共查询到19条相似文献,搜索用时 62 毫秒
1.
熵平衡方程及其在短时降水预报中的应用 总被引:3,自引:1,他引:3
本文推导出了湿大气下的熵平衡方程 在分析了1983年7月1日苏北大暴雨过程的湿总温度后发现,湿总温度梯度的负值区能够预示短时内发生的降水,并且负值区制约着中尺度雨团的移动。 相似文献
2.
3.
4.
5.
BP神经网络法在大气污染预报中的应用研究 总被引:2,自引:2,他引:2
近年来将BP网络模型应用到大气污染浓度预报中 ,并建立了大气污染物浓度的神经网络预报模型。将计算结果与监测值进行了验证 ,结果表明 :TSP的计算值与观测值之间的绝对误差为 4× 1 0 - 3~ 3× 1 0 - 2 mg·m- 3,NOX 的计算值与观测值之间的绝对误差为 5× 1 0 - 3~ 2× 1 0 - 2 mg·m- 3;且具有较好的相关性。BP模型是目前最为广泛应用的神经网络模型之一 ,它是一种简单而又非常有效的算法 ,BP神经网络法为城市空气污染预报工作提供了一种全新的思路和方法。 相似文献
6.
神经网络方法在广西日降水预报中的应用 总被引:7,自引:3,他引:7
以广西前汛期5、6月区域平均日降水量作为预报对象,采用人工神经网络方法进行新的数值预报产品释用预报研究。对T213预报因子进行自然正交分解,有效浓缩数值预报产品因子的预报信息,并结合日本降水预报模式因子建立广西3个不同区域的逐日降水神经网络释用预报模型。运用与实际业务预报相同的方法对2004年5、6月进行逐日的实际预报试验,并与T213的降水预报进行对比分析。结果表明,本文建立的3个区域日平均降水量神经网络预报模型,在预报性能上明显优于同期的T213降水预报。 相似文献
7.
8.
9.
BP神经网络在油菜花期预报中的应用 总被引:1,自引:0,他引:1
建立花期预报模型,发布观赏性植物的精准花期预报,为旅游活动提供重要参考依据,已经成为气象服务领域一个新的发展方向。为了解高淳旅游区油菜花期的变化规律,探索其预报方法,指导高淳油菜花节旅游活动,根据1985—2010年高淳站日最高气温、日最低气温、日平均气温、日降水量、日日照时数、日平均5 cm地温、日平均相对湿度和日小型蒸发量等气象观测数据,利用主成分分析法,得到其与油菜花期相关系数较大的3个主成分,即温度因子、天气因子和辐射因子,以此为输入因子,建立基于BP神经网络的油菜花期预报模型,探讨BP神经网络在花期预报领域的应用。结果表明,传统的有效积温方法预报结果与实际开花期平均相差4.25天,BP神经网络方法预报结果与实际开花期平均相差1.5天,与有效积温预报油菜花期的方法相比,BP神经网络技术具有预测结果准确率高和操作简单等特点,在花期预报领域具有广阔的应用前景。 相似文献
10.
BP神经网络在长期天气过程预报中的应用试验 总被引:3,自引:2,他引:3
采用误差反传前向网络(简称BP网络)方法,以日、月相概率作为输入因子,建立长期天气预报模型。结果表明,模型的业务预报试验效果比较理想,对较大降水和升(降)温过程均有一定预报能力,相对于传统的单纯运用日、月相概率预报长期天气过程的方法,BP神经网络方法具有预报较客观、准确率较高等特点,在目前长期天气预报理论和数值预报模式尚不能用于实际业务的情况下具有较大的应用价值。 相似文献
11.
基于TIGGE资料集中的ECMWF、CMA和JMA的数值预报产品,利用加权集成、回归集成和消除偏差集成等线性集成方式与遗传算法优化的BP神经网络(GABP)集成,对我国大部开展地面2 m温度在24 h、48 h和72 h预报时效的多模式集成预报试验。通过对2013年1—6月的预报检验,结果表明:GABP集成预报效果有较大提升,均方误差明显小于各单一模式预报。GABP集成的误差分布在新疆和华北均方误差较大,但是在预报效果改进上GABP集成在西部地区相对单一模式的误差减小更加明显。在进行几种多模式集成方式时,GABP集成相比线性方法预报结果更加精准。对于天气过程个例的预报,GABP集成预报出预报量的变化趋势,预报效果优于单一模式和线性集成预报。无论是较长时间段还是短时间的天气过程,在改进预报效果上GABP集成都起到了最佳的作用。 相似文献
12.
A short-range quantitative precipitation forecast algorithm using back-propagation neural network approach 总被引:5,自引:0,他引:5
A back-propagation neural network (BPNN) was used to establish relationships between the shortrange (0-3-h) rainfall and the predictors ranging from extrapolative forecasts of radar reflectivity, satelliteestimated cloud-top temperature, lightning strike rates, and Nested Grid Model (NGM) outputs. Quan- titative precipitation forecasts (QPF) and the probabilities of categorical precipitation were obtained. Results of the BPNN algorithm were compared to the results obtained from the multiple linear regression algorithm for an independent dataset from the 1999 warm season over the continental United States. A sample forecast was made over the southeastern United States. Results showed that the BPNN categorical rainfall forecasts agreed well with Stage Ⅲ observations in terms of the size and shape of the area of rainfall. The BPNN tended to over-forecast the spatial extent of heavier rainfall amounts, but the positioning of the areas with rainfall ≥25.4 mm was still generally accurate. It appeared that the BPNN and linear regression approaches produce forecasts of very similar quality, although in some respects BPNN slightly outperformed the regression. 相似文献
13.
利用NCEP提供的全球空间分辨率为2.5°×2.5°、2007—2012年6—8月日平均500 h Pa高度场再分析格点资料和浙北地区158个站点观测资料,研究了不同大气环流型下局地降水与大尺度降水场之间的关系,以4种不同环流型下的预报对象和预报因子分别采用BP神经网络方法对观测资料进行逼近,得到4种空间降尺度的预报模型,分析对比4种预报模型158站逐日的降水量的预报。结果表明:神经网络模型的隐层节点数为2时,对降水的拟合效果最好;对降水的极值拟合效果中,环流分型中NW型和C型的效果优于SW型和SE型;从4种分型下的误差空间分布来看,浙北地区沿海的宁波、舟山一带的误差小于浙北其他区域;把雨量分等级后进行预测,发现模型对暴雨的预测能力最好。 相似文献
14.
15.
16.
传统BP神经网络算法虽然具有良好的学习能力和容错能力,但是收敛速度慢,易陷入局部极小点等缺点制约了它的进一步发展和应用.针对这些不足,采用自适应学习率结合附加动量因子的方法可以有效缩短训练时间,加快收敛速度,同时抑制寻优算法陷入局部极小点.将该算法应用于图像字符识别系统中,通过一系列实验优化系统参数之后给出系统识别结果,表明该系统识别具有较高的准确性和鲁棒性. 相似文献
17.
将人工神经网络应用于南京夏季梅雨期短期降水分级预报。根据梅雨期天气特点,用统计和动力学方法从HLAFS(高分辨率有限区域预报系统)资料中寻找预报因子;然后分别用两种方法选取输入因子对人工神经网络进行训练,并分别利用抽取的五天做降水分级预报检验。通过对人工神经网络方法预报降水的结果与HLAFS降水预报以及逐步回归预报的结果对比发现:与HLAFS降水预报相比,降水预报准确率由原来的66.7%提高到88.2%,漏报、错报明显减少;与逐步回归预报相比,大到暴雨的预报准确率得到了明显提高。 相似文献
18.
针对厦门集美大桥建设过程中的高程传递问题,提出了基于BP神经网络的方法,并构建了沿桥梁径向布设的GPS水准网,通过BP神经网络的设计与解算,得到了较好的结果. 相似文献
19.
选取1949—2015年间对宁波市影响较大、灾情记录完整的58个台风样本,基于灾损数据,采用灰色关联分析法建立台风灾情关联度,选取台风灾害致灾因子、台风灾情综合关联度,利用BP神经网络建立台风灾情预估模型。结果表明,利用台风灾情关联度评估台风灾情大小合理可用,台风灾害致灾因子与灾情评价指标及台风灾情综合关联度间均存在一定的相关性,利用BP神经网络预估模型对台风灾情预估效果较好,其中训练样本、测试样本的模拟值与实际值相关系数分别达到0. 94、0. 865,均通过了0. 01信度的显著性检验,训练集、测试集灾情级别预报一致率为85. 3%、77. 8%,相关研究成果可为政府决策部门的抗台减灾工作提供科学依据。 相似文献