首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A solution is developed for the build‐up, steady and post‐arrest dissipative pore fluid pressure fields that develop around a blunt penetrometer that self‐embeds from freefall into the seabed. Arrest from freefall considers deceleration under undrained conditions in a purely cohesive soil, with constant shear strength with depth. The resulting decelerating velocity field is controlled by soil strength, geometric bearing capacity factors, and inertial components. At low impact velocities the embedment process is controlled by soil strength, and at high velocities by inertia. With the deceleration defined, a solution is evaluated for a point normal dislocation penetrating in a poroelastic medium with a prescribed decelerating velocity. Dynamic steady pressures, PD, develop relative to the penetrating tip geometry with their distribution conditioned by the non‐dimensional penetration rate, UD, incorporating impacting penetration rate, consolidation coefficient and penetrometer radius, and the non‐dimensional strength, ND, additionally incorporating undrained shear strength of the sediment. Pore pressures develop to a steady peak magnitude at the penetrometer tip, and drop as PD=1/xD with distance xD behind the tip and along the shaft. Peak induced pressure magnitudes may be correlated with sediment permeabilities, post‐arrest dissipation rates may be correlated with consolidation coefficients, and depths of penetration may be correlated with shear strengths. Together, these records enable strength and transport parameters to be recovered from lance penetrometer data. Penetrometer data recorded off La Palma in the Canary Islands (J. Volcanol. Geotherm. Res. 2000; 101 :253) are used to recover permeabilities and consolidation coefficients from peak pressure and dissipation response, respectively. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents numerical simulations of Cone Penetration Test (CPT) in water-saturated soft soils taking into account pore pressure dissipation during installation. Besides modelling interaction between soil skeleton and pore fluid, the problem involves large soil deformations in the vicinity of the penetrometer, soil–structure interaction, and complex non-linear response of soil. This makes such simulations challenging. Depending on the soil’s permeability and compressibility, undrained, partially drained or drained conditions might occur. Partially drained conditions are commonly encountered in soils such as silts and sand–clay mixtures. However, this is often neglected in CPT interpretation, which may lead to inaccurate estimates of soil properties. This paper aims at improving the understanding of the penetration process in different drainage conditions through advanced numerical analyses. A two-phase Material Point Method is applied to simulate large soil deformations and generation and dissipation of excess pore pressures during penetration. The constitutive behaviour of soil is modelled with the Modified Cam Clay model. Numerical results are compared with experimental data showing good agreement.  相似文献   

3.
Finite element cavity expansion analysis investigating the effect of penetration rate on piezocone tests in clay is presented. A coupled analysis was performed, in which the rate of cavity expansion was linked to the penetration rate of the cone and the cone angle, using the assumption that the deformation was wholly radial, and took place only between the cone tip and the cone shoulder. The soil was modelled using modified cam clay with two sets of parameters and varying values of overconsolidation ratio (OCR). The influence of penetration rate on the stress and pore pressure distributions was examined. For slower penetration rates, the excess pore pressure at the cone shoulder is lower since consolidation is permitted coincident with penetration. The radial profiles of post‐penetration voids ratio demonstrate that partially drained penetration is permitted by volume change in the near field, in addition to radial movement in the far field. The radial distribution of excess pore pressure after slow penetration differs from the undrained case, with a relatively low radial gradient existing at the cone face. As a result, the dissipation curves after slow penetration lag behind those following fast penetration. The cone velocity is made dimensionless by normalizing with the coefficient of consolidation and the cone diameter. ‘Backbone’ curves of normalized velocity against normalized tip resistance and excess pore pressure capturing the transition from undrained to drained penetration are derived. The normalized pore pressure backbone curve is unique, whilst the normalized tip resistance shows a small dependency on OCR. These backbone penetration curves are compared with centrifuge model piezocone tests conducted at varying rates, and subsequent dissipation tests. The numerical and experimental results suggest that the value of consolidation coefficient operative during the dissipation phase is 2–4 times higher than the virgin compression value due to changes in the operative soil stiffness, as demonstrated from the stress paths of individual soil elements. The use of multi‐rate penetration tests to deduce values of consolidation coefficient is discussed, in light of these differences. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Shear‐lag analysis is used to obtain closed‐form solutions for the problem of a stiff inclusion embedded in a poroelastic soil matrix. The following assumptions are made: the soil matrix and the inclusion are elastic; plane strain conditions apply; and shear stresses at the soil‐inclusion interface follow Coulomb's friction law. Two solutions are obtained, the first one for drained conditions where no excess pore pressures are generated, and the second one for undrained conditions where excess pore pressures are produced and the soil does not change volume during pullout. The solutions are verified by comparing analytical predictions with numerical results obtained using a finite element method. Predictions from the analytical solutions are also compared with results from experiments conducted in a large‐scale pullout box. Both comparisons show good agreement. The analytical solution shows that the pullout capacity in drained and undrained conditions is overall independent of the relative stiffness of the soil and the inclusion. The most important factor controlling the pullout capacity is the coefficient of friction between the soil and the inclusion. Both drained and undrained pullout capacities increase with the coefficient of friction; although the drained capacity shows a proportional increase, it is not so for the undrained capacity. The ratio of undrained to drained pullout capacity is about 0.9 for friction coefficients smaller than 0.2, but can be as small as 0.6 for a coefficient of friction of 1.0. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
大型地下水封石油洞库施工过程力学特性研究   总被引:1,自引:0,他引:1  
施工过程对地下工程岩土力学性质具有重要影响。以国内首个在建的大型地下水封石油储库为背景,运用流-固耦合理论,研究了不同排水条件下大型地下水封石油洞库的施工过程力学特征。研究表明排水条件和开挖顺序对洞库渗流场和稳定性具有重要影响。排水条件下洞库围岩孔隙水压力小于不排水条件下,而同在排水条件下不同开挖顺序洞库孔隙水压力时空分布和涌水量也不相同。排水条件下洞壁围岩松动区范围远小于不排水条件下范围,但两种条件下应力场时空分布规律均与开挖顺序密切相关。排水条件下洞库围岩水平收敛小于拱顶沉降,而不排水条件下洞库围岩水平收敛大于拱顶沉降。在相同排水条件下围岩变形与开挖顺序有关。研究成果不但可以为大型地下水封石油洞库建设提供依据,还可丰富施工过程力学理论内涵。  相似文献   

6.
A cavity expansion–based solution is proposed in this paper for the interpretation of CPTu data under a partially drained condition. Variations of the normalized cone tip resistance, cone factor, and undrained-drained resistance ratio are examined with different initial specific volume and overconsolidation ratio, based on the exact solutions of both undrained and drained cavity expansion in CASM, which is a unified state parameter model for clay and sand. A drainage index is proposed to represent the partially drained condition, and the critical state after expansion and stress paths of cavity expansion are therefore predicted by estimating a virtual plastic region and assuming a drainage-index–based mapping technique. The stress paths and distributions of stresses and specific volume are investigated for different values of drainage index, which are also related to the penetration velocity with comparisons of experimental data and numerical results. The subsequent consolidation after penetration is thus predicted with the assumption of constant deviatoric stress during dissipation of the excess pore pressure. Both spherical and cylindrical consolidations are compared for dissipation around the cone tip and the probe shaft, respectively. The effects of overconsolidation ratio on the stress paths and the distributions of excess pore pressure and specific volume are then thoroughly investigated. The proposed solution and the findings would contribute to the interpretation of CPTu tests under a random drained condition, as well as the analysis of pile installation and the subsequent consolidation.  相似文献   

7.
The undrained change in pore fluid pressure that accompanies dike intrusion may be conveniently represented as a moving volumetric dislocation. The concept of a dilation center was developed to represent the field of undrained pressure change in a saturated linear elastic medium. Since instantaneous pore fluid pressures can be developed to a considerable distance from the dislocation, monitoring the rate of pressure generation and subsequent pressure dissipation in a fully coupled manner enables certain characteristics of the resulting dislocation to be defined. The principal focus of this study is the application of dislocation-based methods to analyze the behavior of the fluid pressure response induced by intrusive dislocations in a semi-infinite space, such as dike intrusion, hydraulic fracturing and piezometar insertion. Partially drained pore pressures result from the isothermal introduction of volumetric moving pencil-like dislocations described as analogs to moving point dislocation within a semi-infinite saturated elastic medium. To represent behavior within the halfspace, an image dislocation is positioned under the moving coordinate frame fixed to the front of the primary moving dislocation, to yield an approximate solution for pore pressure for constant fluid pressure conditions. Induced pore pressures are concisely described under a minimum set of dimensionless parameter groupings representing propagation velocity, and relative geometry. Charts defining induced pore fluid pressure at a static measuring point provide a meaningful tool for determining unknown parameters in data reduction. Two intrusive events at Krafla, Iceland are examined using the type curve matching techniques. Predicted parameters agree favorably with field data.  相似文献   

8.
The Biot linearized theory of fluid saturated porous materials is used to study the plane strain deformation of a two-phase medium consisting of a homogeneous, isotropic, poroelastic half-space in welded contact with a homogeneous, isotropic, perfectly elastic half-space caused by a two-dimensional source in the elastic half-space. The integral expressions for the displacements and stresses in the two half-spaces in welded contact are obtained from the corresponding expressions for an unbounded elastic medium by applying suitable boundary conditions at the interface. The case of a long dip-slip fault is discussed in detail. The integrals for this source are solved analytically for two limiting cases: (i) undrained conditions in the high frequency limit, and (ii) steady state drained conditions as the frequency approaches zero. It has been verified that the solution for the drained case (ω → 0) coincides with the known elastic solution. The drained and undrained displacements and stresses are compared graphically. Diffusion of the pore pressure with time is also studied.  相似文献   

9.
Discrete element modelling of deep penetration in granular soils   总被引:1,自引:0,他引:1  
This paper presents a numerical study on deep penetration mechanisms in granular materials with the focus on the effect of soil–penetrometer interface friction. A two‐dimensional discrete element method has been used to carry out simulation of deep penetration tests on a granular ground that is under an amplified gravity with a K0 lateral stress boundary. The numerical results show that the deep penetration makes the soil near the penetrometer move in a complex displacement path, undergo an evident loading and unloading process, and a rotation of principal stresses as large as 180°. In addition, the penetration leads to significant changes in displacement and velocity fields as well as the magnitude and direction of stresses. In general, during the whole penetration process, the granular ground undergoes several kinds of failure mechanisms in sequence, and the soil of large deformation may reach a stress state slightly over the strength envelope obtained from conventional compression tests. Soil–penetrometer interface friction has clear effects on the actual penetration mechanisms. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
This paper examines the performance of the Jacobi preconditioner when used with two Krylov subspace iterative methods. The number of iterations needed for convergence was shown to be different for drained, undrained and consolidation problems, even for similar condition number. The differences were due to differences in the eigenvalue distribution, which cannot be completely described by the condition number alone. For drained problems involving large stiffness ratios between different material zones, ill‐conditioning is caused by these large stiffness ratios. Since Jacobi preconditioning operates on degrees‐of‐freedom, it effectively homogenizes the different spatial sub‐domains. The undrained problem, modelled as a nearly incompressible problem, is much more resistant to Jacobi preconditioning, because its ill‐conditioning arises from the large stiffness ratios between volumetric and distortional deformational modes, many of which involve the similar spatial domains or sub‐domains. The consolidation problem has two sets of degrees‐of‐freedom, namely displacement and pore pressure. Some of the eigenvalues are displacement dominated whereas others are excess pore pressure dominated. Jacobi preconditioning compresses the displacement‐dominated eigenvalues in a similar manner as the drained problem, but pore‐pressure‐dominated eigenvalues are often over‐scaled. Convergence can be accelerated if this over‐scaling is recognized and corrected for. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
This paper evaluates the performance of a generalized effective stress soil model for predicting the rate independent behaviour of freshly deposited sands, while a companion paper describes model capabilities for clays and silts. Most material parameters can be obtained from standard laboratory data, including hydrostatic or one‐dimensional compression, drained and undrained triaxial shear testing. A compilation of data on compression behaviour allows for estimation of compression parameters when this type of data is not available. Extensive comparisons of model predictions with measured data from undrained triaxial shear tests shows that the model gives excellent predictions of the transition from dilative to contractive shear response as the confining pressure and/or the initial formation void ratio increases. A parametric study of drained response shows that the model describes realistically the variation of peak friction angle and dilation rate as a function of confining pressure and density when compared with an empirical correlation valid for many sands. The proposed formulation predicts a unique critical state locus for both drained and undrained triaxial testing which is non‐linear over the entire range of stresses and is in excellent agreement with recent experimental data. Overall, the model provides excellent predictions of the stress–strain–strength relationships over a wide range of confining pressures and formation densities. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
Tests on specimens of reconstituted illitic clay have examined the influence of temperature on the mechanical behaviour of clay soils. The program involved consolidation to effective confining pressures up to 1.5 MPa, heating to 100°C, and tests on normally consolidated and overconsolidated specimens with OCR = 2. The tests included isotropic consolidation, undrained triaxial compression with pore water pressure measurement, drained tests along controlled stress paths to investigate yielding behaviour, and undrained tests which involved heating and measurement of the resulting induced pore water pressures. The large strain strength envelope is independent of temperature. However, peak undrained strengths increase with temperature because smaller pore water pressures are generated during shearing. An important contribution from the study is a series of results for the yielding of illitic clay at three different temperatures. For the first time, there is clear evidence of yield loci decreasing in size with increasing temperature. An associated flow rule can be assumed without serious error. The results contribute to the confirmation of a thermal elastic-plastic soil model developed by the authors from cam clay following the addition of a small number of extra assumptions. Depending on the initial stress state, heating under undrained conditions may produce shear failure.  相似文献   

13.
When an underwater tunnel is excavated, the groundwater may flow into the tunnel. The seepage forces consequently induced can have important effects on the effective stresses around the tunnel. Moreover, the influences of the free surface of a shallow underwater tunnel should also be considered. In this research, an analytical solution is presented to calculate the seepage‐induced effective stresses around a shallow underwater tunnel in an elastic half plane. The solution uses the complex variable method and consists of conformally mapping the half plane with a hole onto a transformed circular ring. The coefficients of the various terms in the Laurent series expansions of the stress functions in the transformed region can be obtained from the boundary conditions. The total stress distribution around a shallow underwater tunnel can be calculated by the potentials in the half plane. The effective stress can be obtained by subtracting the pore pressure from the total stress. The analytical solution is validated by numerical simulations and can be used to perform both the short‐term and long‐term analyses. By using the proposed solution, it is found that the circumferential effective stresses around the tunnel increase greatly because of seepage, and they increase with the increase of water depth in both the undrained and drained conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A simple incremental model describing the pre-failure behaviour of granular soils is presented. The model describes both the dry/fully drained and undrained response. It takes into account an initial anisotropy of soil and an initial state defined as either contractive or dilative. A physically sound definition of loading/unloading is assumed, which differs from elasto-plastic approaches. The model is based on extensive empirical data and gives predictions conformable with experimental results. It also describes pre-failure instabilities of granular soils, both dry/fully drained and undrained. The Hill’s criterion was used to examine stability. It was shown that this condition can be formulated either in terms of the effective stresses or by the total stresses. In the extreme cases of either dry/fully drained or undrained conditions, these alternative formulations are equivalent. This is not so in the case of partial drainage of pore water and associated volumetric deformations as well as pore pressure changes. The model describes the pre-failure instabilities well, and additionally allows for analytical derivation of the instability line. It was shown that the second order work, appearing in the Hill’s condition, is equivalent to the entropy source.  相似文献   

15.
Traditionally, most formulations of dynamic halfspace problems have represented the material as either an elastic or a viscoelastic solid. Herein the counterpart of Lamb's elastodynamic problem is reformulated and solved for a liquid-saturated poroelastic halfspace using Biot's theory of poroelasticity. The responses of the solid and fluid phases are evaluated due to steady-state harmonic concentrated loads applied to each phase at the surface. The solutions are presented over a broad range of permeabilities and are compared to solutions to Lamb's problem for equivalent drained and undrained solids. Methodology is then introduced by which these results are treated as Green functions for the solution of a mixed boundary-value problem. namely, the response of the poroelastic halfspace to steady-state harmonic vertical motion of a rigid. massless plate. It is observed that small differences exist among overall compliance functions for a drained solid, an undrained solid, and a liquid-saturated porous, halfspace. However, use of the poroelastic model permits the distribution between effective skeletal normal stresses and fluid stresses to be determined.  相似文献   

16.
为了研究上海软黏土的蠕变力学特性,开展了排水和不排水条件下上海软黏土的三轴蠕变力学试验,分析了不同围压水平、加卸荷水平对饱和软黏土蠕变特性的影响,得到了不同试验条件下上海软黏土蠕变的力学特性。试验结果表明:围压水平及加卸荷水平对软黏土蠕变变形有一定影响;土体蠕变变形特性与排水条件密切相关,排水条件下,固结效应削弱了土体蠕变现象;同等条件加载过程中不排水条件下土体变形量大,卸载后不排水条件下土体回弹较明显;不排水蠕变试验加载过程中,孔隙水压力随时间发展的变化规律与土体蠕变变形规律相似;排水蠕变试验加载过程中,固结变形和蠕变变形同时存在,排水量曲线在卸载后没有出现明显下降。  相似文献   

17.
Owing to imperfect boundary conditions in laboratory soil tests and the possibility of water diffusion inside the soil specimen in undrained tests, the assumption of uniform stress/strain over the sample is not valid. This study presents a qualitative assessment of the effects of non‐uniformities in stresses and strains, as well as effects of water diffusion within the soil sample on the global results of undrained cyclic simple shear tests. The possible implications of those phenomena on the results of liquefaction strength assessment are also discussed. A state‐of‐the‐art finite element code for transient analysis of multi‐phase systems is used to compare results of the so‐called ‘element tests’ (numerical constitutive experiments assuming uniform stress/strain/pore pressure distribution throughout the sample) with results of actual simulations of undrained cyclic simple shear tests using a finite element mesh and realistic boundary conditions. The finite element simulations are performed under various conditions, covering the entire range of practical situations: (1) perfectly drained soil specimen with constant volume, (2) perfectly undrained specimen, and (3) undrained test with possibility of water diffusion within the sample. The results presented here are restricted to strain‐driven tests performed for a loose uniform fine sand with relative density Dr=40%. Effects of system compliance in undrained laboratory simple shear tests are not investigated here. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Effect of Cement Type on the Mechanical Behavior of a Gravely Sand   总被引:1,自引:0,他引:1  
The behavior of a cemented gravely sand was studied using triaxial compression tests. Gypsum, Portland cement and lime were used as the cementing agents in sample preparation. The samples with different cement types were compared in equal cement contents. Three cement contents of 1.5%, 3.0% and 4.5% were selected for sample preparation. Drained and undrained triaxial compression tests were conducted in a range of confining pressures from 25 kPa to 500 kPa. Failure modes, shear strength, stress–strain behavior, volume and pore pressure changes were considered. The gypsum cement induced the highest brittleness in soil among three cement types while the Portland cement was found to be the most ductile cementing agent. In lower cement contents and lower confining pressures the soil cemented with Portland cement showed the highest shear strength. However, in the same range of cement content, the soil cemented with gypsum showed highest shear strength for highest tested confining stress. For higher cement contents the shear strength of soil cemented with Portland cement is higher than that for the two other cement types for the range of confining pressures tested in the present study. The samples cemented with lime had the least peak and ultimate shear strength and the highest pore pressure generation in undrained tests. Contrary to the soil cemented with lime, the brittleness of soil cemented with gypsum and Portland cement reduces in undrained condition. Finally it was found that the effect of cement type on the shear strength of cemented soils is more profound in drained condition compared to undrained state.  相似文献   

19.
This paper reports an analytical exploration into excess pore pressures generated during offshore spudcan installations. The analysis was conducted using ABAQUS/Explicit for three effective-stress constitutive models coded using the user-defined material subroutine VUMAT. The results demonstrate the feasibility of conducting effective-stress finite element analysis of undrained spudcan penetration using Eulerian approach. They also show that the computed penetration resistance and pore pressure response depend significantly on the undrained shear strength computed by the different models.  相似文献   

20.
The effective stress concept for solid‐fluid 2‐phase media was revisited in this work. In particular, the effects of the compressibility of both the pore fluid and the soil particles were studied under 3 different conditions, i.e., undrained, drained, and unjacketed conditions based on a Biot‐type theory for 2‐phase porous media. It was confirmed that Terzaghi effective stress holds at the moment when soil grains are assumed to be incompressible and when the compressibility of the pore fluid is small enough compared to that of the soil skeleton. Then, isotropic compression tests for dry sand under undrained conditions were conducted within the triaxial apparatus in which the changes in the pore air pressure could be measured. The ratio of the increment in the cell pressure to the increment in the pore air pressure, m, corresponds to the inverse of the B value by Bishop and was obtained during the step loading of the cell pressure. In addition, the m values were evaluated by comparing them with theoretically obtained values based on the solid‐fluid 2‐phase mixture theory. The experimental m values were close to the theoretical values, as they were in the range of approximately 40 to 185, depending on the cell pressure. Finally, it was found that the soil material with a highly compressible pore fluid, such as air, must be analyzed with the multi‐phase porous mixture theory. However, Terzaghi effective stress is practically applicable when the compressibilities of both the soil particles and the pore fluid are small enough compared to that of the soil skeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号