determine the distributions of properties such as age, metallicity and dust-reddening in nearby galaxies, and try to remove the degeneracy among them. Combining with surface photometry and spectroscopy, we will also analyze the distribution of HII regions and star formation properties in galaxies. In our future plan, the World Space Observatory for Ultraviolet (WSO/UV) will be applied to our research and allow detail diagnosis of nearby galaxies at ultraviolet band.  相似文献   

8.
N -body/hydrodynamical simulations of the formation and evolution of galaxy groups and clusters in a Λ cold dark matter (ΛCDM) cosmology are used in order to follow the building-up of the colour–magnitude relation in two clusters and in 12 groups. We have found that galaxies, starting from the more massive, move to the red sequence (RS) as they get aged over times and eventually set upon a 'dead sequence' (DS) once they have stopped their bulk star formation activity. Fainter galaxies keep having significant star formation out to very recent epochs and lie broader around the RS. Environment plays a role as galaxies in groups and cluster outskirts hold star formation activity longer than the central cluster regions. However, galaxies experiencing infall from the outskirts to the central parts keep star formation on until they settle on to the DS of the core galaxies. Merging contributes to mass assembly until z ∼ 1, after which major events only involve the brightest cluster galaxies.
The emerging scenario is that the evolution of the colour–magnitude properties of galaxies within the hierarchical framework is mainly driven by star formation activity during dark matter haloes assembly. Galaxies progressively quenching their star formation settle to a very sharp 'red and dead' sequence, which turns out to be universal, its slope and scatter being almost independent of the redshift (since at least z ∼ 1.5) and environment.
Differently from the DS, the operatively defined RS evolves more evidently with z , the epoch when it changes its slope being closely corresponding to that at which the passive galaxies population takes over the star-forming one: this goes from z ≃ 1 in clusters down to 0.4 in normal groups.  相似文献   

9.
Through the morphological classifications for 290 member galaxies in the nearby galaxy Abell 2199, the star formation rates and their relations with their morphology and related physical properties are investigated in this paper. It is found that the typical star formation rate in galaxies of this galaxy cluster is strongly correlated with the Hα equivalent width, and the degree of discontinuity of the galaxy spectrum at 4000 Å is also strongly correlated with the stellar mass included in the galaxy. It is also found that star formation activities in these galaxies do not exhibit the obvious circumstance effect. This result indicates that this galaxy cluster is still situated at the stage of the violent dynamical evolution and far from the dynamical equilibrium.  相似文献   

10.
We study star-formation-inducing mechanisms in galaxies through multiwavelength measurements of a sample of dwarf galaxies in the Virgo cluster described in Paper I. Our main goal is to test how star-formation-inducing mechanisms depend on several parameters of the galaxies, such as morphological type and hydrogen content. We derive the star formation rate and star formation histories of the galaxies, and check their dependence on other parameters.   Comparison of the sample galaxies with population synthesis models shows that these objects have significantly lower metallicity than the solar value. The colours can generally be explained as a combination of two different stellar populations: a young (3–20 Myr) metal-poor population which represents the stars currently forming presumably in a starburst, and an older (0.1–1 Gyr) population of previous stellar generations. There is evidence that the older stellar population was also formed in a starburst. This is consistent with the explanation that star formation in this type of objects takes place in short bursts followed by long quiescent periods.   No significant correlation is found between the star formation properties of the sample galaxies and their hydrogen content. Apparently, when star formation occurs in bursts, other parameters influence the star formation properties more significantly than the amount of atomic hydrogen. No correlation is found between the projected Virgocentric distance and the rate of star formation in the galaxies, suggesting that tidal interactions are not significant in triggering star formation in cluster dwarf galaxies.  相似文献   

11.
We reconstruct the history of the cosmic star formation as well as the cosmic production of metals in the universe by means of detailed chemical evolution models for galaxies of different morphological types. We consider a picture of coeval, non-interacting evolving galaxies where ellipticals experience intense and rapid starbursts within the first Gyr after their formation, and spirals and irregulars continue to form stars at lower rates up to the present time. We show that spirals are the main contributors to the decline of the luminosity density in all bands between z=1 and z=0. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
We present the first results of our Hubble Space Telescope HST WFPC2 F814W snapshot imaging survey, targeting virtually all sub-mJy decimetric radio-selected star-forming galaxies. The radio selection at ∼1 GHz is free from extinction effects and the radio luminosities are largely unaffected by AGN contamination, making these galaxies ideal tracers of the cosmic star formation history. A subsample of four targets is presented here, selected at 1.4 GHz from the spectroscopically homogenous and complete samples of Benn et al. and Hopkins et al. The redshifts are confined to a narrow range around z ∼0.2, to avoid differential evolution, with a radio luminosity close to L ∗ where the galaxies dominate the comoving volume-averaged star formation rate. We find clearly disturbed morphologies resembling those of ultraluminous infrared galaxies, indicating that galaxy interactions may be the dominant mechanism for triggering star formation at these epochs. The morphologies are also clearly different from those of coeval quasars and radio galaxies, as found in star-forming galaxies selected at other wavelengths. This may prove challenging for models that propose direct causal links between AGN evolution and the cosmic star formation history at these epochs. The asymmetries are typically much larger than seen in the Canada–France Redshift Survey at similar redshifts, optical luminosities and H α -derived star formation rates, indicating the possible existence of an obscuration-related morphological bias in such samples.  相似文献   

13.
Stellar abundance pattern of n-capture elements such as barium is used as a powerful tool to infer how the star formation proceeded in dwarf spheroidal (dSph) galaxies. It is found that the abundance correlation of barium with iron in stars belonging to dSph galaxies orbiting the Milky Way, i.e., Draco, Sextans, and Ursa Minor have a feature similar to that in Galactic metal-poor stars. The common feature of these two correlations can be realized by our in homogeneous chemical evolution model based on the supernova-driven star formation scenario if dSph stars formed from gas with a velocity dispersion of ∼ 26 km s-1. This velocity dispersion together with the stellar luminosities strongly suggest that dark matter dominated dSph galaxies. The tidal force of the Milky Way links this velocity dispersion with the currently observed value ≲ 10 km s-1 by stripping the dark matter in dSph galaxies. As a result, the total mass of each dSph galaxy is found to have been originally ∼ 25 times larger than at present. In this model, supernovae immediately after the end of the star formation can expel the remaining gas over the gravitational potential of the dSph galaxy. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
We present a one-zone model of star formation in elliptical galaxies that includes thermal feedback from supernovae and a temperature dependent star formation efficiency. The modulation of feedback with the total mass results in the triggering of late episodes of star formation in low-mass galaxies. These small `bursts' can occur as late as at redshifts z ∼ 0.5 but they do not change significantly the optical and NIR color-magnitude relation (CMR) of cluster galaxies, both locally and out to moderate redshifts, in agreement with the observations. However, they introduce a large scatter at the faint end of the NUV-Optical CMR, as recently found in cluster Abell 851 (z = 0.41). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
We calculate chemical evolution models for four dwarf spheroidal (dSph) satellites of the Milky Way (Carina, Ursa Minor, Leo I and Leo II) for which reliable non-parametric star formation histories have been derived. In this way, the independently-obtained star formation histories are used to constrain the evolution of the systems we are treating. This allows us to obtain robust inferences on the history of such crucial parameters of galactic evolution as gas infall, gas outflows and global metallicities for these systems. We can then trace the metallicity and abundance ratios of the stars formed, the gas present at any time within the systems and the details of gas ejection, of relevance to enrichment of the galaxies environment. We find that galaxies showing one single burst of star formation (Ursa Minor and Leo II) require a dark halo slightly larger that the current estimates for their tidal radii, or the presence of a metal-rich selective wind that might carry away much of the energy output of their supernovae before this might have interacted and heated the gas content, for the gas to be retained until the observed stellar populations have formed. Systems showing extended star formation histories (Carina and Leo I), however, are consistent with the idea that their tidally-limited dark haloes provide the necessary gravitational potential wells to retain their gas. The complex time structure of the star formation in these systems remains difficult to understand. Observations of detailed abundance ratios for Ursa Minor strongly suggest that the star formation history of this galaxy might in fact resemble the complex picture presented by Carina or Leo I, but localized at a very early epoch.  相似文献   

16.
The current Swift sample of gamma-ray bursts (GRBs) with measured redshifts allows us to test the assumption that GRBs trace star formation in the Universe. Some authors have claimed that the rate of GRBs increases with cosmic redshift faster than the star formation rate, whose cause is not yet known. In this paper, I investigate the possibility of interpreting the observed discrepancy between the GRB rate history and the star formation rate history using cosmic metallicity evolution. I am motivated by the observation that cosmic metallicity evolves with redshift and GRBs tend to occur in low-metallicity galaxies. First, I derive a star formation history up to redshift   z = 7.4  from an updated sample of star formation rate densities. This is obtained by adding the new ultraviolet measurements of Bouwens et al. and the new ultraviolet and infrared measurements of Reddy et al. to the existing sample compiled by Hopkins & Beacom. Then, adopting a simple model for the relation between GRB production and the cosmic metallicity history as proposed by Langer & Norman, I show that the observed redshift distribution of the Swift GRBs can be reproduced with good accuracy. Although the results are limited by the small size of the GRB sample and the poorly understood selection biases in detection and localization of GRBs and in redshift determination, they suggest that GRBs trace both star formation and metallicity evolution. If the star formation history can be accurately measured with other approaches, which is presumably achievable in the near future, it will be possible to determine the cosmic metallicity evolution using the study of the redshift distribution of GRBs.  相似文献   

17.
In the last couple of decades hundreds of studies have explored the nature of star‐forming galaxies at different redshifts. This contribution focuses on X‐shooter observations of star‐burst galaxies at 0 < z < 6 from commissioning runs, science verification, and regular observations, and demonstrates the capability of the new instrument in this competitive field. Observations of gravitationally lensed galaxies show that X‐shooter has no limitation in the redshift desert (1.4 < z < 2) where the strong optical emission lines are shifted to the near‐IR region. Physical properties of galaxies, such as masses, metallicities, abundance ratios, and star formation rates can be derived from observations with relatively short integration times for faint galaxies. The simultaneous UV to near‐IR spectral coverage makes derivation of physical quantities more reliable because there are no differential slit losses as may occur when observations from different optical and near‐IR instruments are used. Over the entire redshift range, spectra of faint galaxies will allow us to better measure stellar ages and dominating ionisation sources compared to broad band spectral energy distribution measurements (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Assuming that gamma-ray bursts (GRB) originate from binary neutron star (NS) or black holes (BH) merging in distant galaxies, theoretical logN-logS distributions for gamma-ray bursts (GRB) are calculated using the compact binaries coalescence rates computed for model galaxies with different star formation histories. A flat cosmological model ( = 1) with different values of the cosmological constant is used. The calculated source evolution predicts a 5–10 times increase of the source statistics at count rates 3–10 times lower than the existing BATSE sensitivity limit. The most important parameter in fitting the 2nd BATSE catalogue is the initial redshift of star formation, which is found to bez * = 2 — 5 depending on a poorly determined average spectral index of GRB.  相似文献   

19.
We construct a simple, robust model of the chemical evolution of galaxies from high to low redshift, and apply it to published observations of damped Lyman α quasar absorption line systems (DLAs). The elementary model assumes quiescent star formation and isolated galaxies (no interactions, mergers or gas flows). We consider the influence of dust and chemical gradients in the galaxies, and hence explore the selection effects in quasar surveys. We fit individual DLA systems to predict some observable properties of the absorbing galaxies, and also indicate the expected redshift behaviour of chemical element ratios involving nucleosynthetic time delays.
Despite its simplicity, our 'monolithic collapse' model gives a good account of the distribution and evolution of the metallicity and column density of DLAs, and of the evolution of the global star formation rate and gas density below redshifts z ∼3. However, from the comparison of DLA observations with our model, it is clear that star formation rates at higher redshifts ( z >3) are enhanced. Galaxy interactions and mergers, and gas flows very probably play a major role.  相似文献   

20.
The smallest dwarf galaxies are the most straight forward objects in which to study star formation processes on a galactic scale. They are typically single cell star forming entities, and as small potentials in orbit around a much larger one they are unlikely to accrete much (if any) extraneous matter during their lifetime (either intergalactic gas, or galaxies) because they will typically lose the competition with the much larger galaxy. We can utilise observations of stars of a range of ages to measure star formation and enrichment histories back to the earliest epochs. The most ancient objects we have ever observed in the Universe are stars found in and around our Galaxy. Their proximity allows us to extract from their properties detailed information about the time in the early Universe into which they were born. A currently fashionable conjecture is that the earliest star formation in the Universe occurred in the smallest dwarf galaxy sized objects. Here I will review some recent observational highlights in the study of dwarf galaxies in the Local Group and the implications for understanding galaxy formation and evolution. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号