首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ages of most of calderas, large explosive craters and active volcanoes in the Kuril-Kamchatka region have been determined by extensive geological, geomorphological, tephrochronological and isotopic geochronological studies, including more than 600 14C dates. Eight Krakatoa-type and three Hawaiian-type calderas and no less than three large explosive craters formed here during the Holocene. Most of the Late Pleistocene Krakatoa-type calderas were established around 30 000–40 000 years ago. The active volcanoes are geologically very young, with maximum ages of about 40 000–50 000 years. The overwhelming majority of recently active volcanic cones originated at the very end of the Late Pleistocene or in the Holocene. These studies show that all Holocene stratovolcanoes in Kamchatka were emplaced in the Holocene only in the Eastern volcanic belt. Periods of synchronous, intensified Holocene volcanic activity occurred within the time intervals of 7500–7800 and 1300–1800 14C years BP.  相似文献   

2.
Magma transfer processes at persistently active volcanoes are distinguished by the large magma flux required to sustain the prodigious quantities of heat and gas emitted at the surface. Although the resulting degassed magma has been conjectured to accumulate either deep within the volcanic edifice or in the upper levels of the sub-edifice system, no direct evidence for such active accumulation has been reported. Temporal gravity data are unique in being able to quantify mass changes and have been successfully used to model shallow magma movements on different temporal scales, but have not generally been applied to the investigation of postulated long-term accumulation of magma at greater spatial scales within volcanic systems. Here, we model the critical data acquisition parameters required to detect mass flux at volcanoes, we review existing data from a number of volcanoes that exemplify the measurement of shallow mass changes and present new data from Poas and Telica volcanoes. We show that if a substantial proportion of degassed magma lodges within the sub-edifice region, it would result in measurable annual to decadal gravity increases occurring over spatial scales of tens of kilometres and propose that existing microgravity data from Sakurajima and, possibly, Etna volcanoes could be interpreted in these terms. Furthermore, such repeat microgravity data could be used to determine whether the accumulation rate is in equilibrium with the rate of production of degassed magma as calculated from the surface gas flux and hence identify the build-up of gas-rich magma at depth that may be significant in terms of eruption potential. We also argue that large magma bodies, both molten and frozen, modelled beneath volcanoes from seismic and gravity data, could represent endogenous or cryptic intrusions of degassed magma based on order of magnitude calculations using present-day emission rates and typical volcano lifetimes.  相似文献   

3.
In order to explain the presence of voluminous volcanic debris avalanche deposits around a stratovolcano, reactivation of vertical faults beneath a volcanic cone has been tested using analogue models. Reactivation of a single vertical fault beneath a cone generates a normal fault and an upturning of the layers creating a bulge on the flank. The upturning induces a flank collapse characterized by a typical horseshoe-shaped scar called an avalanche caldera. Reactivation of two vertical faults beneath a cone also generates a normal fault and a summit bulge. This bulge may result from the movement along a reverse fault. A large collapse is generated within the angle created by the two vertical faults. The angle of the collapse can be up to 140° whereas this angle is typically 120° for a dome intrusion. Collapse is instantaneous and is favoured by the presence of ductile layers (ash-and-pumice formations in the example considered) in a stratovolcano complex. The model may be applicable to volcanoes in a state of dormancy (or extinction) in regions with active regional tectonism. We suggest this mechanism of collapse in the case of the Cantal stratovolcano (Massif Central, France) to explain the presence of voluminous volcanic debris avalanche deposits around this volcano.  相似文献   

4.
The south flank of Kilauea Volcano is unstable and has the structure of a huge landslide; it is one of at least 17 enormous catastrophic landslides shed from the Hawaiian Islands. Mechanisms previously proposed for movement of the south flank invoke slip of the volcanic pile over seafloor sediments. Slip on a low friction décollement alone cannot explain why the thickest and widest sector of the flank moves more rapidly than the rest, or why this section contains a 300 km3 aseismic volume above the seismically defined décollement. It is proposed that this aseismic volume, adjacent to the caldera in the direction of flank slip, consists of olivine cumulates that creep outward, pushing the south flank seawards. Average primary Kilauea tholeiitic magma contains about 16.5 wt.% MgO compared with an average 10 wt.% MgO for erupted subaerial and submarine basalts. This difference requires fractionation of 17 wt.% (14 vol.%) olivine phenocrysts that accumulate near the base of the magma reservoir where they form cumulates. Submarine-erupted Kilauea lavas contain abundant deformed olivine xenocrysts derived from these cumulates. Deformed dunite formed during the tholeiitic shield stage is also erupted as xenoliths in subsequent alkalic lavas. The deformation structures in olivine xenocrysts suggest that the cumulus olivine was densely packed, probably with as little as 5–10 vol.% intercumulus liquid, before entrainment of the xenocrysts. The olivine cumulates were at magmatic temperatures (>1100°C) when the xenocrysts were entrained. Olivine at 1100°C has a rheology similar to ice, and the olivine cumulates should flow down and away from the summit of the volcano. Flow of the olivine cumulates places constant pressure on the unbuttressed seaward flank, leading to an extensional region that localizes deep intrusions behind the flank; these intrusions add to the seaward push. This mechanism ties the source of gravitational instability to the caldera complex and deep rift systems and, therefore, limits catastrophic sector failure of Hawaiian volcanoes to their active growth phase, when the core of olivine cumulates is still hot enough to flow.  相似文献   

5.
Postglacial Icelandic shield volcanoes were formed in monogenetic eruptions mainly in the early Holocene epoch. Shield volcanoes vary in their cone morphology and in the areal extent of the associated lava flows. This paper presents the results of a study of 24 olivine tholeiite and 7 picrite basaltic shield volcanoes. For the olivine tholeiitic shields the median slope is 2.7°, the median height 60 m, the median diameter 3.6 km, the median aspect ratio (height against diameter) 0.019, and the median cone volume 0.2 km3. The picritic shield volcanoes are considerably steeper and smaller. A shield-volcano cone forms from successive lava lake overflows which are of shelly-type pahoehoe. A widespread apron surrounding the cone forms from tube-fed P-type pahoehoe. The slopes of the cones have (a) a planar or slightly convex form, (b) a concave form, or (c) a convex-concave form. A successive stage of a shield volcano is determined on the basis of cone morphology and lava assemblages. A shield-producing eruption has alternating episodes of lava lake overflows and tube-fed delivery to the distal parts of the flow field. In the late stages of eruption, the cone volume increases in response to the increased amount of rootless outpouring on the cone flanks. Normally, only a small percentage of the total erupted volume of a shield volcano, sometimes as little as 1–3%, is in the shield volcano cone itself, the main volume being in the apron of the shield.  相似文献   

6.
A 1075 cm long core (Lz1120) was recovered in the south-eastern part of the Lake Ohrid (Republics of Macedonia and Albania) and sampled for identification of tephra layers. Magnetic susceptibility investigations show rather high magnetic values throughout the core, with peaks unrelated to the occurrence of tephra layers but instead to the relative abundance of detrital magnetic minerals in the sediment. Naked-eye inspection of the core allowed us to identify of two tephra layers, at 896–897 cm and 1070–1075 cm. Laboratory inspection of the grain-size fraction > 125 μm allowed for the identification of a third cryptotephra at 310–315 cm. Major element analyses on glass shards of the tephra layers at 896–897 cm and 1070–1075 cm show a trachytic composition, and indicate a correlation with the regionally dispersed Y-3 and Y-5 tephra layers, dated at ca 30 and 39 cal ka BP. The cryptotephra at 310–315 cm has a mugearitic–benmoreitic composition, and was correlated with the FL eruption of Mt. Etna, dated at 3370 ± 70 cal yr BP. These ages are in agreement with five 14C AMS measurements carried out on plant remains and macrofossils from the lake sediments at different depths along the core.  相似文献   

7.
 Volcanic gas and condensate samples were collected in 1993–1994 from fumaroles of Koryaksky and Avachinsky, basaltic andesite volcanoes on the Kamchatka Peninsula near Petropavlovsk–Kamchatsky. The highest-temperature fumarolic discharges, 220  °C at Koryaksky and 473  °C at Avachinsky, are water-rich (940–985 mmol/mol of H2O) and have chemical and isotopic characteristics typical of Kamchatka–Kurile, high- and medium-temperature volcanic gases. The temperature and chemical and water isotopic compositions of the Koryaksky gases have not changed during the past 11 years. They represent an approximate 2 : 1 mixture of magmatic and meteoric end members. Low-temperature, near-boiling-point discharges of Avachinsky Volcano are water poor (≈880 mmol/mol); Their compositions have not changed since the 1991 eruption, and are suggested to be derived from partially condensed magmatic gases at shallow depth. Based on a simple model involving mixing and single-step steam separation, low water and high CO2 contents, as well as the observed Cl concentration and water isotopic composition in low-temperature discharges, are the result of near-surface boiling of a brine composed of the almost pure condensed magmatic gas. High methane content in low-temperature Avachinsky gases and the 220  °C Koryaksky fumarole, low C isotopic ratio in CO2 at Koryaksky (–11.8‰), and water isotope data suggest that the "meteoric" end member contains considerable amounts of the regional methane-rich thermal water discovered in the vicinity of both volcanoes. Received: 2 May 1996 / Accepted: 5 November 1996  相似文献   

8.
The lithological and compositional characteristics of eighteen different pyroclastic deposits of Campanian origin, dated between 125 cal ky BP and 22 cal ky BP, were described. The pyroclastic deposits were correlated among different outcrops mainly located on the Apennine slopes that border the southern Campanian Plain. They were grouped in two main stratigraphic and chronologic intervals of regional significance: a) between Pomici di Base (22.03 cal ky BP; Somma–Vesuvius) and Campanian Ignimbrite (39 cal ky BP; Campi Flegrei) eruptions; and b) older than Campanian Ignimbrite eruption. Three new 14C AMS datings support the proposed correlations. Six eruptions were attributed to the Pomici di Base-Campanian Ignimbrite stratigraphic interval, while twelve eruptions are older than Campanian Ignimbrite. Of the studied deposits two originated from Ischia island, five are related to Campi Flegrei, and three to Somma–Vesuvius. Two eruptions have an uncertain correlation with Somma–Vesuvius or Campi Flegrei, while six eruptions remain of uncertain source. Minimum volumes of five eruptions were assessed, ranging between 0.5 km3 and 4 km3. Two of the studied deposits were correlated with Y-3 and X-5 tephra layers, which are widely dispersed in the central Mediterranean area. The new stratigraphic and chronologic data provide an upgraded chrono-stratigraphy for the explosive activity of Neapolitan volcanoes in the period between 125 and 22 cal ky BP.  相似文献   

9.
The eruptions of the Soufrière Hills volcano on Montserrat (Lesser Antilles) from 1995 to present have draped parts of the island in fresh volcaniclastic deposits. Volcanic islands such as Montserrat are an important component of global weathering fluxes, due to high relief and runoff and high chemical and physical weathering rates of fresh volcaniclastic material. We examine the impact of the recent volcanism on the geochemistry of pre-existing hydrological systems and demonstrate that the initial chemical weathering yield of fresh volcanic material is higher than that from older deposits within the Lesser Antilles arc. The silicate weathering may have consumed 1.3% of the early CO2 emissions from the Soufrière Hills volcano. In contrast, extinct volcanic edifices such as the Centre Hills in central Montserrat are a net sink for atmospheric CO2 due to continued elevated weathering rates relative to continental silicate rock weathering. The role of an arc volcano as a source or sink for atmospheric CO2 is therefore critically dependent on the stage it occupies in its life cycle, changing from a net source to a net sink as the eruptive activity wanes. While the onset of the eruption has had a profound effect on the groundwater around the Soufrière Hills center, the geochemistry of springs in the Centre Hills 5 km to the north appear unaffected by the recent volcanism. This has implications for the potential risk, or lack thereof, of contamination of potable water supplies for the island’s inhabitants.  相似文献   

10.

利用布设于兴蒙造山带诺敏河火山群地区的宽频带流动地震台站资料,基于接收函数方法,获取了该地区的地壳厚度与波速比值.研究结果显示,该地区的地壳厚度介于32~38 km,莫霍面深度在空间上分布特征与五大连池为中心的火山带分布具有较好的一致性:沿着火山带延展方向地壳较薄.该地区的波速比介于1.74~1.84,波速比在空间上与地壳厚度变化具有一致性:高波速比主要集中于靠近五大连池火山带地区,向诺敏河火山和小古里河火山延展.研究认为:诺敏河火山与五大连池火山带可能具有相同的岩浆来源,可能与富钾岩石圈地幔拆沉作用造成的地幔热物质上涌有关.研究区地壳厚度与波速比呈现负相关关系,暗示该地区可能发生过岩浆底侵作用.

  相似文献   

11.
The Volcanic Sedimentary Complex (VSC) of the Iberian Pyrite Belt (IPB) in southern Portugal and Spain, comprises an Upper Devonian to Lower Carboniferous submarine succession with a variety of felsic volcanic lithofacies. The architecture of the felsic volcanic centres includes felsic lavas/domes, pyroclastic units, intrusions and minor mafic units that define lava–cryptodome–pumice cone volcanoes. The diversity of volcanic lithofacies recognized in different areas of the IPB mainly reflects variations in proximity to source, but also differences in the eruption style. The IPB volcanoes are intrabasinal, range in length from 2 km to > 8 km and their thickest sections vary from ∼ 400 m to > 800 m. These volcanoes are dominated by felsic lavas/domes that occur at several stratigraphic positions within the volcanic centre, however the pyroclastic units are also abundant and are spatially related to the lavas/domes. The intrusions are minor, and define cryptodomes and partly-extrusive cryptodomes. The hydrothermal systems that formed the Neves Corvo and Lousal massive sulfide ore deposits are associated with effusive units of felsic volcanic centres. At Neves Corvo, the massive sulfide orebodies are associated to rhyolitic lavas that overlie relatively thick fiamme-rich pyroclastic unit. In several other locations within the belt, pyroclastic units contain sulfide clasts that may have been derived from yet to be discovered coeval massive sulfide deposits at or below the sea floor, which enhances the exploration potential of these pyroclastic units and demonstrates the need for volcanic facies analysis in exploration.  相似文献   

12.
13.
This paper examines the philosophy and evolution of volcanological science in recent years, particularly in relation to the growth of volcanic hazard and risk science. It uses the lens of Science and Technology Studies to examine the ways in which knowledge generation is controlled and directed by social forces, particularly during eruptions, which constitute landmarks in the development of new technologies and models. It also presents data from a survey of volcanologists carried out during late 2008 and early 2009. These data concern the felt purpose of the science according to the volcanologists who participated and their impressions of the most important eruptions in historical time. It demonstrates that volcanologists are motivated both by the academic science environment and by a social concern for managing the impact of volcanic hazards on populations. Also discussed are the eruptions that have most influenced the discipline and the role of scientists in policymaking on active volcanoes. Expertise in volcanology can become the primary driver of public policy very suddenly when a volcano erupts, placing immense pressure on volcanologists. In response, the epistemological foundations of volcanology are on the move, with an increasing volume of research into risk assessment and management. This requires new, integrated methodologies for knowledge collection that transcend scientific disciplinary boundaries.  相似文献   

14.
Simple approaches to problems brought about eruptions and their ensuing hazardous effects should be advocated and used by volcanologists while awaiting more sophisticated remedies. The expedients we advocate have all or many of the following attributes: only locally available materials are required; no extensive training of operators or installation is necessary; they are affordable and do not require foreign aid or exports; they are often labor intensive and are sustainable without outside assistance. Where appropriate, the involvement of local residents is advocated. Examples of simple expedients which can be used in forecasting or mitigating the effects of crises emphasize the relative ease and the less elaborate requirements with which simple approaches can be activated. Emphasis is on visual observations often by untrained observers, simple meteorogical measurements, observations of water level in lakes, temperature and chemistry of springs and fumaroles, new springs and collapse areas and observations of volcanic plumes. Simple methods are suggested which can be applied to mitigating damage from mudflows, nuées ardentes, tephra falls and gas discharge. A review in hindsight at Ruiz includes the use of both chemical indicators and simple mudflow alarms. Simple expedients are sufficiently effective that any expert volcanologist called to aid in a crisis must include them in the package of advice offered. Simple approaches are a critical and logical complement to highly technical solutions to hazardous situations.  相似文献   

15.
In this study, we integrate information gathered from surface geology and tectonics with the results of a shallow (0–2 km b.s.l.) seismic tomography of Vulcano Island (Italy), obtained from the analysis of local earthquakes. The observed low Vp regions correspond to caldera filling products, mainly consisting of pyroclastics, tuffs, lava flows and hyaloclastites. High-velocity anomalies represent intrusive bodies. The striking correspondence between the stratigraphy from deep wells and the calculated velocity structure allows us to reconstruct the geometry and distribution of a main intrusion and to recognize some intra-caldera depressions. The shape and location of the high and low Vp anomalies are consistent with NW–SE and N–S strikes. Eruptive centres younger than 42 kyr, as well as the structural depressions of Vulcano and of the neighbour Lipari Island, align along a N–S direction. The combined interpretation of the available structural data and of the results from the tomography suggests that magmatic reservoirs of Vulcano at shallow depth (>0.5 km) align along a NW–SE strike but their shape is controlled by N–S striking normal faults and/or cracks that accommodate the right-lateral movements of the NW–SE strike-slip fault system.Editorial responsibility: T. Druitt  相似文献   

16.
Water chemistry of crater lakes, maars and water reservoirs linked to some Mexican volcanoes within and outside the Mexican Volcanic Belt has been determined for several years and examined regarding environmental and volcanic factors. All the analyzed lakes are relatively small with a maximum depth of 65 m, and are located in regions with different climates, from semi-arid to very humid, with altitudes ranging from 100 to more than 4000 m a.s.l. Crater lakes in active volcanoes (El Chichón, Popocatépetl) have very low pH, moderate to high temperatures and major ion concentrations varying with the level of volcanic unrest. Lakes in sub-arid and temperate-arid regions (like maars in Puebla and Guanajuato states) show high alkalinity and pH, with bicarbonate/carbonate, chloride, sodium and magnesium as predominant ions. Lakes located in humid climates (Central Michoacán and Veracruz state) have low mineralization and near-neutral pH values. In general, conservative dissolved ions and conductivity appear to be mostly controlled by precipitation/evaporation and by the ionic concentration of groundwater inputs. Calcium, magnesium, sulfate concentrations and pH are strongly influenced by volcanic-rock or volcanic gas interactions with water. The influence of low-level volcanic activity on crater lakes may be obscured by water–rock interactions, and climatic factors. One of the aims of this paper is to define the relative influence of these factors searching for a reference frame to recognize the early volcanic precursors in volcano-related lakes.  相似文献   

17.
To investigate the relationship between volatile abundances and eruption style, we have analyzed major element and volatile (H2O, CO2, S) concentrations in olivine-hosted melt inclusions in tephra from the 2000 yr BP eruption of Xitle volcano in the central Trans-Mexican Volcanic Belt. The Xitle eruption was dominantly effusive, with fluid lava flows accounting for 95% of the total dense rock erupted material (1.1 km3). However, in addition to the initial, Strombolian, cinder cone-building phase, there was a later explosive phase that interrupted effusive activity and deposited three widespread ash fall layers. Major element compositions of olivine-hosted melt inclusions from these ash layers range from 52 to 58 wt.% SiO2, and olivine host compositions are Fo84–86. Water concentrations in the melt inclusions are variable (0.2–1.3 wt.% H2O), with an average of 0.45±0.3 (1σ) wt.% H2O. Sulfur concentrations vary from below detection (50 ppm) to 1000 ppm but are mostly ≤200 ppm and show little correlation with H2O. Only the two inclusions with the highest H2O have detectable CO2 (310–340 ppm), indicating inclusion entrapment at higher pressures (700–900 bars) than for the other inclusions (≤80 bars). The low and variable H2O and S contents of melt inclusions combined with the absence of less soluble CO2 indicates shallow-level degassing before olivine crystallization and melt inclusion formation. Olivine morphologies are consistent with the interpretation that most crystallization occurred rapidly during near-surface H2O loss. During cinder cone eruptions, the switch from initial explosive activity to effusive eruption probably occurs when the ascent velocity of magma becomes slow enough to allow near-complete degassing of magma at shallow depths within the cone as a result of buoyantly rising gas bubbles. This allows degassed lavas to flow laterally and exit near the base of the cone while gas escapes through bubbly magma in the uppermost part of the conduit just below the crater. The major element compositions of melt inclusions at Xitle show that the short-lived phase of renewed explosive activity was triggered by a magma recharge event, which could have increased overpressure in the storage reservoir beneath Xitle, leading to increased ascent velocities and decreased time available for degassing during ascent.  相似文献   

18.
 Approximately 20 km south of Mt. Etna craters, at the contact between volcanic and sedimentary formations, three mud volcanoes discharge CO2-rich gases and Na–Cl brines. The compositions of gas and liquid phases indicate that they are fed by a hydrothermal system for which temperatures of 100–150  °C were estimated by means of both gas and solute geothermometry. The hydrothermal system may be associated with CO2-rich groundwaters over a large area extending from the central part of Etna to the mud volcanoes. Numerous data on the He, CH4, CO2 composition of the gases of the three manifestations, sampled over the past 5 years, indicate clearly that variations are due to separation processes of a CO2-rich gas phase from the liquid. The effects of these processes have to be taken into account in the interpretation of the monitoring data collected for the geochemical surveillance of Etna volcano. Received: 4 September 1995 / Accepted: 14 February 1996  相似文献   

19.
大容量气枪震源主动探测技术系统及试验研究   总被引:13,自引:8,他引:13  
针对地下介质动态变化监测研究中的信噪比、震源可重复性和波速精确测量等关键问题,利用大容量气枪震源,构建了一套高性能的主动探测技术系统,该系统包括气枪震源激发和信号接收,并在河北、云南和新疆等地的内陆水库和人工水体等不同激发环境,开展了探索性试验研究。试验结果表明:①气枪震源激发频率低,能量强,具有高度的可重复性、可通过叠加提高信噪比、探测距离大、绿色环保等特征,是一种理想的低频震源;②该探测技术系统操作简单,易控制,自动化程度高,探测精度高,能观测到固体潮引起的连续变化,可应用于区域尺度地下介质动态变化监测和开展4D 地震学研究;③气枪震源激发产生的信号震相丰富,有较强的S波,为研究地壳介质特性、应力分布及其动态变化等提供了新的技术路线。  相似文献   

20.
Three crater lakes from Mexican volcanoes were sampled and analyzed at various dates to determine their chemical characteristics. Strong differences were observed in the chemistry among the three lakes: Nevado de Toluca, considered as dormant, El Chichón at a post-eruptive stage, and Popocatépetl at a pre-eruptive stage. Not surprisingly, no influence of volcanic activity was found at the Nevado de Toluca volcano, while the other volcanoes showed a correlation between the changing level of activity and the evolution of chemical trends. Low pHs (<3.0) were measured in the water from the active volcanoes, while a pH of 5.6 was measured at the Nevado de Toluca Sun lake. Changes with time were observed at Popocatépetl and El Chichón. Concentrations of volcanic-gas derived species like Cl, SO42− and F decreased irregularly at El Chichón from 1983 until 1997. Major cations concentrations also diminished at El Chichón. A 100% increase in the SO42− content was measured at Popocatépetl between 1985 and 1994. An increase in the Mg/Cl ratio between 1992 (Mg/Cl=0.085) and 1994 (Mg/Cl=0.177) was observed at Popocatépetl, before the disappearance of the crater lake in 1994. It is concluded that chemical analysis of crater lakes may provide a useful additional tool for active-volcano monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号