首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The change in atmospheric relative humidity affects the physical and optical properties of aerosol particles. It would be interesting to study the effect of an increase in relative humidity on the angular scattering of light by aerosols (by incorporating the changes due to it as the complex refractive index and the parameters of the size distribution function). In the present paper we have computed the angular scattering function for rural and urban aerosols, for light of wavelength 0.55 μn. The results obtained for these two models, representative of different environments, are interesting and show some discriminating features.  相似文献   

2.
张超  展旭财  杨春和 《岩土力学》2013,34(7):2077-2083
粗粒料是一定级配的岩石颗粒集合体,具有独特的物理力学特性。以粗粒料室内三轴固结排水试验成果为基础,基于离散元颗粒流理论,从细观角度出发,以PFC3D为工具,通过自编程及二次开发,得到按级配生成的粗粒料三轴试验数值模型。引入clump颗粒考虑颗粒形状对粗粒料强度及变形的影响,分析剪胀、颗粒形状、颗粒重排的关系。结果表明:颗粒形状是影响粗粒料强度与变形的主要因素,在其他细观参数一定的情况下,改变颗粒形状,可以显著影响粗粒料的力学行为;BPM模型的应力-应变关系只在低围压下与试验值吻合,随着围压的增大,偏差越来越大;而引入clump颗粒的PFC3D数值模型能很好地模拟粗粒料室内三轴固结排水试验的应力-应变特性,但由于BPM及clump都是刚性颗粒,没有考虑颗粒变形及破碎,造成应变剪胀偏大。  相似文献   

3.
Manso  João  Marcelino  João  Caldeira  Laura 《Acta Geotechnica》2021,16(3):749-761

This paper presents a fundamental study on the effect of the relative humidity on the rockfill crushing strength. This aspect plays an important role in the mechanical behaviour of rockfill, and it is known that certain characteristics of the granular materials, such as compressibility and shear strength, depend on the confining stress, which is a function of the particles crushing. An increased interest has been observed regarding the effect of the relative humidity in the mechanical behaviour of rockfill. Unfortunately, limited research has been conducted until now regarding the study of individual particle crushing. Therefore, this paper thoroughly investigated particle crushing, by performing single-particle crushing tests on rockfill particles divided into four size ranges, under different relative humidity conditions. The experimental results reveal a considerable influence of the relative humidity in the studied rockfill particles, whose strength of the particles with the greatest dimensions in saturated conditions was reduced by half. Consistent macro-mechanical evidence demonstrates that particle’s size and relative humidity conditions depict the most important factors that influence particle crushing strength.

  相似文献   

4.
The strength parameter mi in the Hoek–Brown strength criterion is empirical and was developed by trial and error. To better understand the fundamental relationship between mi and the physical characteristics of intact rock, this paper presents a systematic study of mi by representing intact rock as a densely packed cemented particle material and simulating its mechanical behavior using particle flow modeling. Specifically, the three‐dimensional particle flow code (PFC3D) was used to conduct numerical true triaxial compression tests on intact rock and to investigate the effect of non‐spherical micro‐particle parameters on mi. To generate numerical intact rock specimens containing non‐spherical micro‐particles, a new genesis process was proposed, and a specific loop algorithm was used based on the efficiency of the process and the acceptability of generated specimens. Four main parameters—number, aspect ratio, size, and shape—of non‐spherical micro‐particles were studied, and the results indicated that they all have great effect on mi. The strength parameter mi increases when the number, aspect ratio, or size is larger or the shape becomes more irregular, mainly as a result of the higher level of interlocking between particles. This confirms the observations from engineering experience and laboratory experiments. To simulate the right strength parameter mi, it is important to use appropriate non‐spherical micro‐particles by controlling these four parameters. This is further demonstrated by the simulation of two widely studied rocks, Lac du Bonnet granite and Carrara marble. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
针对平均粒径对砂土剪切特性的影响作用,结合室内试验和离散元模拟方法对不同平均粒径砂土进行了细观研究。基于3种不同平均粒径砂土的直剪试验结果,通过建立反映砂土剪切试验特征的PFC(particle flow code)颗粒流模型,详细研究了不同粒径砂土在剪切过程中土样体积变化、力链网络、孔隙率和配位数等细观结构参数的变化特征和规律,并从细观角度分析了颗粒粒径对土样宏观剪切特性的影响机制。结果表明:具有不同平均粒径砂土的细观结构参数在剪切过程中存在显著差异,并且其细观参数差异主要集中体现在剪切带处;剪切力学特性的影响主要体现在抗剪强度和剪胀效应方面,砂土平均粒径越大,抗剪强度越高,剪胀效应越明显;具有不同平均粒径的砂土在剪切过程中土颗粒运动规律及剪切带形态变化特征存在一定的差异,平均粒径越大,剪切带内上跨式颗粒占比越大,剪切带厚度越大。  相似文献   

6.
Deposit-feeders often select for particles on the basis of grain size. The available pool of particles at the sediment surface may be modified both by deposit-feeder activity and by sediment transport, but the effects of these alterations on deposit-feeder diet composition have received little attention. In laboratory experiments the spionid polychaeteParaprionospio pinnata altered the grain-size composition in its foraging area, and these alterations were reflected in grain-size changes in the diet. After simulated transport of fine-grain sediments,P. pinnata diets also changed in grain-size composition. Field data were collected from 9 m depth in the lower Chesapeake Bay. A video camera, deployed near the bottom, identified times of sediment transport over a 6-h Period;P. pinnata were collected concurrently for gut analysis. Consistent with predictions from the laboratory experiments,P. pinnata ingested primarily small-grain sizes. During periods of no sediment transport this feeding pattern reduced the relative availability of small particles; larger sediments were incorporated into the diet. Sediment transport may resupply the foraging area with fine-grain particles which are then incorporated into the diet. On these small spatial and time scales, deposit-feeder activity may affect the availability of food resources.  相似文献   

7.
Iron sulfide was synthesized by reacting aqueous solutions of sodium sulfide and ferrous chloride for 3 days. By X-ray powder diffraction (XRPD), the resultant phase was determined to be primarily nanocrystalline mackinawite (space group: P4/ nmm) with unit cell parameters a = b = 3.67 Å and c = 5.20 Å. Iron K-edge XAS analysis also indicated the dominance of mackinawite. Lattice expansion of synthetic mackinawite was observed along the c-axis relative to well-crystalline mackinawite. Compared with relatively short-aged phase, the mackinawite prepared here was composed of larger crystallites with less elongated lattice spacings. The direct observation of lattice fringes by HR-TEM verified the applicability of Bragg diffraction in determining the lattice parameters of nanocrystalline mackinawite from XRPD patterns. Estimated particle size and external specific surface area (SSAext) of nanocrystalline mackinawite varied significantly with the methods used. The use of Scherrer equation for measuring crystallite size based on XRPD patterns is limited by uncertainty of the Scherrer constant (K) due to the presence of polydisperse particles. The presence of polycrystalline particles may also lead to inaccurate particle size estimation by Scherrer equation, given that crystallite and particle sizes are not equivalent. The TEM observation yielded the smallest SSAext of 103 m2/g. This measurement was not representative of dispersed particles due to particle aggregation from drying during sample preparation. In contrast, EGME method and PCS measurement yielded higher SSAext (276-345 m2/g by EGME and 424 ± 130 m2/g by PCS). These were in reasonable agreement with those previously measured by the methods insensitive to particle aggregation.  相似文献   

8.
Essentially, quickclays are products of glaciation which accounts for their limited distribution; other modes of development being of lesser importance. Glacial grinding provides the fine silt and clay sizes required to constitute quickclays. Two major factors account for the geotechnical properties, a composition factor related to material comprising the soil system and a leaching factor, the effectiveness of which is related to the clay-mineral content of the soil.Soils can be divided into three types, based on criteria of particle size and type of interparticle bond. Among the latter are long-range active bonds, typical of true clay-mineral systems; and short-range inactive bonds such as are observed between two quartz particles. The three main soil types have: (a) small particles and long-range forces - the bond/weight ratioR is high; (b) small particles and short-range forces ? R > 1 ; and (c) large particles and short-range forces - i.e., the sands, andR < 1. Quickclays fall more conveniently into type (b) than into type (a) in as much as the most important property is a preponderance of inactive bonds in the soil system. This is achieved by a high content of non-clay mineral particles, and also may be assisted by leaching and cementation. If more than a critical proportion of long-range bonds are present, the required very high sensitivity does not occur.The initial failure of the soil might be treated as tensile using a volume failure criterion; the low settling velocity of the very small (≈ 1?2 μm) particles allows the solid-liquid transformation to occur after a modest shock loading. Observations of low thixotropy, lack of secondary settlement and sudden failure in compression tests can be explained by requirements of particle size and material.  相似文献   

9.
双电层结构对研究黏土力学特性、冻土水分迁移等具有重要意义。为了探究不同影响因素对黏土颗粒扩散双电层电势分布的影响,借鉴Gouy-Chapman-Stern双电层理论,基于Nernst-Planck方程和Poisson-Boltzmann方程,利用数值软件COMSOL定量分析了温度、浓度、颗粒尺寸、颗粒形状以及溶液相对介电常数对扩散双电层电势分布的影响规律。研究表明:温度对电势分布的影响不明显,但随着温度以及Stern层厚度增加,黏土颗粒表面电势和Stern电势均增加;而随着溶液浓度以及相对介电常数减小,表面电势值增加;在矿物成分、表面电荷密度以及颗粒形状确定的情况下,尺寸对于扩散双电层电势分布的影响不显著;但颗粒的不规则形状对电势分布的影响较为明显,当颗粒形状存在夹角时,夹角处的表面电势远大于其他位置,且夹角越小,夹角处表面电势值越大。  相似文献   

10.
Ambient relative humidity controls the stress-strain-time behaviour of granular media exhibiting particle breakage. Breakage is the result of crack propagation inside loaded particles. The DEM model developed uses the results of subcritical crack propagation in brittle rock to predict breakage and the subsequent structural rearrangement. Two closed-form solutions at grain level, stress distribution under diametrically opposed forces and the mode I crack propagation velocity, were included in the DEM formulation. Crack propagation velocity depends explicitly on relative humidity. The resulting model incorporates comminution and splitting modes of particle breakage as well as arbitrary grain shapes by means of aggregation of spherical microparticles. The model was first validated against a large diameter suction-controlled oedometer test on hard limestone crushed gravel. Direct tests on contact properties (local stiffness and friction) helped to validate the model. The model was then used to predict the response of large diameter suction-controlled triaxial tests on gravels having different (uniform) initial sizes. Time delayed deformations and wetting-induced collapse deformations under maintained load are also a natural outcome of the model. They were shown to follow quite accurately the experimental results.  相似文献   

11.
To assess the risk of release and percentage of heavy metals in river sediment, nine stations were set up to sample surface sediments from three important rivers situated southwest of the Caspian Sea (the Shafaroud, Karaganroud, and Choubar Rivers). Chemical analyses were conducted on sediment with particle sizes of >38, 63–38, 63–125, 125–250, 250–500 and 500–1000 µm using metal fractionation to determine the degree of risk release and the heavy metal pollution. Common risk indices were used including the cumulative indices of pollution intensity assessment and risk release standards (the modified pollution degree and ecological risk). Generally, when sediment sizes are decreased, the concentration of heavy metals is both larger and greater than the mean concentration of global sediments and earth crust. However, in this research, the concentration of all the metals did not necessarily increase with a decrease in the size of particles. In fact, concentration of cobalt, vanadium, cadmium, and chromium was greater in sediment particle sizes over 63 μm. The results of chemical fractionation analyses indicated that the release risk of metals has two initial phases for: (1) exchangeable bond (F1) and (2) carbonated bond (F2). When compared with other metals, nickel had the greatest tendency to bond within the loose exchangeable phase (F1) across all the stations. Furthermore, with changes in the size of particles, the percentage of heavy metal changes across different bond phases, but will be the greatest in the loose exchangeable phase (F1). This was observed with cobalt, nickel, and chromium at particle sizes larger than 63 μm. The results of ecological risk and modified pollution degree indices indicated that the highest level of pollution was related to sediments with sizes between 63 and 250 μm. Eventually, in order to assess the risk extent of metals present in sediment, a cumulative index referred to as the modified risk assessment code was utilized. It suggested that the greatest risk of toxicity in some stations has been related to particles larger than 63 μm.  相似文献   

12.
Experiments were carried out to investigate the rheological properties of coal–oil–water suspension containing solids of different sizes. Two different coal samples with mean particle sizes of 120 mesh, 175 mesh and 220 mesh were used. The coal concentration was varied from 5% to 25% by weight. Sodium silicate has been used as an additive to study the behavior of the variation of average viscosity of the suspension. A generalized correlation has been developed to predict the average viscosity of suspension in terms of particle diameter of the coal, concentration of coal, viscosity of the suspending medium and the concentration of water. Experimental investigations revealed that coal–oil–water suspensions show an increase in the viscosity with decrease in coal size but with the addition of an additive, the average viscosity tends to decrease initially up to a certain optimum dosages and thereafter it increases with further addition of additives. Two empirical correlations are proposed for average viscosity of the coal–oil–water suspension, μsL in terms of physical properties of the solid and viscosity of the suspending medium with and without additives.  相似文献   

13.
黏土颗粒形态不仅反映黏土的矿物组分,更是影响其物理力学性质的重要因素之一。为了研究物质组成对软黏土微宏观性质的影响,采用离散元方法对不同颗粒形态的软黏土试样进行三轴压缩模拟试验。首先,基于扫描电镜图像量化颗粒形态,对天然状态下黏土颗粒的方向角和凹凸度进行统计,引入球度和凹凸度作为颗粒形态的特征参数;然后,基于原生矿物的单粒结构和黏土矿物的片状结构特征,构造球体单粒及圆柱体、正方体、长方体的片状簇体;最后,基于三轴试验离散元模拟方法,分析软黏土颗粒形态对其宏观力学及微观特性的影响。结果表明:片状颗粒试样比球体颗粒试样的初始模量高,抗剪强度大,随加载其排列趋于水平向分布;加载初期,颗粒球度对初始弹性模量影响较明显,初始弹性模量随着球度增大而逐渐减小;加载后期,颗粒凹凸度对抗剪强度指标影响作用逐渐凸显,试样内摩擦角和黏聚力随着凹凸度增大而逐渐减小;微观结构上,颗粒形状对颗粒位移和旋转也有较大影响。  相似文献   

14.
Distinctive uptake mechanisms of different radiotracers by red clays in seawater are elucidated from the magnitude and change of distribution coefficients (Kd) for up to 17 γ-emitting radiotracers as functions of equilibration time, suspended particle concentration and compositions of solids and seawaters. The adsorption of ionic metals onto colloids and subsequent coagulation of colloids onto larger particles are the dominant removal processes of metals in the aquatic environments of low suspended particle concentration.  相似文献   

15.
In estuaries, organic coatings play an important role in the aggregation of mineral particles. Particles acquire adhesive surfaces through the activities of bacteria and microalgae in the sediment and water column. Eventually, they may become incorporated into larger aggregates and structures, such as tubes, constructed by infaunal benthic animals. Where these structures are large enough, and the adhesive bonds between particles strong enough, individual particles may remain in place at bed shear stresses otherwise strong enough to cause sediment transport. This study examined the aggregation of particles during tube building by the ubiquitous tanaid crustaceanLeptochelia dubia. Particle size selection and rates of tube building were determined as functions of animal size, temperature, and the presence or absence of bacteria and microalgae. These data were used to model seasonal patterns of sediment binding by a population ofL. dubia in Yaquina Bay, Oregon, taking into account seasonal changes in sizes and abundance of animals. Rates of tube building (mass of sediment per day) increased with animal size, but temperature had no effect. The model indicated that the field population ofL. dubia bound sediment into tubes at a gross rate of 350 g m?2 d?1, averaged over a 2-yr period. Seasonally, gross rates of tube building were predicted to range from 70 g m?2 d?1 (during late winter-early spring) to 600 g m?2 d?1 (during autumn). When constructing tubes from sterile sediments, small animals selected silt-sized particles while large animals discriminated against these particles. The presence of microbes in sediments tended to reduce particle selectivity.  相似文献   

16.
《Applied Geochemistry》1993,8(6):605-616
The Cigar Lake U deposit is located in northern Saskatchewan in the eastern part of the Athabasca Sandstone Basin, and consists of a high-grade ore body (up to 55% U) located at a depth of ∼430 m. As part of a study to evaluate the analog features of this deposit with respect to a disposal vault for waste nuclear fuel, colloids (1–450 nm) and suspended particles (450nm) in groundwater have been investigated to evaluate their effect on element transport through the U deposit. Tangential-flow ultrafiltration was used to concentrate particles from 501 groundwater samples in order to characterize the size distribution, concentration, composition and natural radionuclide content of particles in representative parts of the U deposit. Although Cigar Lake groundwaters contain particles in all sizes ranging from 10 nm to slightly larger than 20 μm, most samples contained a relatively high concentration of colloids in the 100–400 nm size range. Particle compositions are similar to the composition of minerals in the sandstones and ore body, suggesting that particles in groundwater are generated by the erosion of fracture-lining minerals. As a result, particle concentrations in groundwater are affected by the integrity of the host rock. In some piezometers the high initial concentrations of suspended particles, which may have been drilling artifacts, decreased during the collection of the first 350 1. Although colloid concentrations fluctuated during sampling, there are no indications that these concentrations will be permanently reduced by continued groundwater pumping. The observed colloid and suspended particle concentrations in the deep groundwaters are too low to have a significant impact on radionuclide migration, provided that radionuclide sorption is reversible. If radionuclides are irreversibly sorbed to particles they cannot sorb to the host rock and their migration can only be evaluated with an understanding of particle mobility. The data for dissolved and particulate U, Th and Ra were used to calculate field-derived distribution ratios (Rd) between particles and groundwater. The wide range of observed Rd values indicates that these radionuclides in particulate form are not in equilibrium with groundwater. U-series isotope data indicated that most of the U and Ra on particles was derived from groundwater. Some particles could have retained their U for as long as 8000 a. The U and Ra contents of particles in the ore and surrounding clay zones are significantly higher than in particles from sandstone, suggesting that the clay has been an effective barrier to particle migration.  相似文献   

17.
This paper investigates the effect of model scale and particle size distribution on the simulated macroscopic mechanical properties, unconfined compressive strength (UCS), Young’s modulus and Poisson’s ratio, using the three-dimensional particle flow code (PFC3D). Four different maximum to minimum particle size (d max/d min) ratios, all having a continuous uniform size distribution, were considered and seven model (specimen) diameter to median particle size ratios (L/d) were studied for each d max/d min ratio. The results indicate that the coefficients of variation (COVs) of the simulated macroscopic mechanical properties using PFC3D decrease significantly as L/d increases. The results also indicate that the simulated mechanical properties using PFC3D show much lower COVs than those in PFC2D at all model scales. The average simulated UCS and Young’s modulus using the default PFC3D procedure keep increasing with larger L/d, although the rate of increase decreases with larger L/d. This is mainly caused by the decrease of model porosity with larger L/d associated with the default PFC3D method and the better balanced contact force chains at larger L/d. After the effect of model porosity is eliminated, the results on the net model scale effect indicate that the average simulated UCS still increases with larger L/d but the rate is much smaller, the average simulated Young’s modulus decreases with larger L/d instead, and the average simulated Poisson’s ratio versus L/d relationship remains about the same. Particle size distribution also affects the simulated macroscopic mechanical properties, larger d max/d min leading to greater average simulated UCS and Young’s modulus and smaller average simulated Poisson’s ratio, and the changing rates become smaller at larger d max/d min. This study shows that it is important to properly consider the effect of model scale and particle size distribution in PFC3D simulations.  相似文献   

18.
岩石作为矿物颗粒的集合体,矿物粒径非均质性对其宏观力学特性影响比较明显。基于颗粒流程序PFC2D,通过设置不同种类粒径组合及粒径比来体现粒径非均质性,研究了粒径非均质性对岩石材料宏观力学特性(弹性模量、峰值强度、泊松比)的影响。研究中设计了6种粒径组合方案,粒径种类数分别为:连续粒径、10种、8种、5种、3种、2种,每种方案下设置5种平均粒径及4种粒径比,进行单轴压缩试验。结果表明,岩石内部存在颗粒尺寸效应和粒径非均质效应,岩石弹性模量和峰值强度随粒径增大均呈减小的趋势,随粒径非均质性的提高整体上也呈减小的趋势,但局部变化阶段受模型中细颗粒含量及数量的影响会呈增大的趋势。粒径对弹性模量的作用机制主要是通过影响模型孔隙率实现的。研究结果揭示了岩石宏观特性的变化是模型内颗粒尺寸效应和粒径非均质性效应共同作用的结果,为掌握矿物粒径对岩石强度及变形特性的影响提供了一定依据。  相似文献   

19.
20.
The colloidal fractions of various particle sizes were separated from the samples of groundwater in the area of radioactive contamination nearby Obninsk (Kaluga region, Russia). The primary component of the radioactive contamination is 90Sr isotope. The colloidal particles were separated from the samples of groundwater by means of ultrafiltration through membranes of 200, 100, and 25 nm pore sizes. The chemical composition of particle surfaces in each of the fractions was determined using X-ray photoelectron spectroscopy. The structure of particles was determined by the changes in the surface composition after the removal of outer layers of particles by etching with argon ions to a depth of 100 Å. It was found that the particles are constituted by inorganic cores mainly of montmorillonite and iron metahydroxide and a broken covering of humic acids. It was shown that about 50% of 90Sr is transferred by groundwater with colloidal particles of over 25 nm in size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号