首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we used a theoretical model for the variation of Eulerian porosity, which takes into account the adsorption process known to be the main mechanism of production or sequestration of gas in many reservoir of coal. This process is classically modeled using Langmuir's isotherm. After implementation in Code_Aster, a fully coupled thermo‐hydro‐mechanical analysis code for structures calculations, we used numerical simulations to investigate the influence of coal's hydro‐mechanical properties (Biot's coefficient, bulk modulus), Langmuir's adsorption parameters, and the initial liquid pressure in rock mass during CO2 injection in coal. These simulations showed that the increase in the values of Langmuir's parameters and Biot's coefficient promotes a reduction in porosity because of the adsorption process when the gas pressure increases. Low values of bulk modulus increase the positive effect (i.e., increase) of hydro‐mechanical coupling on the porosity evolution. The presence of high initial liquid pressure in the rock mass prevents the progression of injected gas pressure when CO2 dissolution in water is taken into account. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
An analytical solution is proposed for transient flow and deformation coupling of a fluid‐saturated poroelastic medium within a finite two‐dimensional (2‐D) rectangular domain. In this study, the porous medium is assumed to be isotropic, homogeneous, and compressible. In addition, the point sink can be located at an arbitrary position in the porous medium. The fluid–solid interaction in porous media is governed by the general Biot's consolidation theory. The method of integral transforms is applied in the analytical formulation of closed‐form solutions. The proposed analytical solution is then verified against both exact and numerical results. The analytical solution is first simplified and validated by comparison with an existing exact solution for the uncoupled problem. Then, a case study for pumping from a confined aquifer is performed. The consistency between the numerical solution and the analytical solution confirms the accuracy and reliability of the analytical solution presented in this paper. The proposed analytical solution can help us to obtain in‐depth insights into time‐dependent mechanical behavior due to fluid withdrawal within finite 2‐D porous media. Moreover, it can also be of great significance to calibrate numerical solutions in plane strain poroelasticity and to formulate relevant industry norms and standards. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, frequency domain dynamic response of a pile embedded in a half‐space porous medium and subjected to P, SV seismic waves is investigated. According to the fictitious pile methodology, the problem is decomposed into an extended poroelastic half‐space and a fictitious pile. The extended porous half‐space is described by Biot's theory, while the fictitious pile is treated as a bar and a beam and described by the conventional 1‐D structure vibration theory. Using the Hankel transformation method, the fundamental solutions for a half‐space porous medium subjected to a vertical or a horizontal circular patch load are established. Based on the obtained fundamental solutions and free wave fields, the second kind of Fredholm integral equations describing the vertical and the horizontal interaction between the pile and the poroelastic half‐space are established. Solution of the integral equations yields the dynamic response of the pile to plane P, SV waves. Numerical results show the parameters of the porous medium, the pile and incident waves have direct influences on the dynamic response of the pile–half‐space system. Significant differences between conventional single‐phase elastic model and the poroelastic model for the surrounding medium of the pile are found. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, a numerical model is developed for the fully coupled hydro‐mechanical analysis of deformable, progressively fracturing porous media interacting with the flow of two immiscible, compressible wetting and non‐wetting pore fluids, in which the coupling between various processes is taken into account. The governing equations involving the coupled solid skeleton deformation and two‐phase fluid flow in partially saturated porous media including cohesive cracks are derived within the framework of the generalized Biot theory. The fluid flow within the crack is simulated using the Darcy law in which the permeability variation with porosity because of the cracking of the solid skeleton is accounted. The cohesive crack model is integrated into the numerical modeling by means of which the nonlinear fracture processes occurring along the fracture process zone are simulated. The solid phase displacement, the wetting phase pressure and the capillary pressure are taken as the primary variables of the three‐phase formulation. The other variables are incorporated into the model via the experimentally determined functions, which specify the relationship between the hydraulic properties of the fracturing porous medium, that is saturation, permeability and capillary pressure. The spatial discretization is implemented by employing the extended finite element method, and the time domain discretization is performed using the generalized Newmark scheme to derive the final system of fully coupled nonlinear equations of the hydro‐mechanical problem. It is illustrated that by allowing for the interaction between various processes, that is the solid skeleton deformation, the wetting and the non‐wetting pore fluid flow and the cohesive crack propagation, the effect of the presence of the geomechanical discontinuity can be completely captured. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The motions of fluid and solid phases in saturated porous media are coupled by inertial, viscous and mechanical interactions as described by Biot's equations. A one-dimensional exact analytical solution of the Biot's equations for the completely general solution of the transient problem in saturated, linear, elastic, porous media is presented. The problem is solved by using the Fourier series. The transient response of porous media is shown for typical material properties of a natural granular deposit and for different degrees of viscous coupling. The analytical results show the mechanics of dispersive wave propagation in saturated porous media and they should provide a useful comparison term for the existing numerical solution methods.  相似文献   

6.
Thermo‐hydro‐mechanical responses around a cylindrical cavity drilled or excavated in a low‐permeability formation are studied when the cavity is subjected to a time‐dependent thermal loading. The cavity is considered backfilled after it is supported by casing or lining. Solutions of temperature, pore water pressure, stress, and displacement responses are analytically formulated based on Biot's consolidation theory with the assumption that the backfilling material, supporting material, and surrounding low‐permeability formation are poroelastic media. The solution is expressed in Laplace space, and numerical inversion techniques are used to find field variables in the real‐time domain. After the solution is verified with the numerical results, it is applied in a large‐scale in situ heating test – PRACLAY heating test – for a predictive reference calculation and an extensive parametric study. Another medium‐scale in situ heating test – ATLAS III heating test – is also analyzed using the solution, which provides reasonable agreement with measurements. The new analytical solution proves to be a convenient tool for a good understanding of the resulting coupled thermo‐hydro‐mechanical behavior and is therefore valuable for the interpretation of measured data in engineering practices and for a rational design of potential radioactive waste repositories. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Nonphysical pressure oscillations are observed in finite element calculations of Biot's poroelastic equations in low‐permeable media. These pressure oscillations may be understood as a failure of compatibility between the finite element spaces, rather than elastic locking. We present evidence to support this view by comparing and contrasting the pressure oscillations in low‐permeable porous media with those in low‐compressible porous media. As a consequence, it is possible to use established families of stable mixed elements as candidates for choosing finite element spaces for Biot's equations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Two formulations for calculating dynamic response of a cylindrical cavity in cross‐anisotropic porous media based on complex functions theory are presented. The basis of the method is the solution of Biot's consolidation equations in the complex plane. Employing two groups of potential functions for solid skeleton and pore fluid (each group includes three functions), the uw formulation of Biot's equations are solved. Difference of these two solutions refers to use of two various potential functions. Equations for calculating stress, displacement and pore pressure fields of the medium are mentioned based on each two formulations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Scattering of an elastic wave by a cylindrical shell embedded in poroelastic medium is investigated theoretically with the assumption that the shell material is also a porous elastic medium. The porous medium is modellized via Biot's theory and the scattering by cylindrical shell is expressed by the definition of scattering matrix. The normal mode expansion technique is employed for analysing the scattering field, and the asymptotic solutions of displacements, stresses and pore pressure are derived. Two limiting cases‐scattering by a poroelastic cylinder in Biot medium and a elastic cylindrical shell in elastic medium are obtained from the general solutions. The dispersion curves of displacement amplitude at the interface of shell and medium is compared with the case of elastic shell. The scattering amplitude associated with the fast, slow and transverse waves are identified by numerical simulation. Furthermore, the influence of the poroelastic property of shell material on scattering amplitude is analysed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
This article is devoted to numerical modeling of anisotropic damage and plasticity in saturated quasi‐brittle materials such as rocks and concrete. The damaged materials are represented by an isotropic poroelastic matrix containing a number of families of microcracks. Based on previous works, a discrete thermodynamic approach is proposed. Each family of microcracks exhibits frictional sliding along crack surfaces as well as crack propagation. The frictional sliding is described by a Coulomb–Mohr‐type plastic criterion by taking into account the effect of fluid pressure through a generalized effective stress concept. The damage evolution is entirely controlled by and coupled with the frictional sliding. The effective elastic properties as well as Biot's coefficients of cracked porous materials are determined as functions of induced damage. The inelastic deformation due to frictional sliding is also taken into account. The procedure for the identification of the model's parameters is presented. The proposed model is finally applied to study both mechanical and poromechanical responses of a typical porous brittle rock in drained and undrained compression tests as well as in interstitial pressure controlled tests. The main features of material behaviors are well reproduced by the model. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The volumetric compaction due to wetting processes is a phenomenon observed quite often in unsaturated soils. Under certain circumstances, saturation events can result into a sudden and unexpected collapse of the system. These phenomena are usually referred to as wetting‐induced collapses, without providing any detailed theoretical justification for this terminology. In order to predict in a general fashion the occurrence of coupled instabilities induced by saturation processes, a generalization of the theoretical approaches usually employed for saturated geomaterials is here provided. More specifically, this paper addresses the problem of hydro‐mechanical instability in unsaturated soils from an energy standpoint. For this purpose, an extension of the definition of the second‐order work is here suggested for the case of unsaturated porous media. On the basis of some examples of numerical simulations of laboratory tests, coupled hydro‐mechanical instabilities are then interpreted in the light of this second‐order energy measure. Finally, the implications of the theoretical results here presented are commented from a constitutive modelling perspective. Two possible alternative approaches to formulate incremental coupled constitutive relations are indeed discussed, showing how the onset of hydro‐mechanical instabilities can be predicted using an extended form of Hill's stability criterion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The quasi-static development of the force, pore pressure and displacement is obtained in the system of a circular elastic pile partially embedded in a saturated porous elastic soil, and loaded axially on the top. The porous elastic soil is governed by Biot's theory. The problem is decomposed into two systems, namely, an extended porous elastic half-space in the absence of the pile characterized by the material constants of the medium, and a fictitious pile represented by a Young's modulus equal to the difference between the Young's moduli of the real pile and the medium. The problem is found to be governed by a Fredholm integral equation of the second kind. Laplace transforms are applied to time functions involved, and Hankel transforms to the radial coordinate of which the origin is at the centre of the pile. Numerical solutions are obtained for final and initial solutions for various practical values of the parameters involved.  相似文献   

13.
Hydraulic fracturing (HF) of underground formations has widely been used in different fields of engineering. Despite the technological advances in techniques of in situ HF, the industry uses semi‐analytical tools to design HF treatment. This is due to the complex interaction among various mechanisms involved in this process, so that for thorough simulations of HF operations a fully coupled numerical model is required. In this study, using element‐free Galerkin (EFG) mesh‐less method, a new formulation for numerical modeling of hydraulic fracture propagation in porous media is developed. This numerical approach, which is based on the simultaneous solution of equilibrium and continuity equations, considers the hydro‐mechanical coupling between the crack and its surrounding porous medium. Therefore, the developed EFG model is capable of simulating fluid leak‐off and fluid lag phenomena. To create the discrete equation system, the Galerkin technique is applied, and the essential boundary conditions are imposed via penalty method. Then, the resultant constrained integral equations are discretized in space using EFG shape functions. For temporal discretization, a fully implicit scheme is employed. The final set of algebraic equations that forms a non‐linear equation system is solved using the direct iterative procedure. Modeling of cracks is performed on the basis of linear elastic fracture mechanics, and for this purpose, the so‐called diffraction method is employed. For verification of the model, a number of problems are solved. According to the obtained results, the developed EFG computer program can successfully be applied for simulating the complex process of hydraulic fracture propagation in porous media. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Unsaturated soils are highly heterogeneous 3‐phase porous media. Variations of temperature, the degree of saturation, and density have dramatic impacts on the hydro‐mechanical behavior of unsaturated soils. To model all these features, we present a thermo‐hydro‐plastic model in which the hydro‐mechanical hardening and thermal softening are incorporated in a hierarchical fashion for unsaturated soils. This novel constitutive model can capture heterogeneities in density, suction, the degree of saturation, and temperature. Specifically, this constitutive model has 2 ingredients: (1) it has a “mesoscale” mechanical state variable—porosity and 3 environmental state variables—suction, the degree of saturation, and temperature; (2) both temperature and mechanical effects on water retention properties are taken into account. The return mapping algorithm is applied to implement this model at Gauss point assuming an infinitesimal strain. At each time step, the return mapping is conducted only in principal elastic strain space, assuming no return mapping in suction and temperature. The numerical results obtained by this constitutive model are compared with the experimental results. It shows that the proposed model can simulate the thermo‐hydro‐mechanical behavior of unsaturated soils with satisfaction. We also conduct shear band analysis of an unsaturated soil specimen under plane strain condition to demonstrate the impact of temperature variation on shear banding triggered by initial material heterogeneities.  相似文献   

15.
The paper presents a three‐dimensional study on the steady‐state response of a track system and layered half‐space soil medium subjected to the load induced by the passages of a moving train with the substructure method. Practically, due to the ground water table being several meters beneath the ground surface, the soil profile can be divided into two layers: the upper layer modeled by an elastic medium and the lower layer by a fully saturated poroelastic medium governed by Biot's theory. In the meanwhile, the rails are regarded as an infinitely long Euler beam, and the sleepers are represented by a continuous mass. The effect of the ballast is accounted for by introducing the Cosserat model for granular medium, and the train is described by a series of moving axle point loads, depending on the geometry of the train. The influences of the thickness, the mass and the rigidity of the elastic layer and the mass of the ballast on rail's displacement responses are carefully investigated. Numerical results show that the influences of these parameters are significant for high train velocity, while vanishes for low velocity. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
A general analysis procedure is developed for the evaluation of the effective stress response of a porous ocean bed subjected to random waves. The ocean floor soil is treated as a saturated porous elastic medium and Biot's theory is used to formulate the coupled flow and deformation. The waves are treated as a random process which is described by Pierson–Moskowitz spectrum. The derived statistical properties of the response are used to evaluate the probability of failure in ocean bed.  相似文献   

17.
According to the mass conservation equation of solid phase, water transport, air migration and enthalpy balance equations in a deformable and unsaturated porous medium, and the mechanics model, a thermal‐hydro‐mechanical (THM) coupling mathematical model is developed in order to accurately predict the crack propagation of the compacted clay lining (CCL) in a landfill closure cover system. Numerical simulation analysis of the cracking and failure of the CCL in a landfill closure cover system under complex conditions (landfill gas pressure, variation of soil surface temperature, moisture loss of coverage soil, and uneven settlement of landfilled MSW (municipal solid waste)) is performed. The results show that the cracks are discovered firstly on the soil surface and then extend to the deeper cover system and became bigger. The cracks had broken through the closure cover system at 30 days. Over the depth range of 0.06 m, the change rate of settlement is found to be the highest because of the strong influence of temperature. The rise of temperature around the cracks is fast when the CCL is broken through by the cracks. There is a hollow area near the cracks over the depth range from 0.15 to 0.7 m, and the temperature stabilize at around 11°C without any obvious reduction. Under the condition of evaporation, the main crack in the CCL is similar to a pumping well, which causes more rapid moisture content reduction around the cracks. Vertical deformation increases linearly with depth in the process of deformation and cracking of CCL induced by uneven settlement of landfilled MSW. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The coupled hydro‐mechanical state in soils coming from consolidation/subsidence processes and undergoing plasticity phenomena is here evaluated by means of the subloading surface model. The most important feature of this theory is the abolition of the distinction between the elastic and plastic domains, as it happens in the conventional elastoplastic models. This means that plastic deformations are generated whenever there is a change in stress and a smoother elastoplastic transition is produced. The plasticity algorithm has been implemented in the PLASCON3D FE code, coupling hydro‐thermo‐mechanical fields within a saturated (locally partially saturated) porous medium subjected to external loads and water/gas withdrawals from deep layers (aquifers/reservoirs). The 3D model has been first calibrated and validated against examples taken from the literature, and then subsidence analyses at regional scales due to gas extractions have been developed to predict the evolution of settlements and pore pressure in soils for long‐term scenarios. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a numerical model for the elasto‐plastic electro‐osmosis consolidation of unsaturated clays experiencing large strains, by considering electro‐osmosis and hydro‐mechanical flows in a deformable multiphase porous medium. The coupled governing equations involving the pore water flow, pore gas flow, electric flow and mechanical deformation in unsaturated clays are derived within the framework of averaging theory and solved numerically using finite elements. The displacements of the solid phase, the pressure of the water phase, the pressure of the gas phase and the electric potential are taken as the primary unknowns in the proposed model. The nonlinear variation of transport parameters during electro‐osmosis consolidation are incorporated into the model using empirical expressions that strongly depend on the degree of water saturation, whereas the Barcelona Basic Model is employed to simulate the elasto‐plastic mechanical behaviour of unsaturated clays. The accuracy of the proposed model is evaluated by validating it against two well‐known numerical examples, involving electro‐osmosis and unsaturated soil behaviour respectively. Two further examples are then investigated to study the capability of the computational algorithm in modelling multiphase flow in electro‐osmosis consolidation. Finally, the effects of gas generation at the anode, the deformation characteristics, the degree of saturation and the time dependent evolution of the excess pore pressure are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Garg's approximate analytical solutions of Biot's equations for wave propagation in a fluid-saturated elastic porous solid of infinite extent subjected to a velocity boundary condition of a Heaviside function at one end are examined for small and large drag. Garg's approximations were apparently introduced to facilitate exact inversion of Laplace transforms of certain quantities. The approximate solutions are compared with carefully evaluated numerical inverses of the Laplace transform solutions for different soils with widely varying properties. It is seen that for most soils (clays, silts and, sands) the error in Garg's approximate solutions in insignificant, and the solutions can be used as benchmarks for verifying numerical analysis procedures such as finite element codes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号