首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ruapehu composite volcano is a dynamic volcanic-sedimentary system, characterised by high accumulation rates and by rapid lateral and vertical change in facies. Four major cone-building episodes have occurred over 250 Ka, from a variety of summit, flank and satellite vents. Eruptive styles include subplinian, strombolian, phreatomagmatic, vulcanian and dome-related explosive eruptions, and extrusion of lava flows and domes. The volcano can be divided into two parts: a composite cone of volume 110 km3, surrounded by an equally voluminous ring plain. Complementary portions of Ruapehu's history are preserved in cone-forming and ring plain environments. Cone-forming sequences are dominated by sheet- and autobrecciated-lava flows, which seldom reach the ring plain. The ring plain is built predominantly from the products of explosive volcanism, both the distal primary pyroclastic deposits and the reworked material eroded from the cone. Much of the material entering the ring plain is transported by lahars either generated directly by eruptions or triggered by the high intensity rain storms which characterise the region. Ring plain detritus is reworked rapidly by concentrated and hyperconcentrated streams in pulses of rapid aggradation immediately following eruptions and more gradually in the longer intervals between eruptions.  相似文献   

2.
The Whangaehu fan is the youngest sedimentary component on the eastern ring plain surrounding Ruapehu volcano. Fan history comprises constructional (830–200 years bp) and dissectional (<200 years bp) phases. The constructional phase includes four aggradational periods associated with both syneruptive and inter-eruptive behavior. All four aggradational periods began when deposition by large lahars changed flow conditions on the fan from channelized to unchannelized. Subsequent behavior was a function of the rate of sediment influx to the fan. The rate of sediment influx, in turn, was controlled by frequency and magnitude of volcanic eruptions, short-term climate change, and the amount of sediment stored on the volcano flanks. Fanwide aggradation occurred when rates of sediment influx and deposition on the fan were high enough to maintaìn unchannelized flow conditions on the fan surface. Maintenance of an undissected surface required sedimentation from frequent and large lahars that prevented major dissection between events. These conditions were best met during major eruptive episodes when high frequency and magnitude eruptions blanketed the volcano flanks with tephra and rates of lahar initiation were high. During major eruptive episodes, volcanism is the primary control on sedimentation. Climatic variations do not influence sediment accumulation. Local aggradation occurred when lahars were too small to maintain unchannelized flow across the entire fan. In this case, only the major channel system received much sediment following the deposition from the initial lahar. This localized aggradation occurred if (1) the sediment reservoir on the flank was large enough for floods to bulk into debris flows and (2) sedimentation events were frequent enough to maintain sediment supply to only some parts of the fan. These conditions were met during both minor eruptive and inter-eruptive episodes. In both cases, a large sediment reservoir remained on the volcano flanks from previous major eruptive intervals. Periods of increased storm activity produced floods that bulked to relatively small debris flows. When the sediment reservoir was depleted, the fan entered the present dissectional phase. Syneruptive and noneruptive lahars are mostly channelized and sediment bypasses the fan. Fan deposits are rapidly reworked. This is the present case at Ruapehu, even though the volcano is in a minor eruptive episode and the climate favors generation of intense storm floods.  相似文献   

3.
4.
Ruapehu is a very active andesitic composite volcano which has erupted five times in the past 10 years. Historical events have included phreatomagmatic eruptions through a hot crater lake and two dome-building episodes. Ski-field facilities, road and rail bridges, alpine huts and portions of a major hydroelectrical power scheme have been damaged or destroyed by these eruptions. Destruction of a rail bridge by a lahar in 1953 caused the loss of 151 lives. Other potential hazards, with Holocene analogues, include Strombolian and sub-Plinian explosive eruptions, lava extrusion from summit or flank vents and collapse of portions of the volcano. The greatest hazards would result from renewed phreatomagmatic activity in Crater Lake or collapse of its weak southeastern wall. Three types of hazard zones can be defined for the phreatomagmatic events: inner zones of extreme risk from ballistic blocks and surges, outer zones of disruption to services from fall deposits and zones of risk from lahars, which consist of tongues down major river valleys. Ruapehu is prone to destructive lahars because of the presence of 107 m3 of hot acid water in Crater Lake and because of the surrounding summit glaciers and ice fields. The greatest risks at Ruapehu are to thousands of skiers on the ski field which crosses a northern lahar path. Three early warning schemes have been established to deal with the lahar problems. Collapse of the southeastern confining wall would release much of the lake into an eastern lahar path causing widespread damage. This is a long-term risk which could only be mitigated by drainage of the lake.  相似文献   

5.
Buchitic sedimentary xenoliths, a few centimetres to several decimetres diameter, occur in Recent andesite from Mount Ngauruhoe, Tongariro Volcanic Center, Taupo Volcanic Zone, New Zealand. Bulk chemistry and Sr isotope compositions of the xenoliths indicate that they are greywacke and argillite derived from Mesozoic Torlesse terrane basement that partly underlies the Taupo Volcanic Zone. The xenoliths contain up to 80% glass with quartz, apatite and zircon remaining as unmelted phases. Glasses within the xenoliths are peraluminous (A/CNK = 1.0 − 1.4), have high normative corundum (2–7%), appreciable FeO (2–4 wt.%), MgO (0.2–1.5 wt.%), TiO2 (0.17–0.84 wt.%), relatively high normative An (1.0–5.3%), and do not represent S-type granitic melts. In the argillite the glass has higher amounts of AI2O3, FeO, MgO, CaO and K2O, and has less SiO2 and Na2O than glass in the greywacke. Silica-rich glass (up to 80 wt.% SiO2) surrounds partially melted quartz. Variable glass chemistry reflects the heterogeneous (layered) nature of the xenoliths. Cordierite (Mg/(Mg + Fe + Mn) = 0.78-0.58), orthopyroxene (En43–56), Mg-rich ilmenite, rutile, pleonaste, V-Cr-Ti spinel, and pyrrhotite occur in the glass of the xenoliths. The dominant cordierite, orthopyroxene, spinel assemblage can be accounted for by disequilibrium breakdown reactions under low oxidation conditions < QFM) involving phengite and chlorite which are abundant in Torlesse greywacke and argillite cropping out along the eastern side of the Taupo Volcanic Zone. Comparison with glass compositions and phase relations of disequilibrium melting experiments on Torlesse greywacke and argillite indicates a minimum temperature of 775°C and a maximum pressure of 1.5 kbar for fusion of the xenoliths that underwent a rapid rate of heating at a depth of less than 5 km and a cooling period constrained by the time of quenching when they were erupted.  相似文献   

6.
Mayor Island is a Holocene pantelleritic volcano showing a wide range of dispersive power and eruptive intensity despite a very limited range in magma composition of only 2% SiO2. The primary controls on this range appear to have been the magmatic gas content on eruption and a varying involvement of basaltic magma, rather than major-element chemistry of the rhyolites. The ca. 130 ka subaerial history of the volcano contains portions of three geochemical cycles with abrupt changes in trace-element chemistry following episodes of caldera collapse. The uniform major-element chemistry of the magma may relate to a fine balance between rates of eruption and supply and the higher density of the more evolved (Ferich) magmas which could be tapped only after caldera-forming events had removed significant volumes of less evolved but lighter magma.  相似文献   

7.
8.
White Island is a complex of two overlapping cones constructed of lava flows, agglomerates and unconsolidated and unsorted ash and tuff beds. Remnants of a welded-tuff flow have been found on the north-east flank of the volcano. Since the extrusion of the youngest lava flow the young cone has been breached to the south-east and deeply eroded. White Island lavas are porphyritic augite-hypersthene-labradorite andesites. One young lava flow is unusually rich in Na2O and contains groundmass sodian ferroaugite instead of the normal augite and hypersthene. The unusual groundmass features of this andesite are believed to be the result of contamination. Volcanic, plutonic and gneissic xenoliths have been found in the White Island lavas. Three new analyses of White Island andesites are given together with an electron microprobe analysis of a groundmass glass from one of the andesites. The White Island andesites are believed to have formed from the hybridisation of a primary mantle-derived andesitic magma with crustal material below the base of the Mesozoic New Zealand Geosyncline.  相似文献   

9.
Small-volume pyroclastic density currents (PDCs) are generated frequently during explosive eruptions with little warning. Assessing their hazard requires a physical understanding of their transport and sedimentation processes which is best achieved by the testing of experimental and numerical models of geophysical mass flows against natural flows and/or deposits. To this end we report on one of the most detailed sedimentological studies ever carried out on a series of pristine small-volume PDC deposits from the 1975 eruption of Ngauruhoe volcano, whose emplacement were also witnessed during eruption. Using high-resolution GPS surveys, a series of lateral excavations across the deposits, and bulk sedimentological analysis we constrained the geomorphology, internal structure and texture of the deposits with respect to laterally varying modes of deposition.  相似文献   

10.
The vent-hosted hydrothermal system of Ruapehu volcano is normally covered by a c. 10 million m3 acidic crater lake where volcanic gases accumulate. Through analysis of eruption observations, granulometry, mineralogy and chemistry of volcanic ash from the 1995–1996 Ruapehu eruptions we report on the varying influences on environmental hazards associated with the deposits. All measured parameters are more dependent on the eruptive style than on distance from the vent. Early phreatic and phreatomagmatic eruption phases from crater lakes similar to that on Ruapehu are likely to contain the greatest concentrations of environmentally significant elements, especially sulphur and fluoride. These elements are contained within altered xenolithic material extracted from the hydrothermal system by steam explosions, as well as in residue hydrothermal fluids adsorbed on to particle surfaces. In particular, total F in the ash may be enriched by a factor of 6 relative to original magmatic contents, although immediately soluble F does not show such dramatic increases. Highly soluble NaF and CaSiF6 phases, demonstrated to be the carriers of ‘available’ F in purely magmatic eruptive systems, are probably not dominant in the products of phreatomagmatic eruptions through hydrothermal systems. Instead, slowly soluble compounds such as CaF2, AlF3 and Ca5(PO4)3F dominate. Fluoride in these phases is released over longer periods, where only one third is leached in a single 24-h water extraction. This implies that estimation of soluble F in such ashes based on a single leach leads to underestimation of the F impact, especially of a potential longer-term environmental hazard. In addition, a large proportion of the total F in the ash is apparently soluble in the digestive system of grazing animals. In the Ruapehu case this led to several thousand sheep deaths from fluorosis.  相似文献   

11.
The classification of earthquakes at White Island volcano, New Zealand, has been revised to address problems in existing classification schemes, to better reflect new data and to try to focus more on source processes. Seismicity generated by the direct involvement of magmatic or hydrothermal fluids are referred to as volcanic, and that generated by fault movement in response to stresses caused by those fluids, regional stresses, thermal effects and so on are referred to as volcano-tectonic. Spasmodic bursts form a separate category, as we have insufficient information to classify them as volcanic or volcano-tectonic. Volcanic seismicity is divided into short-duration, long-period volcanic earthquakes, long-duration volcanic earthquakes, and harmonic- and non-harmonic volcanic tremor, while volcano-tectonic seismicity is divided into shallow and deep volcano-tectonic earthquakes. Harmonic volcanic tremor is related to sub-surface intrusive processes, while non-harmonic volcanic tremor originates close to active craters at shallow depth, and usually occurs during eruptive activity. Short-duration, long-period volcanic earthquakes come from a single source close to the active craters, but originate deeper than non-harmonic volcanic tremor, and are not related to eruptive activity. Long-duration volcanic earthquakes often accompany larger discrete eruptions. The waveform of these events consists of an initial low-frequency part from a deep source, and a later cigar-shaped part of mixed frequencies from a shallow crater source.  相似文献   

12.
Rothenberg scoria cone Eifel formed by an alternation of three Strombolian and three phreatomagmatic eruptive phases. Eruptions took place from up to six vents on a 600 m-long fissure, building an early tuff ring and then two coalescing scoria cones. Strombolian volcanism dominated volumetrically, as the supply of external water was severely limited. Magma/water interaction only occurred during the opening stages of eruption at any vent, when discharge rates were low and the fragmentation surface was below the water table. The phreatomagmatic deposits consist of relatively well-sorted fall beds and only minor surge deposits. They contain juvenile clasts with a wide range of vesicularity and grain size, implying considerable heterogeneity in the assemblage of material ejected by the phreatomagmatic explosions. the transition from phreatomagmatic to Strombolian eruption at any vent was rapid and irreversible, and Strombolian volcanism persisted even when eruption rates are inferred to have waned at the close of each eruptive phase as, by then, the fragmentation surfaces were high in the growing cones and water was denied access to the magma. The Strombolian deposits are relatively homogenous, consisting of alternating coarser- and finer-grained, well-sorted fall beds erupted during periods of open-vent eruption and partial blockage of the vent respectively. The intervals of Strombolian eruption were always a delicate balance between discharge of freely degassing magma and processes such as ponding of degassed magma in the vent, collapse of the growing cones, and repeated recycling of clasts through the vent. Clear evidence of the instability of the Rothenberg cones is preserved in numerous unconformities within deposits of the inner walls of the cones. The close of Strombolian phases was probably marked by a decreasing supply of magma to the vents accompanied by ponding and stagnation of lava in the craters.  相似文献   

13.
A multi-parameter approach was used to correlate andesitic tephras in a complex tephra sequence ranging in age from ca. 23 to ca. 75 ka on the eastern ring plain of Ruapehu volcano, North Island. Field properties, combined with ferromagnesian mineral assemblages and mineral compositions, were required to map and correlate this sequence. Three tephra units could be identified based on their unique physical appearance, but other tephras could not be correlated on this basis alone. Hornblende and olivine proved to be valuable marker minerals enabling further distinction of two of the marker units recognised by field properties, as well as defining two further marker tephras. Unweathered titanomagnetite crystals, present in all of the tephras, were subjected to major-element analysis by electron microprobe. Canonical discriminant function analysis (DFA) of these analyses enabled the grouping and discrimination of tephra units, further aiding the identification of defined marker units, as well as defining new marker units. The titanomagnetite chemistry showed a strong relationship to the ferromagnesian mineralogy, showing that the ferromagnesian phenocrysts formed from the same melt or under the same melt conditions prior to eruption of each tephra. Canonical DFA was also applied to hornblende and olivine mineral analyses to identify further marker beds and to confirm identifications of previously defined units. This statistical analysis was found to be invaluable in reducing the large amount of compositional data from this study into a useable form for andesitic tephra correlation and mapping.  相似文献   

14.
 The ca. 10,500 years B.P. eruptions at Ruapehu volcano deposited 0.2–0.3 km3 of tephra on the flanks of Ruapehu and the surrounding ring plain and generated the only known pyroclastic flows from this volcano in the late Quaternary. Evidence of the eruptions is recorded in the stratigraphy of the volcanic ring plain and cone, where pyroclastic flow deposits and several lithologically similar tephra deposits are identified. These deposits are grouped into the newly defined Taurewa Formation and two members, Okupata Member (tephra-fall deposits) and Pourahu Member (pyroclastic flow deposits). These eruptions identify a brief (<ca. 2000-year) but explosive period of volcanism at Ruapehu, which we define as the Taurewa Eruptive Episode. This Episode represents the largest event within Ruapehu's ca. 22,500-year eruptive history and also marks its culmination in activity ca. 10,000 years B.P. Following this episode, Ruapehu volcano entered a ca. 8000-year period of relative quiescence. We propose that the episode began with the eruption of small-volume pyroclastic flows triggered by a magma-mingling event. Flows from this event travelled down valleys east and west of Ruapehu onto the upper volcanic ring plain, where their distal remnants are preserved. The genesis of these deposits is inferred from the remanent magnetisation of pumice and lithic clasts. We envisage contemporaneous eruption and emplacement of distal pumice-rich tephras and proximal welded tuff deposits. The potential for generation of pyroclastic flows during plinian eruptions at Ruapehu has not been previously considered in hazard assessments at this volcano. Recognition of these events in the volcanological record is thus an important new factor in future risk assessments and mitigation of volcanic risk at Tongariro Volcanic Centre. Received: 5 July 1998 / Accepted: 12 March 1999  相似文献   

15.
Volcano-tectonic earthquakes at White Island are concentrated in a single seismically active zone, southeast of the active vents and at depths of less than 1 km. A few deeper earthquakes also occur beneath the active vents. A composite focal mechanism indicates that the stress regime in the shallow seismic zone is N-S extensional. Shallow seismicity occurs within the main volume of the volcano-hydrothermal system that underlies the Main Crater floor, and we interpret this as a region where the rocks have been weakened by past magmatic intrusions, elevated pore fluid pressure and physico-chemical effects of acid volcanic fluids, thereby allowing preferential seismic failure. Brittle seismic failure within this region requires a temperature less than about 400 °C, and implies high horizontal temperature gradients close to the active craters and fumaroles. Spasmodic bursts events are also a result of brittle failure, but occur close to zones of significant permeability in response to changes in local fluid pressure.  相似文献   

16.
The steep flanks of composite volcanoes are prone to collapse, producing debris avalanches that completely reshape the landscape. This study describes new insights into the runout of large debris avalanches enhanced by topography, using the example of six debris avalanche deposits from Mount Ruapehu, New Zealand. Individual large flank collapses (>1 km3) produced all of these units, with four not previously recognised. Five major valleys within the highly dissected landscape surrounding Mount Ruapehu channelled the debris avalanches into deep gorges (≥15 m) and resulted in extremely long debris avalanche runouts of up to 80 km from source. Classical sedimentary features of debris avalanche deposits preserved in these units include the following: very poor sorting with a clay-sand matrix hosting large subrounded boulders up to 5 m in diameter, jigsaw-fractured clasts, deformed clasts and numerous rip-up clasts of late-Pliocene marine sediments. The unusually long runouts led to unique features in distal deposits, including a pervasive and consolidated interclast matrix, and common rip-up clasts of Tertiary mudstone, as well as fluvial gravels and boulders. The great travel distances can be explained by the debris avalanches entering deep confined channels (≥15 m), where friction was minimised by a reduced basal contact area along with loading of water-saturated substrates which formed a basal lubrication zone for the overlying flowing mass. Extremely long-runout debris avalanches are most likely to occur in settings where initially partly saturated collapsing masses move down deep valleys and become thoroughly liquified at their base. This happens when pore water is available within the base of the flowing mass or in the sediments immediately below it. Based on their H/L ratio, confined volcanic debris avalanches are two to three times longer than unconfined, spreading flows of similar volume. The hybrid qualities of the deposits, which have some similarities to those of debris flows, are important to recognise when evaluating mass flow hazards at stratovolcanoes.  相似文献   

17.
The relics of a small, monogenetic, continental-shelf, Surtseyan volcano are preserved on the North Otago coast, South Island, New Zealand, in the late Eocene-early Oligocene Waiareka-Deborah volcanics. The succession consists of two parts, i. e. a lower interval of bedded lapilli tuffs and lapillistones, representing the eruptive, aggradational-cone-building phase, and an upper epiclastic sequence, representing the post-eruptive degradational phase. All of the preserved succession appears to have been deposited below storm wave base. The lapilli tuffs and lappillistones are subaqueous fall deposits, modified contemporaneously by downslope grain flow and turbidity current redeposition, and perhaps by local reworking caused by turbulent thermal eddies. The absence of major discordances in the lapilli tuffs suggests that the active eruptive period was very short-lived, perhaps lasting only a few days. The epiclastic succession consists of redeposited volcanic, skeletal, lime mud and glauconitic detritus, transported by debris flows and other mass flows. The initial epiclastic unit, a debris flow, appears to represent the sector collapse of a significant part of the cone. The appearance of fossils and rounded clasts low in the epiclastic succession coincides with stabilisation of the top of the submarine volcanic edifice, development of a wave-planed top, and its colonisation by a diverse fauna. Periodic storm activity swept material off the platform, redepositing it as marginal talus ramps. Surtla, a wholly submarine satellite volcanic centre of the 1963–1967 eruptive activity of Surtsey, is an excellent modern analogue for both the eruptive and post-eruptive phases of the Bridge Point-Aorere Point volcanic centre. By analogy with Surtla, the 120 metres of lapilli tuffs and lapillistones exposed on Bridge Point and Aorere Point accumulated in only several days. The 25 metres of reworked, glauconitic and fossiliferous volcaniclastics, represent thousands of years based on the time required for glauconite to form.  相似文献   

18.
19.
We describe a magma mingling episode from Ruapehu volcano between two andesite magmas, one very much minor in volume relative to the other. The event acted to trigger eruption of the andesitic Pourahu pyroclastic flow which is preserved in a thick sequence of tephras and laharic deposits in the southeastern ring plain of the volcano. The predominant andesite is pale brown coloured and porphyritic containing phenocrysts of plagioclase-clinopyroxene-orthopyroxene-Fe-Ti oxides. Rare clasts of a darker andesite are different texturally, less vesicular, and contain distinctive microphenocrysts of plagioclase and quench olivine. Equally rare clasts, of streaky pumice consisting of interbanded ‘dark’ and ‘light’ andesite attest to mingling between these two andesite components.Chemical analyses of discrete clasts demonstrate that the Pourahu pyroclastic flow andesites span much of the compositional spectrum of Ruapehu andesites. This observation demonstrates heterogeneity in the products of a relatively small eruption. The darker clast analyses and those from associated distal fall deposits lie within the fields defined by the dominant light coloured clasts. Phenocryst and microphenocryst geothermometry suggest slightly higher temperatures in the dark component. However, glasses from groundmass and phenocryst inclusions in the same specimen may differ considerably, leading us to conclude that many phenocrysts are in fact xenocrystic and were incorporated in the melts as they migrated towards the surface.We prefer a model in which a small volume of hot andesite magma injects a vent-feeding magma chamber, triggering vesiculation and eruption. We infer that the process of magma withdrawal extended downward into the magma body causing the dark component to intermingle with the lighter (dominant) component, ‘sucking’ more dark magma into the chamber. Our observations are entirely consistent with the existence of a plexus of small, possibly interlinked magma chambers beneath Ruapehu.  相似文献   

20.
A largely submarine avalanche amphitheatre that formed catastrophically in 1888 on Ritter volcano has been identified from a bathymetric survey. Collapse of the volcano in 1888 therefore is considered to have been caused by rapid, large-scale slope failure, rather than by cauldron subsidence, as previously supposed. Escarpments of pre-historic slope failures are common on other Papua New Guinea volcanoes. Directions of avalanching on some volcanoes in the Bismarck volcanic arc appear to be controlled by a regional stress pattern, and those for some volcanoes in the Fly-Highlands province on mainland Papua New Guinea point away from the regional centre of Pliocene uplift. Large amphitheatres such as at Doma Peaks in the Fly-High-lands province probably originated by multiple collapses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号