首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerical models are commonly used to estimate excavation‐induced ground movements. Two‐dimensional (2D) plain strain assumption is typically used for the simulation of deep excavations which might not be suitable for excavations where three‐dimensional (3D) effects dominate the ground response. This paper adapts an inverse analysis algorithm to learn soil behavior from field measurements using a 3D model representation of an excavation. The paper describes numerical issues related to this development including the generation of the 3D model mesh from laser scan images of the excavation. The inverse analysis to extract the soil behavior in 3D is presented. The model captures the measured wall deflections. Although settlements were not sufficiently measured, the predicted settlements around the excavation site reflected strong 3D effects and were consistent with empirical correlations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents a numerical study of mitigation for liquefaction during earthquake loading. Analyses are carried out using an effective stress based, fully coupled, hybrid, finite element-finite differences approach. The sandy soil behavior is described by means of a cyclic elastoplastic constitutive model, which was developed within the framework of a nonlinear kinematic hardening rule. In theory, the philosophies of mitigation for liquefaction can be summarized as two main concepts, i.e. prevention of excess pore water pressure generation and reduction of liquefaction-induced deformations. This paper is primarily concerned with the latter approach to liquefaction mitigation. Firstly, the numerical method and the analytical procedure are briefly outlined. Subsequently, a case-history study, which includes a liquefaction mitigation technique of cement grouting for ground improvement of a sluice gate, is conducted to illustrate the effectiveness of liquefaction countermeasures. Special emphasis is given to the computed results of excess pore water pressures, displacements, and accelerations during the seismic excitation. Generally, the distinctive patterns of seismic response are accurately reproduced by the numerical simulation. The proposed numerical method is thus considered to capture the fundamental aspects of the problems investigated, and yields results for design purposes. From the results in the case, excess pore water pressures eventually reach fully liquefied state under the input earthquake loading and this cannot be prevented. However, liquefaction-induced lateral spreading of the foundation soils can be effectively reduced by the liquefaction mitigation techniques. An erratum to this article can be found at  相似文献   

3.
李宏儒  胡再强  陈存礼  谢定义 《岩土力学》2006,27(Z1):1069-1074
以动力固结理论和瞬态动力学理论为基础,将有效应力物态动本构关系引入到以动力反应与动力固结相耦合、静应力与动应力变化相耦合、孔压的产生、扩散和消散相耦合的动力三维瞬态动力学基本方程组中,形成了饱和土体有效应力物态地震反应分析的完整理论体系。利用有限元法对饱和路基进行了瞬态地震反应分析,较好地反映了土体在震动过程中剪 胀、剪缩的实际性态,比以往引进孔压模型和静-动交替分析计算更为合理。  相似文献   

4.
Recent developments in studies of soil response to earthquake loadings have made it possible to incorporate the rates of pore water pressure build-up in soils in to nonlinear response analyses of the grounds. Such pore pressure changes help in computing the changes in stress-strain behaviour of soils in the deposit progressively as the earthquake progresses. The rate and magnitude of pore pressure generation in soils during seismic loading will have important effects on the shear strength, stability, and settlement characteristics of a soil mass, even if the soil does not liquefy. The results in terms of pore pressure response in soils from a series of experimental investigations using strain-controlled cyclic triaxial tests on soils samples collected from liquefied sites are presented in this paper. The effect of relative density, amplitude of cyclic shear strain, number of loading cycles, confining pressure and frequency of cyclic loading on the pore pressure build-up are studied. Analytical expressions are proposed using regression analysis to define mean relationships between normalized pore water pressure and normalized cycles for the prediction of pore water pressure build-up in silty sands. Also, the pore water pressure build-up in soils is independent of frequency of loading.  相似文献   

5.
M.M. Berilgen   《Engineering Geology》2007,91(2-4):240-253
Fatih Mosque and its Kulliye (complex) are one of the most important historical monuments in Istanbul. Since it has been built between 1463 and 1470, Fatih Mosque had been subjected to nine strong earthquakes and suffered various degrees of structural damage at every case, including the latest August 17, 1999 Kocaeli Earthquake (Mw = 7.4, epicentral distance approximately 100 km). Recently, a project has been initiated first to study the possible causes of earthquake damage and then develop retrofitting and strengthening techniques to protect this invaluable monument from further damages in the future earthquakes. As part of this investigation, local site soil conditions had been determined and site behavior during earthquakes had been studied in detail. In this paper, the results of 1-D site response analysis, which included convolution and deconvolution analyses utilizing the strong ground motions recorded during the August 17, 1999 Kocaeli Earthquake are presented. The results of the analyses had demonstrated the considerable degree of site amplification, compatible with the recorded motions and the damage suffered. The expected site behavior during a probable future earthquake is also studied using a site specific simulated bedrock motion, and earthquake parameters to be used in dynamic structural analysis are estimated.  相似文献   

6.
We perform a combined stochastic-deterministic analysis of local site response using two computer codes, an equivalent linear analysis program SHAKE and a fully nonlinear finite element code SPECTRA. Our goal is to compare the relative sensitivity of the two codes to statistical variations in soil properties. For the case studies, we re-analyze two ground motion records in Lotung, Taiwan, and one ground motion record in Gilroy, California, utilizing the recorded ground motions at the site deterministically as input into the two codes while treating the uncertain soil parameters as random variables. We then obtain empirical cumulative distribution functions of the Arias intensity and acceleration spectrum intensity, two measures of cumulative damage, to compare the relative sensitivity of the two codes to variations in model parameters. We show that the two codes exhibit comparable sensitivities to statistical parameter variations, indicating that even in the presence of fluctuations in the soil parameter values it is possible to pursue a fully nonlinear site response analysis with SPECTRA and benefit from its superior accuracy.  相似文献   

7.
The phenomenon of excess pore water pressure increase or stagnation and continuing large ground deformation in soft sensitive clay following the completion of construction of embankment is simulated for a case study at Saint Alban, Quebec, Canada. The present model employs an updated Lagrangian finite element framework and is combined with an automatic time increment selection scheme. The simulation based on an elasto‐viscoplastic constitutive model considers soil‐structure degradation effect. It is shown that without consideration for the microstructural degradation effect, it is not possible to reproduce the field responses of soft sensitive clay even during the construction of the embankment. When the soil‐structure degradation effect is considered, the present model can offer reasonably accurate prediction for the consolidation behavior of soft sensitive clay, including the so‐called anomalous pore water pressure generation and continuing large deformation even after the end of construction, which has been posing numerous uncertainties on the long‐term performance of earth structures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Slopes composed of stratified and poorly cemented rocks that fail during heavy rainfalls are typical in the outer zone of Taiwan's Western Foothills. This study investigates how hydraulic conductivity anisotropy influences pore water pressure (PWP) distributed in stratified, poorly cemented rock slopes and related slope stability through numerical simulation. The notion of representing thin alternating beds of stratified, poorly cemented rocks as an equivalent anisotropic medium for ground‐water flow analysis in finite slopes was validated. PWP was then derived in a modelled slope comprising an anisotropic medium with suitable boundary conditions. Simulation results indicate the significance of the principal directions of hydraulic conductivity tensor and the anisotropic ratio on PWP estimation for anisotropic finite slopes. For a stratified, poorly cemented rock slope, estimating PWP utilizing a phreatic surface with isotropic and hydrostatic assumptions will yield incorrect results. Stability analysis results demonstrate that hydraulic conductivity anisotropy affects the slope safety factor and slip surface pattern. Consequently, steady‐state groundwater flow analysis is essential for stratified, poorly cemented rock slopes when evaluating PWP distribution and slope stability. This study highlights the importance of hydraulic conductivity anisotropy on the stability of a stratified, poorly cemented rock slope. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
A multiphase coupled elasto‐viscoplastic finite element analysis formulation, based on the theory of porous media, is used to describe the rainfall infiltration process into a one‐dimensional soil column. Using this framework, we have numerically analyzed the generation of pore water pressure and deformations when rainfall is applied to the soil. A parametric study, including rainfall intensity, soil–water characteristic curves, and permeability, is carried out to observe their influence on the changes in pore water pressure and volumetric strain. From the numerical results, it is shown that the generation of pore water pressure and volumetric strain is mainly controlled by material parameters α and n′ that describe the soil–water characteristic curve. A comparison with the laboratory results shows that the proposed method can describe very well the characteristics observed during the experiments of one‐dimensional water infiltration into a layered unsaturated soil column. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
In dynamic geotechnical problems, soils are often subjected to a combination of sustained static and fast cyclic loading. Under such loading conditions, saturated and normally consolidated clays generally experience a build-up of excess pore water pressure along with a degradation of stiffness and strength. If the strength of the soil falls below the static stress demand, a self-driven failure is triggered. In this paper, a constitutive model is presented for the analysis of such problems, based on a general multisurface plasticity framework. The hardening behavior, the initial arrangement of the surfaces, and the nonassociated volumetric flow rule are defined to capture important aspects of cyclic clay behavior. This includes nonlinear hysteretic stress-strain behavior, the effect of anisotropic consolidation, and the generation of excess pore water pressure during undrained cyclic loading along with a degradation of stiffness and strength. The model requires nine independent parameters, which can be derived from standard laboratory tests. A customized experimental program has been performed to validate the model performance. The model predictions show a good agreement with test results from monotonic and cyclic undrained triaxial tests, in particular with respect to the strain-softening response and the number of loading cycles to failure. A procedure for a general stress-space implicit numerical implementation for undrained, total stress-based finite element analyses is presented, including the derivation of the consistent tangent operator. Finally, a simulation of the seismic response of a submarine slope is shown to illustrate a possible application of the presented model.  相似文献   

11.
采用大型动三轴试验仪进行重塑高岭土试样的循环三轴试验,试样直径为300 mm,高度为600 mm。圆柱体试样中心放置了一块竖向排水板,在循环加载试验进行时和结束后都可进行径向排水。试验结果验证了径向排水可以有效地消散循环荷载引起的孔隙水压力。通过结合径向固结理论与不排水循环加载土体模型,提出了一个循环荷载作用下径向固结模型,用来描述在允许径向排水的情况下软黏土在循环荷载作用下的孔压累积特性。模型中考虑了应力历史和孔隙水压力消散对孔隙水压力生成的影响,并用大型循环三轴试验结果进行验证。研究发现,当施加较大循环荷载时,径向排水减缓了孔隙水压力累积到临界值的速率,因而土体在破坏前可以经历更多次的循环荷载;当施加中等循环荷载时,径向排水可有效阻止孔隙水压力增长至临界值。除此之外,还研究了加载间歇期对孔压累积特性的影响,结果显示3组循环加载结束后,累积孔隙水压力开始减小,表明之后更多的循环加载并不会引起孔隙水压力的累积增长。  相似文献   

12.
This paper presents an identification technique to characterize the contractive and pore pressure behavior of loose sandy soils under seismic excitation. The technique relies on acceleration and pore pressure records provided during excitation by vertical arrays of accelerometers and pore pressure sensors. The technique employs non-parametric estimates of shear stresses and strains. A multi-surface plasticity approach is used to model the soil response. A reduced scale centrifuge model and a large scale experiment are used to demonstrate the capabilities of the developed technique. The technique allows for a more complete interpretation of the coupled shear–volume behavior of a soil deposit.  相似文献   

13.
A computational method, incorporating the finite element model (FEM) into data assimilation using the particle filter, is presented for identifying elasto‐plastic material properties based on sequential measurements under the known changing traction boundary conditions to overcome some difficulties in identifying the parameters for elasto‐plastic problems from which the existing inverse analysis strategies have suffered. A soil–water coupled problem, which uses the elasto‐plastic constitutive model, is dealt with as the geotechnical application. Measured data on the settlement and the pore pressure are obtained from a synthetic FEM computation as the forward problem under the known parameters to be identified for both the element tests and the ground behavior during the embankment construction sequence. Parameter identification for elasto‐plastic problems, such as soil behavior, should be made by considering the measurements of deformation and/or pore pressure step by step from the initial stage of construction and throughout the deformation history under the changing traction boundary conditions because of the embankment or the excavation because the ground behavior is highly dependent on the loading history. Thus, it appears that sequential data assimilation techniques, such as the particle filter, are the preferable tools that can provide estimates of the state variables, that is, deformation, pore pressure, and unknown parameters, for the constitutive model in geotechnical practice. The present paper discusses the priority of the particle filter in its application to initial/boundary value problems for elasto‐plastic materials and demonstrates a couple of numerical examples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
The capability of a bounding surface plasticity model with a vanishing elastic region to capture the multiaxial dynamic hysteretic responses of soil deposits under broadband (eg, earthquake) excitations is explored by using data from centrifuge tests. The said model was proposed by Borja and Amies in 1994 (J. Geotech. Eng., 120, 6, 1051‐1070), which is theoretically capable of representing nonlinear soil behavior in a multiaxial setting. This is an important capability that is required for exploring and quantifying site topography, soil stratigraphy, and kinematic effects in ground motion and soil‐structure interaction analyses. Results obtained herein indicate that the model can accurately predict key response data recorded during centrifuge tests on embedded specimens—including soil pressures and bending strains for structural walls, structures' racking displacements, and surface settlements—under both low‐ and high‐amplitude seismic input motions, which was achieved after performing only a basic material parameter calibration procedure. Comparisons are also made with results obtained using equivalent linear models and a well‐known pressure‐dependent multisurface plasticity model, which suggested that the present model is generally more accurate. The numerical convergence behavior of the model in nonlinear equilibrium iterations is also explored for a variety of numerical implementation and model parameter options. To facilitate broader use by researchers and practicing engineers alike, the model is implemented as a “user material” in ABAQUS Standard for implicit time stepping.  相似文献   

15.
The influence of local geologic and soil conditions on the intensity of ground shaking is addressed in this study. The amplification of the ground motion due to local site effects resulted in severe damage to dwellings in the Bam area during the 2003 Bam Earthquake. A unique set of strong motion acceleration recordings was obtained at the Bam accelerograph station. Although the highest peak ground acceleration recorded was the vertical component (nearly 1 g), the longitudinal component (fault-parallel motion) clearly had the largest maximum velocity as well as maximum ground displacement. Subsurface geotechnical and geophysical (down-hole) data in two different sites have been obtained and used to estimate the local site condition on earthquake ground motion in the area. The ground response analyses have been conducted considering the nonlinear behavior of the soil deposits using both equivalent linear and nonlinear approaches. The fully nonlinear method embodied in FLAC was used to evaluate the nonlinear soil properties on earthquake wave propagation through the soil layer, and compare with the response from the equivalent linear approach. It is shown that thick alluvium deposits amplified the ground motion and resulted in significant damage in residential buildings in the earthquake stricken region. The comparison of results indicated similar response spectra of the motions for both equivalent and nonlinear analyses, showing peaks in the period range of 0.3–1.5 s. However, the amplification levels of nonlinear analysis were less than the equivalent linear method especially in long periods. The observed response spectra are shown to be above the NEHRP building code design requirements, especially at high frequencies.  相似文献   

16.
曾晨  孙宏磊  蔡袁强 《岩土力学》2014,35(4):1147-1156
研究了全空间饱和土体中圆形衬砌隧道在径向简谐点荷载作用下的三维动力响应,将衬砌用无限长圆柱壳来模拟,土体用Biot饱和多孔介质模型来模拟,引入两类势函数来表示土骨架的位移和孔隙水压力,并利用修正Bessel方程来求解各势函数,结合边界条件,得到频率-波数域内衬砌和土骨架位移、孔隙水压力的解答,最后进行Fourier逆变换得到时间-空间域内的响应。通过算例分析了荷载振动频率和土体渗透性对土体和衬砌位移响应及土体孔压的影响。结果表明,饱和土体和弹性土体的位移响应具有明显区别。随着荷载频率的增大,土体和隧道位移幅值减小,土体孔压幅值增大;随着土体渗透性增大,土体位移及孔压幅值减小。  相似文献   

17.
液化自由场地震响应大型振动台模型试验分析   总被引:1,自引:0,他引:1  
许成顺  豆鹏飞  杜修力  陈苏  韩俊艳 《岩土力学》2019,40(10):3767-3777
开展了含上部黏土层、饱和砂土层、密实砂土层的可液化自由场地在水平地震动激励下的大型振动台模型试验研究,分析了地震动激励时饱和砂土液化后场地加速度、位移、孔压比时空响应等动力响应。试验结果表明:在小震激励时,场地动力反应较小,加速度反应自下而上不断放大,各深度处孔压比均较小,模型地基整体处于弹性反应阶段;0.3g汶川地震卧龙台地震记录输入时,孔压积累迅速,可液化土体最上部土层孔压比达到1,饱和土体液化,模型地基表现出明显的非线性反应特征,加速度反应在饱和砂土层中未有明显放大,土体卓越周期对应的反应加速度自下而上有不断增大趋势。该研究是土-群桩-上部结构体系大型振动台系列试验中可液化自由场动力反应部分,可供今后做对比分析和验证数值模拟参考。  相似文献   

18.
关于地铁地震响应的模型振动试验及数值分析   总被引:10,自引:0,他引:10  
为明确大地震时地铁的破坏过程及原因,以1995 年日本阪神-淡路大地震中遭受严重破坏的神户大开地铁车站为对象,进行了一系列的模型振动试验和动力有限元分析。对于作用于地下结构的地震动土压的发生原理、地震波输入方向、结构的埋设深度、地基与结构间的刚性比对地震动土压的影响及在地基-结构系统的非线性响应下结构周围地基终局状态时的地震动土压进行了研究。明确了地震动土压的极限值及在大地震时周围地基的残余应变引起的静止土圧力的存在。为今后改进地震土压力计算方法、提高地下结构抗震设计水平提供了依据。  相似文献   

19.
为研究近断层脉冲地震动中竖向加速度对砂土场地液化的影响,基于有限元平台OpenSees开发的边界面塑性本构模型,建立了动单剪单元试验模型和饱和砂土三维有限元模型。选取台湾Chi-Chi地震中10条具有速度脉冲特性的地震波,对比分析了水平双向脉冲波与三向脉冲波作用下土柱竖向位移、循环应力比、孔压比及等效循环周数的差异性,继而明确了脉冲地震动中竖向加速度对砂土液化的影响规律。研究表明,三向脉冲地震波中竖向加速度分量对场地永久位移值影响较小,但使永久位移的发展持时明显增大;土柱循环应力比受竖向地震动影响较小,因此分析脉冲地震动对场地剪切特性的影响时,可将三向脉冲地震动简化为水平双向地震动;考虑竖向地震动的三向脉冲地震波引起的孔压比变化幅度较大,孔压消散时间较长;三向脉冲地震波对应的等效循环周数较大,地震动发展持时长,可认为竖向加速度对场地液化有促进作用。  相似文献   

20.
This paper presents an investigation into various factors that may affect the ground response to multi-directional earthquake loading, focusing mainly on the behavior of vertical ground motion and its relation with the horizontal counterpart. The factors investigated herein include the intensity of input motion and the associated soil nonlinearity, the location of input motion (rock outcrop versus bedrock), the variation of water table, and the damping property of soil. Influence of these factors is studied on the characteristics of site amplification in both vertical and horizontal directions, the response spectra of vertical and horizontal ground surface motions, the spectral ratio between the two components (V/H) at the ground surface, and the distributions of stresses and strains in the ground. One of the main results is that varying water table can bring about a significant impact on vertical motion and the relationship between vertical and horizontal motions. The surface response spectral ratio (V/H) can largely exceed the rule-of-thumb value of 2/3 at low periods with lowering the water table, but does not appear to be substantially affected at long periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号