首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
利用气象台站观测地表温度,比较和分析了ERA-Interim、NCEP/NCAR和NCEP/DOE再分析地表温度资料在青藏高原的适用性.结果表明:三种再分析资料都揭示了青藏高原地表温度的基本特征,并较好地描述了高原地表温度的季节变化和年际变化特征;但三种再分析资料都比观测地表温度明显偏低,且对地表温度的长期变化趋势估计不足.比较而言,ERA-1nterim再分析地表温度产品在青藏高原的适用性最好,与观测地表温度的相关最显著,且能较好地反映高原地表温度的异常变化强度,可作为研究高原地表温度年际变化的代用资料;而NCEP/NCAR和NCEP/DOE 再分析地表温度产品在青藏高原的适用性不佳,其适用时段和适用区域需要进一步考察.  相似文献   

2.
王旻燕  吕达仁 《气象学报》2005,63(6):957-968
文中利用单时相双光谱分裂窗算法以GMS 5/VISSR红外资料反演地表温度,揭示了中国几类典型下垫面晴空地表温度的日变化及季节变化特征.塔里木盆地、青藏高原、浑善达克沙地、华北平原北部、华南部分地区因地表反射率、土壤含水量、受太阳辐射影响程度不同等地表温度季节变化差异很大,月平均地表温度日较差一年内基本上呈双峰双谷型.作为比较,东亚部分陆地的地表温度与台湾海峡南部、黄海的海表温度及其日变化、季节变化一并进行了分析.塔里木盆地、浑善达克沙地不仅具有强烈的日变化,而且季节变化也显著.2000年两地月平均地表温度日较差最大值超过30 K,浑善达克沙地的年较差高达58.50 K.青藏高原地表温度季节变化小于东亚部分陆地、塔里木盆地、浑善达克沙地,但该区日变化幅度在所研究几个区中最大,2000年年平均日较差达28.05 K.文中将研究时段扩充到1998~2000年后揭示了连续三年地表温度及其日变化的年际变化特征.所获得这几类地表温度的变化特征与量值对于气候与辐射收支研究以及推测地表状况会有一定参考价值.  相似文献   

3.
伊朗高原和青藏高原热力作用对东亚区域气候具有重要影响。基于1979—2014年欧洲中心ERA-interim月平均再分析地表热通量资料,分析了春、夏季青藏高原与伊朗高原地表热通量的时、空分布特征以及春、夏季青藏高原与伊朗高原地表热通量的关系。结果表明,春、夏季青藏高原与伊朗高原地表热通量在季节、年际和年代际尺度上具有不同的时、空分布特征。对于青藏高原,春、夏季地表感热呈西部大东部小、地表潜热呈东部大西部小;地表感热在春季最大且大于地表潜热,地表潜热在夏季最大且大于地表感热。在年际时间尺度上,春、夏季青藏高原地表热通量异常的年际变化在东、西部不一致,青藏高原西部,地表感热与地表潜热有较强的负相关关系。青藏高原地表感热异常具有很强的持续性,当春季地表感热较强(弱)时,夏季高原地表感热同样较强(弱)。青藏高原东部与西部地表热通量的年代际变化有明显差异,春(夏)季青藏高原东部地表感热呈显著的年代际减弱趋势,1998(2001)年发生年代际转折,由正异常转为负异常;而青藏高原西部地表感热在春季则有显著的增大趋势,2003年发生年代际转折,由负异常转为正异常。青藏高原东部地表潜热仅在春季为显著减弱趋势,2003年出现年代际转折,由正异常转为负异常;青藏高原西部地表潜热在春、夏季都有显著减弱趋势,年代际转折出现在21世纪初,由正异常转为负异常。对于伊朗高原,春、夏季地表热通量的空间分布在整个区域较一致,地表感热在夏季最大,地表潜热在春季大、夏季小,但各季节地表感热都大于地表潜热。相对于青藏高原地表感热,伊朗高原地表感热在各月都更大。在年际时间尺度上,春、夏季伊朗高原各区域地表热通量异常的年际变化较一致;地表感热与潜热有很强的负相关关系;伊朗高原地表感热、潜热异常都具有持续性,当春季地表感热(潜热)通量较强(弱)时,夏季地表感热(潜热)通量同样较强(弱)。伊朗高原北部与南部地表热通量的年代际变化存在差异。其中,春、夏季伊朗高原北部地表感热(潜热)呈显著增强(减弱)趋势,在20世纪末发生了年代际转折,春、夏季北部地表感热(潜热)由负(正)异常转为正(负)异常。而伊朗高原南部春、夏季地表热通量无显著变化趋势,但春季地表感热、潜热与夏季地表感热同样在20世纪末存在年代际转折,地表感热(潜热)由负(正)异常转为正(负)异常。春、夏季两个高原地区地表热通量的关系主要表现为:就春季同期变化而言,伊朗高原地表感热与青藏高原西部地表感热具有同相变化关系,与青藏高原东部地表感热具有反相变化关系,伊朗高原地表潜热与青藏高原东部地表潜热具有同相变化关系;就非同期变化而言,春季伊朗高原地表感热与夏季青藏高原东部地表感热存在反相变化关系。   相似文献   

4.
王慧  张璐  石兴东  李栋梁 《大气科学》2022,46(1):133-150
本文利用气候变化趋势转折判别模型(PLFIM),分析了1982~2018年青藏高原中东部70个气象站点地表感热趋势演变特征的季节差异,并利用线性倾向估计和方差分析方法定量评估了影响不同季节地表感热变化的关键气象要素.结果 显示:(1)高原中东部四季平均地表感热通量均存在显著趋势转折特征,整体来看,秋、冬季转折时间较早(...  相似文献   

5.
采用1960—2010年NCEP/NCAR逐月再分析资料,利用经验正交函数(EOF)展开方法等,分析了欧亚大陆夏季地表温度变化特征及其与大气环流的关系。结果表明:欧亚大陆夏季地表温度的均方差在高纬度地区大于在低纬度地区。欧亚大陆夏季地表温度最主要的特征是全区一致变化,除了青藏高原东侧为降温趋势外,其他地区为变暖趋势,其中40~65°N增温明显;其次,高纬度地区表现出"-+-"变化特征。西风环流指数的变化与地表温度的增温密切相关,而EU指数与中高纬度地区地表温度异常的分布类型密切相关。根据欧亚大陆夏季地表温度的气候特征和时空变化特征,确定了5个关键区。各关键区指数都有增温趋势,但是变化特征不同。不同关键区指数的异常所对应的环流形势异常均不相同,与不同关键区地表温度密切联系的环流因子也不相同。  相似文献   

6.
气溶胶对青藏高原气候变化影响的数值模拟分析   总被引:1,自引:0,他引:1  
利用美国大气研究中心(NCAR)提供的2组数值试验结果对比,分析了只考虑温室气体增加(1%CO2试验)和综合考虑大气温室气体与气溶胶持续增加(50yrs试验)条件下,青藏高原地区地表温度、积雪深度及其他气候要素的变化,并在此基础上探讨了大气气溶胶含量变化对高原气候变化的可能影响.分析结果表明:只考虑大气CO2含量每年增加1%的变化时,青藏高原相对邻近地区地表温度显著增加,春、夏、秋及冬季地表温度线性增温率均表现出随着海拔高度升高而增强.例如,在海拔1.5~2 km,3~3.5 km和4.5~5 km范围内对应的冬季增温趋势分别为0.29 ℃/10 a,0.36 ℃/10 a和0.50 ℃/10 a.在温室气体引起的高原增暖过程中地表积雪深度普遍降低,且高海拔地区的积雪减少愈加明显.当综合考虑气溶胶和温室气体含量共同增加时,青藏高原地表增暖相对偏弱,春、夏和秋季增温也随海拔高度上升而加强,但冬季地面增温幅度随海拔上升反而下降,海拔1.5~2 km,3~3.5km和4.5~5 km范围内对应的冬季增温趋势分别为0.02 ℃/10 a,-0.03 ℃/10 a和-0.13 ℃/10 a.对比分析发现,大气气溶胶增加造成青藏高原冬季增温不明显甚至出现变冷趋势,地面积雪也随之增多,这可能歪曲了青藏高原地区气候变暖对海拔高度的依赖性.  相似文献   

7.
青藏高原与中国其他地区气候突变时间的比较   总被引:25,自引:5,他引:20  
丁一汇  张莉 《大气科学》2008,32(4):794-805
基于1961~2006年中国地面观测气温和降水资料,对青藏高原地区以及中国其他6个地区地表气温、降水的变化趋势和突变时间进行了检测和比较。结果发现,(1)地表气温:1961~2006年青藏高原地区年和四季的地表气温都呈增加趋势。年平均地表气温在20世纪80年代中期开始变暖,但显著快速增暖的突变发生在90年代中期,该时间比东北、华北、西北和淮河地区晚,与长江中下游和华南地区接近,不同季节青藏高原地区与其他地区变暖突变时间的差别也各有不同,但所有季节快速变暖突变的时间都比东北地区晚,中国东部陆地地区年和冬季平均地表气温表现出北早南晚的经向差异;(2)降水:1961~2006年青藏高原地区年降水量没有检测到显著的变化趋势,冬春降水量显著增加,而夏季降水有微弱的减少,秋季降水显著减少。降水突变的信号明显比温度突变的信号弱,年降水量和春季降水都没有检测到突变的发生,降水突变方向(增或减)和突变时间在区域与区域之间以及不同季节之间都存在较大差异。由上可见,青藏高原气候的显著快速变化比中国东部长江以北地区有明显的滞后现象,尤其是冬春温度变化,这可能是由于青藏高原地区积雪增加导致的反照率增加和冰川融化吸热对青藏高原变暖的减弱作用所致。  相似文献   

8.
亚非感热异常时空特征及其与我国降水异常的关系   总被引:3,自引:2,他引:3  
运用多年全球感热通量数据进行经验正交函数(EOF)分析,得到感热异常关键区。运用小波分析等方法发现,全球地表感热异常存在振荡现象,东半球在年际、年代际尺度上,地表感热异常主要以青藏高原东、西部的反相以及高原西部和北非的反相为热力异常振荡的主要分布形态。再运用中国月平均降水资料进行EOF分析,得到各个感热异常关键区与中国华北、江淮和华南地区汛期降水异常的相关关系,其中北非、青藏高原西北部和马来半岛这3个区域的感热距平之间有较大的相关关系,且感热异常季节变化较小,对我国东部地区降水的影响比较稳定,持续性较好。  相似文献   

9.
青藏高原中部闪电活动与相关气象要素季节变化的相关分析   总被引:19,自引:5,他引:14  
袁铁  郄秀书 《气象学报》2005,63(1):123-128
利用 1995年 4月至 2 0 0 2年 12月间卫星观测的闪电资料与NCEP再分析资料中的地表降水率、云功函数和热通量 ,分析了青藏高原中部闪电活动与相关气象要素季节变化之间的关系。研究发现 :青藏高原中部闪电活动的峰值出现在 7月份 ,并在春季表现出明显的闪电活动 ;相关气象要素中 ,最能够准确描述闪电活动的季节变化及其春季异常特征的仅有地表总热通量 ;降水 (或云功函数 )与鲍恩比 (感热通量和潜热通量之比 )的乘积能够较好地反映闪电活动的季节分布特征与春季的“异常”。结果表明 ,感热通量或鲍恩比可能在对流有效位能向对流上升动能的转化过程中起着重要的作用 ,鲍恩比可作为修正闪电产生效率的一个重要参量。  相似文献   

10.
赵勇  钱永甫 《气象学报》2009,67(3):397-406
利用NCEP/NCAR再分析月平均资料和中国160个站降水资料,以及由国家气候中心提供的西太平洋副高脊线指数资料,分析了青藏高原地区多年平均地表温度季节转换(3-6月)的空间特征,结合均方差分析,确定高原主体(28°-38°N,75°-100°E)、高原东部以北区域(38°-48°N,90°-105°E)和高原西部以北区域(38°-45°N,75°-90°E)为关键区,分析了1951-2002年5月不同关键Ⅸ地表温度的空间变化与夏季东亚季风环流和江淮降水的关系.结果发现,这3个区域地表温度异常均对夏季东哑850 hPa环流有显著的影响.5月高原和其以北区域地表温度异常存在较大尺度的热力对比,由此,将高原主体和其以北区域的温度异常之差定义为一个指数,反映这种热力差异.相关分析发现:当5月这一热力差异增大(减小)时,夏季东亚中高纬的中高层(500-200 hPa平均)西风加强(减弱),且两风中心轴线位簧南移(北抬);造成西太平洋副热带高压脊线位置偏南(偏北),致使夏季东亚季风环流偏弱(偏强),江淮流域降水增多(减少).  相似文献   

11.
本文利用2000年3月-2011年2月西藏地区的MODIS雪盖产品数据、DEM数据以及地面气象观测数据,结合GIS空间分析方法,分析了西藏地区不同自然区划地带下雪线的时空变化特征及其与气象因素的关系。研究表明:西藏及各区域年平均雪线波动变化比较平稳,全区年平均雪线为4848.6m,呈微弱上升趋势,线性倾向率为6.54m/10a;各季节平均雪线中,秋季雪线的变化对年平均贡献最大,二者相关系数达0.796。冬季雪线呈下降趋势(相关系数为-0.625),其余三季则均表现为上升趋势,但均不显著;除东喜马拉雅南翼山地雪线逐月变化波动明显外(标准差为60.3m),其余均表现为平缓波动形势;西藏地区的雪线空间分布基本上表现为由东南向西北方向逐步升高的态势,其中东南部和西北部雪线分布密集且复杂。中部雪线则相对较稀疏,其高、低值区分别与山脉和河谷分布相对应;整体上,西藏雪线与气温正相关,与降水量负相关,但是各区域四季雪线与气温、降水量之间又存在差异。雪线是积雪各要素特征变化最为敏感的指示器,研究西藏高原雪线的时空分布特征及其与气象因素之间的关系,对了解西藏高原乃至整个青藏高原的气候变化具有重要的意义。  相似文献   

12.
青藏高原卫星观测地表温度的分析   总被引:3,自引:0,他引:3  
利用 ISCCP-C2卫星观测地表温度资料,使用 EOF方法分析了青藏高原地区地表温度的空间分布和时间变化特征,讨论了地表温度变化对气候变化如季风和降水的影响和响应。根据地表温度的相关性讨论了青藏高原地区的气候区划,并据此划分了3个气候区。  相似文献   

13.
青藏高原地表热状况的卫星资料分析   总被引:24,自引:12,他引:12  
江灏  王可丽 《高原气象》2000,19(3):323-330
在云辐射强迫→地表热力强迫→气候变化→云辐射强迫这一反馈过程中,地表热力过程是一个要环节。青藏高原地表热状况集中集现了青藏高热力作用的基本状态,因而 热力强迫作用下的气候变化如降水、季风等密切相关。因此,研究青藏高原地表热状况的变化,对深入了解青藏高原热力作用及其对周边气候环境的影响,进而对气候变化预测有重要意义。本文利用1983年7月至1990年12月菜90个月的ISCCP-C2卫星观测地表温度  相似文献   

14.
印度洋春、夏季海温对西藏高原夏季降水的影响   总被引:3,自引:1,他引:3       下载免费PDF全文
周顺武  丁锋  假拉 《气象科学》2003,23(2):168-175
利用NCEP提供的1950—1997年全球月平均海表面温度场资料,首先通过EOF分解得到不同季节印度洋海温场空间分布特征,并在此基础上使用合成分析、相关分析和SVD分解等多种方法讨论了印度洋前期和同期海温异常与西藏高原夏季降水变化的关系。寻找出影响高原夏季降水的关键海区,目的为高原夏季早涝预测提供参考依据。  相似文献   

15.
通过分析北半球和青藏高原地面平均气温与它们上空500hPa平均温度、200一500hPa平均厚度在不同时期和不同纬度带的趋势变化特征,了解其地面气温和其对流层中上层温度的年代际变化趋势以及相互关系。可以看到近50a地面气温和500hPa温度年代际变化大致相同,20世纪70年代中期之前都为降温,70年代中期以后为不同程度的升温。200—500hPa厚度代表的对流层上层温度与对流层下层温度变化趋势相反,70年代前明显升温,70年代后明显降温。分析还表明,对流层各层温度在不同纬度和不同季节的变化也不同。  相似文献   

16.
利用青藏高原73个气象台站的观测资料和日本气象厅JRA-55再分析资料,通过引入年际增量和动能收支方程,分析了1971-2012年高原春季风速的年际变化特征及其对气候变暖的响应。结果表明,在气候变暖的背景下高原风速呈减弱的趋势,随着变暖趋缓风速的变化也趋于平稳。春季高原风速与气温的线性趋势是相反的,但在年际尺度上二者表现出同位相的变化,当青藏高原、中南半岛和印度半岛的地面气温偏高,北亚和东亚地区的地面气温偏低时,有利于高原地面风速增大,反之风速减小。20世纪末青藏高原及其周边地区的升温速率表现为北快南缓,高原南、北侧气温差异减小,而东、西向的气温差异增大,风速趋于减弱;21世纪初高原中部及其南侧地区以升温为主,高原东北侧和东亚地区以降温为主,南、北向气温差异较小,高原风速的变化也趋于平缓,东、西向气温差异有减小的趋势,对应高原东部风速有所增大。青藏高原及其邻近地区的热力差异及其变化速率的不均衡改变了对流层大气的斜压性,进而通过两种途径影响青藏高原的风速,一方面是近地面层气压梯度力的直接作用,另一方面是高层动能向低层的输送。此外,还指出JRA-55再分析风速资料比ERA-Interim和NCEP/NCAR资料在青藏高原的适用性更强。   相似文献   

17.
作为全球能量水分循环的关键区域,青藏高原(下称高原)气候变化对高原及周边地区气候与环境变化具有重要影响.本文从高原表面增暖、辐射变化、降水的多尺度变率、表面风速及环境变化方面回顾了高原近60年来气候变化及其环境效应与物理机制的研究进展,并基于再分析和台站观测资料讨论了近10余年来高原表面温度和风速变化的特征及原因.最后...  相似文献   

18.
利用山东中部地区8个气象站1966—2015年逐日气温观测资料,用5日滑动平均气温作为划分依据,结合气候趋势法、Mann-Kendall法和经验正交分解法,对山东中部地区近50 a的四季开始日期及长度时空变化特征进行分析。结果表明:山东中部地区春季和夏季开始日期呈提前趋势,秋季和冬季呈推迟趋势,其中,夏季和冬季开始日期在1993年发生突变,四季开始日期的主要空间变化趋势一致,秋季变化强度中心在中北部平原,其他三季变化强度中心均出现在中部地区,四季开始日期空间变化规律在第二特征向量上呈现区域变化的不一致性。冬季日数最多,其次为夏季,春季日数最少,春季和冬季日数呈减少趋势,冬季减少趋势显著,气候倾向率为-2.98 d/10 a,夏季和秋季日数呈增加趋势,夏季日数增加显著,四季日数主要空间变化规律一致,强度中心在中部地区,四季日数空间变化规律在第二特征向量上存在不一致性,其中,夏季和秋季第二特征向量呈现南部山区与其他地区不同。  相似文献   

19.
藏北高原地表反照率的初步研究   总被引:14,自引:9,他引:5  
李英  胡泽勇 《高原气象》2006,25(6):1034-1041
基于中日合作项目“全球协调加强观测计划之亚澳季风青藏高原试验”(CAMP/Tibet)在藏北高原D105站、Amdo站、MS3478站以及BJ站的观测数据资料,分析了该地区地表反照率的时空分布特征。结果表明:藏北高原地区的地表反照率具有明显的日变化和月/季节变化特征。冬、春季的日变化曲线呈“U”形,且曲线形状的变化不如夏、秋季大。6~9月的月平均反照率在全年中最低,5月份月平均反照率波动较大。从季节平均值来说,冬季>春季>秋季>夏季。该地区的平均地表反照率为0.2457;反照率的空间分布很不均匀,其值的大小、曲线的形状在不同站点都很不一样,这与站点的地理位置有关,但天气状况和下垫面属性也起了很大的作用。  相似文献   

20.
基于1979~2014年ERA-Interim逐日再分析温度资料,依据温度递减率插值法,计算出北半球两类对流层顶(热带对流层顶和极地对流层顶)频率数据。对比分析了青藏高原与同纬度地区两类对流层顶频率在季节变化上的差异,并讨论了青藏高原两类对流层顶频率分布与高空温度的关系。结果表明:1)依据温度递减率插值法计算出的再分析两类对流层顶频率可以反映青藏高原两类对流层顶频率季节变化特征:热带对流层顶全年频率高,冷、暖季节差异不明显;极地对流层顶盛夏频率极低,冷、暖季节差异明显。与极地对流层顶频率相比,青藏高原热带对流层顶频率的可信度更高。2)青藏高原和同纬度地区热带(极地)对流层顶频率在暖季增加(减少),在冷季减少(增加)。相比同纬度地区,青藏高原热带(极地)对流层顶频率在冬季偏少(多),其他季节偏多(少)。青藏高原两类对流层顶频率等值线的梯度更大,表明青藏高原对流层顶更易断裂。3)青藏高原两类对流层顶频率与高空温度关系密切。青藏高原对流层中上层(平流层下部)温度升高(降低),有利于青藏高原热带对流层顶频率增加,极地对流层顶频率减少,反之亦然。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号