首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Proxy climate data can be obtained from reconstructions of hydrological changes on ombrotrophic (rain‐fed) peatlands using biological indicators, such as testate amoebae. Reconstructions are based on transfer functions, relating modern assemblage composition to water table and moisture content, applied to fossil sequences. Existing transfer functions in Europe and elsewhere are limited geographically and there are often problems with missing or poor analogues. This paper presents a new palaeohydrological transfer function based on sampling raised mires from across Europe. Relationships between assemblages and hydrological variables are described using ordination analyses. Transfer functions are developed for depth to water table (n = 119) and moisture content (n = 132) with root mean squared errors (RMSEP) of 5.6 cm and 2.7% respectively. Both transfer functions have an r2 of 0.71, based on ‘leave one out’ cross‐validation. Comparisons with an existing transfer function for Britain show that the European transfer function performs well in inferring measured water tables in Britain but that the British data cannot be used to infer water tables for other European sites with confidence. Several of the key missing and poor analogue taxa problems encountered in previous transfer functions are solved. The new transfer function will be an important tool in developing peat‐based palaeoclimatic reconstructions for European sites. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.

对采自大兴安岭北部洛古河泥炭地表层49cm泥炭剖面,基于137Cs法建立剖面年代框架,利用有壳变形虫指标,借助转换函数法定量重建过去近100年来的水位变化。具体可划分为3个阶段:1)1918~1951年泥炭地非常湿润,有壳变形虫以喜湿物种为主,如茄壳虫未定种(H. sp.)、瓶形梨壳虫(Nebela lageniforms)、齿口阿吉尼亚虫(Argynnia dentistoma)以及Archerella flavum等,缺少干燥种,水位埋深自12cm频繁大幅波动升高至23cm;2)1951~1982年仍较湿润,但已呈现变干的趋势,喜湿种类显著减少,以指示较湿润生境的凤蝶茄壳虫(Hyalosphenia papilio)、巧茄壳虫(Hyalosphenia elegans)、染色梨壳虫(Nebela tincta)为主,水位埋深大部分时间保持在22~24cm;3)1982~2013年泥炭地持续变干,指示湿润环境的物种基本消失,苔藓鳞盖虫(Assulina muscorum)、半空鳞盖虫(Assulina seminulum)占优势,指示干燥环境的长圆鳞壳虫(Euglypha rotunda type)、暧昧蛹壳虫(Corythion dubium)丰度增大,水位埋深自24cm持续降低至34cm。洛古河泥炭地持续变干是由于气温升高驱动还是降水减少驱动,或二者都有尚待研究。

  相似文献   

3.
Peatland‐inhabiting testate amoebae are sensitive indicators of substrate‐moisture conditions and have increasingly been used in palaeohydrological studies. However, to improve accuracy of testate‐amoeba‐based hydrological inferences, baseline ecological data on rare taxa, a larger geographic network of calibration sites, and incorporation of long‐term estimates of water‐table depth are needed. Species–environment relationships at 369 sites from 31 peatlands in eastern North America were investigated. Long‐term estimates of water‐table depth were obtained using the method of polyvinyl (PVC) tape‐discolouration. Transfer functions were developed using a variety of models, and validated through jackknifing techniques and with an independent dataset where water‐table depths were directly measured throughout the growing season. Results indicate that mean annual water‐table depth can be inferred from testate amoeba assemblages with a mean error of 6 to 8 cm, although there is a slight systematic bias. All transfer function models performed similarly and produced similar reconstructions on a fossil sequence. In a preliminary effort towards development of a comprehensive North American calibration dataset, data from this study were combined with previous studies in Michigan and the Rocky Mountains (n = 650). This combined dataset had slightly larger mean errors of prediction (8–9 cm) but includes data for several rare taxa. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Little is known about the century‐scale response of water levels in inland estuaries to sea‐level change and human modifications to estuarine morphology. This study explored the ability of using testate amoebae (Protozoa, Rhizopoda) from sediments of a freshwater tidal marsh as indicators of water level in an inland estuary. The hypothesis was that modern testate amoeba assemblages change with surface elevation (approximately the duration of tidal flooding) within a freshwater tidal marsh. Variation in testate amoeba assemblages in relation to multiple environmental variables and sediment characteristics was studied through redundancy analysis. This demonstrated that a significant part of the variation in modern testate amoeba assemblages could be explained by flooding frequency, surface elevation, organic content and particle size of the soil. Transfer functions, partial least squares and weighted average regressions were made to show that testate amoebae can be used for reconstruction of water level (with an accuracy of 0.05 Normalized Elevation). A preliminary test of application of the transfer function to palaeo testate amoeba assemblages showed promising results. Testate amoebae from a freshwater tidal marsh provide a potentially powerful new tool for estuarine water‐level reconstructions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
We present the first testate amoeba‐based palaeohydrological reconstruction from the Swiss Alps, and the first depth to the water table (DWT) calibration dataset for this region. Compared to existing models, our new calibration dataset performs well (RMSEP = 4.88), despite the length of the water table gradient covered (53 cm). The present‐day topography and vegetation of the study mire Mauntschas suggest that it is partly ombrotrophic (large Sphagnum fuscum hummocks, one of which was the coring site) but mostly under the minerotrophic influence of springs in the mire and runoff from the surrounding area. Ombrotrophic Sphagnum fuscum hummocks developed at the sampling site only during the last 50 years, when testate amoebae indicate a shift towards dry and/or acid conditions. Prior to AD 1950 the water table was much higher, suggesting that the influence of the mineral‐rich water prevented the development of ombrotrophic hummocks. The reconstructed DWT correlated with Pinus cembra pollen accumulation rates, suggesting that testate amoebae living on the mire and P. cembra growing outside of it partly respond to the same factor(s). Finally, temperature trends from the nearby meteorological station paralleled trends in reconstructed DWT. However, contrary to other studies made on raised bogs of northwestern Europe, the highest correlation was observed for winter temperature, despite the fact that testate amoebae would more logically respond to moisture conditions during the growing season. The observed correlation with winter temperature might reflect a control of winter severity on surface moisture during at least the first part of the growing season, through snow melt and soil frost phenomena influencing run‐off. More ecohydrological work on sub‐alpine mires is needed to understand the relationships between climate, testate amoebae and peatland development. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Open‐coast tidal flats are hybrid depositional systems resulting from the interaction of waves and tides. Modern examples have been recognized, but few cases have been described in ancient rock successions. An example of an ancient open‐coast tidal flat, the depositional architecture of the Lagarto and Palmares formations (Cambrian–Ordovician of the Sergipano Belt, north‐eastern Brazil) is presented here. Detailed field analyses of outcrops allowed the development of a conceptual architectural model for a coastal depositional environment that is substantially different from classical wave‐dominated or tide‐dominated coastal models. This architectural model is dominated by storm wave, low orbital velocity wave and tidal current beds, which vary in their characteristics and distribution. In a landward direction, the storm deposits decrease in abundance, dimension (thickness and spacing) and grain size, and vary from accretionary through scour and drape to anisotropic hummocky cross‐stratification beds. Low orbital wave deposits are more common in the medium and upper portion of the tidal flat. Tidal deposits, which are characterized by mudstone interbedded with sandstone strata, are dominant in the landward portion of the tidal flat. Hummocky cross‐stratification beds in the rock record are believed, in general, to represent storm deposits in palaeoenvironments below the fair‐weather wave base. However, in this model of an open‐coast tidal flat, hummocky cross‐stratification beds were found in very shallow waters above the fair‐weather wave base. Indeed, this depositional environment was characterized by: (i) fair‐weather waves and tides that lacked sufficient energy to rework the storm deposits; (ii) an absence of biological communities that could disrupt the storm deposits; and (iii) high aggradation rates linked to an active foreland basin, which contributed definitively to the rapid burial and preservation of these hummocky cross‐stratification deposits.  相似文献   

7.
《Sedimentology》2018,65(3):775-808
Fluvial systems in which peat formation occurs are typified by autogenic processes such as river meandering, crevasse splaying and channel avulsion. Nevertheless, autogenic processes cannot satisfactorily explain the repetitive nature and lateral continuity of many coal seams (compacted peats). The fluvial lower Palaeocene Tullock Member of the Fort Union Formation (Western Interior Williston Basin; Montana, USA ) contains lignite rank coal seams that are traceable over distances of several kilometres. This sequence is used to test the hypothesis that peat formation in the fluvial system was controlled by orbitally forced climate change interacting with autogenic processes. Major successions are documented with an average thickness of 6·8 m consisting of ca 6 m thick intervals of channel and overbank deposits overlain by ca 1 m thick coal seam units. These major coal seams locally split and merge. Time‐stratigraphic correlation, using a Cretaceous–Palaeogene boundary event horizon, several distinctive volcanic ash‐fall layers, and the C29r/C29n magnetic polarity reversal, shows consistent lateral recurrence of seven successive major successions along a 10 km wide fence panel perpendicular to east/south‐east palaeo‐flow. The stratigraphic pattern, complemented by stratigraphic age control and cyclostratigraphic tests, suggests that the major peat‐forming phases, resulting in major coal seams, were driven by 100 kyr eccentricity‐related climate cycles. Two distinct conceptual models were developed, both based on the hypothesis that the major peat‐forming phases ended when enhanced seasonal contrast, at times of minimum precession during increasing eccentricity, intensified mire degradation and flooding. In model 1, orbitally forced climate change controls the timing of peat compaction, leading to enhancement of autogenic channel avulsions. In model 2, orbitally forced climate change controls upstream sediment supply and clastic influx determining the persistence of peat‐forming conditions. At the scale of the major successions, model 2 is supported because interfingering channel sandstones do not interrupt lateral continuity of major coal seams.  相似文献   

8.
Microfossil‐based transfer function models are increasingly used to provide decimeter‐scale sea‐level change reconstructions. In this paper I demonstrate that in the tropical location of northern Australia problems arise in selecting the appropriate elevation range for the modern training set used to calibrate fossil calcareous foraminiferal assemblages. Most calcareous foraminiferal species found in cores occur in both modern intertidal and shallow subtidal environments. A lack of independent measures to indicate whether fossil assemblages come from intertidal environments forces use of a training set that includes intertidal and subtidal environments. This results in decreased precision compared to using a training set solely from intertidal environments. The widely used method of assessing model fit to fossil assemblages (modern analogue technique) often fails to discriminate between acceptable and unacceptable reconstructions. It is important to investigate a number of different measures including modern analogue technique, canonical correspondence analysis and changing bootstrapped sample specific transfer function errors to fully understand the level of similarity between modern and fossil foraminiferal samples, to judge the reliability of transfer function‐predicted sea‐level reconstructions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号