首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present new heat flow values and other geothermal data in the upper crystalline crust in the immediate vicinity of the 12.4-km deep Kola super-deep borehole, NW Russia. Our results show a systematic vertical increase in geothermal gradient and heat flow density as deep as we could measure (1.6 km). Our results confirm earlier results on vertical heat flow trends of in the uppermost part of the Kola super-deep hole, and imply that the thermal regime is not in steady-state conductive conditions. In an area of 3-km × 5-km measurements were performed in 1–2-km deep boreholes surrounding the Kola super-deep hole and on core samples from these holes. Temperature logs are available from 36 holes. Core data exists from 23 boreholes with a total length of 11.5 km at a vertical resolution of 10 m. We carried out a very detailed study on thermal conductivity with regard to anisotropy, inhomogeneity and temperature dependence. Tensor components of thermal conductivity were determined on 1375 core samples from 21 boreholes in 3400 measurements. Additionally, we measured specific heat capacity, heat generation rate, density, porosity, and permeability on selected subsets of core samples. Heat flow from 19 boreholes varies between 31 and 45 mW m−2 with an average value of 38 mW m−2. In most boreholes the vertical heat flow profiles show a considerable variation with depth. This is consistent with observations in the upper part of the Kola super-deep borehole. We conclude that this variation is not caused by technical operations but reflects a natural process. It is considered to be due to a combination of advective, structural and paleoclimatic effects. Preliminary 3-D numerical modeling of heat and flow in the study area provides an indication of relative contributions of each of these factors: advective heat transfer turns out to have a major influence on the vertical variation of heat flow, although transient changes in surface temperature may also cause a significant variation. Heterogeneity of the rocks in the study area is less important.  相似文献   

2.
New results of the study of the distorting effect of paleoclimate on the formation of the thermal field of the Earth’s uppermost crust inthe South Urals are presented. We discuss some consequences of taking into account the paleoclimate influence on estimates of deep heat flow and possible applications of these data. The dependence of the heat flow density on the studied depth of boreholes is considered, and deep heat loss and deep temperatures are estimated. A new method for deep temperature estimation is proposed, which takes into account the paleoclimate influence on the heat flow. The method is tested on the available high-quality temperature data for deep boreholes. Deep temperatures to a depth of –10,000 m are estimated for the platform part of the Republic of Bashkortostan using the proposed method. Isotherm schemes are constructed for elevations of –5000 and –10,000 m below sea level.The necessity of using heat flow values corrected for the paleoclimate influence to estimate the Earth’s thermal state is justified. Some examples illustrate that underestimation of heat flow values measured in shallow boreholes might lead to underestimation of deep temperatures and global heat losses.  相似文献   

3.
Borehole temperature data have the potential to record historical variations in ground and air surface temperature, yet very few reliable, purpose-drilled, boreholes are available to explore such impacts, particularly in the southern hemisphere. The 400-m deep Tynong-1 borehole, approximately 65 km ESE of Melbourne, Australia, was drilled specifically to determine conductive heat flow and provides a unique dataset for evaluating ground surface temperature history in southeastern Australia. Steady-state conductive heat flow of 87 ± 1 mW m?2 was determined in the deeper borehole sections, with measured temperature profiles clearly demonstrating a progressive divergence of the observed temperature profile from the equilibrium model in the upper ~150 m of the hole. We applied a Bayesian method employing a reverse jump Markov chain Monte Carlo search algorithm to explore the origins of this variation. Our results indicate a 2°C increase in ground surface temperature since 1800, after at least 500 years of relatively stable ground surface temperature. The inversion results are consistent with the trend of surface air temperature recorded in southeast Victoria by historical meteorological data since 1950. The inferred increase in ground surface temperature evident prior to 1950 is likely a cumulative effect of land clearing and a rise in surface air temperature.  相似文献   

4.
Successive temperature logs have been obtained over a period of two years in three closely-spaced boreholes in the Lac du Bonnet batholith of the Superior Province of the Canadian Shield. Two of the boreholes, of depth 450 m and 830 m, intersect a dipping fracture zone at 435–450 m. In both holes water is flowing from near the surface to the fracture zone at approximately 1.5–1.9·10−5 m3 s−1, the flow being inferred from analysis of the temperature logs. Below 25 m, temperatures in these two holes are 0.22–0.28 K lower than those in the third, 145 m, hole.The temperature data have been combined with over 200 thermal conductivity measurements on core samples to produce heat flow values. In the deepest hole heat flow above the fracture zone is 16% higher than that below the zone. This indicates that water is flowing up the fracture zone. The flow rate is approximately 0.3 g s−1 m−1, and the flow has existed for thousands of years.Observation of thermal effects of water flow in massive, relatively unfractured plutons in a region having little topographic relief causes one to be concerned about the reliability of heat flow values measured in similar environments.The regional heat flow is taken to be 50 mW m−2 after correction for glaciation effects. The average value of 24 determinations of radioactive heat generation in granitic core samples is 5.23 ± 1.11 μW m−3, which is more than three times higher than expected for such a heat flow in the Superior Province. This implies that the layer of high radioactive heat generation is thin, being not more than 4 km and probably about 1.3 km thick.  相似文献   

5.
THE CAUSE OF FORMATION OF THE LAYERS WITH LOW VELOCITY AND HIGH ELECTRICAL CONDUCTIVITY IN WESTERN TIBET  相似文献   

6.
Transient thermal signals such as Pleistocene surface temperature variations or exhumation of great rock volumes are important for the current thermal regime of the Eastern Alpine crust. In this study transient 1-D forward simulations and an analytical approach were used to estimate the order of magnitude of these effects. A comparison with numerical forward simulations and inverse analyses of steady-state heat conduction yields the following main conclusions with respect to the thermal regime of the Eastern Alps along the TRANSALP profile: (1) The change of surface temperatures in the past affects mainly the uppermost part of the Eastern Alpine crust. It results in a maximum thermal signature of more than − 6 K at a depth of 2 km. The deviations from a steady-state temperature gradient and heat flow in the region of the Tauern Window range from 0.3–4 K km− 1 and 0–6 mW m− 2, respectively, with maximum values at the surface. (2) Exhumation of the Eastern Alpine lithosphere may result in a thermal signature of up to 4 K at a depth of 1 km. The thermal signature increases further with depth to a maximum of approximately 80 K at a depth of 50 km. As the temperature gradient of the exhumation signal is almost zero at the base of the crust, Moho heat flow appears to be not critically perturbed. (3) The combined effect of exhumation and changing surface temperatures at the Tauern Window amounts to less than 15% of the steady-state temperatures at a depth of  8 km and to less than 10% at the base of Eastern Alpine root. The corresponding perturbation in heat flow is less than 20% at a depth of 4 km, approaching zero below 40 km.  相似文献   

7.
Heat flow and lithospheric thermal regime in the Northeast German Basin   总被引:3,自引:0,他引:3  
New values of surface heat flow are reported for 13 deep borehole locations in the Northeast German Basin (NEGB) ranging from 68 to 91 mW m− 2 with a mean of 77 ± 3 mW m− 2. The values are derived from continuous temperature logs, measured thermal conductivity, and log-derived radiogenic heat production. The heat-flow values are supposed free of effects from surface palaeoclimatic temperature variations, from regional as well as local fluid flow and from thermal refraction in the vicinity of salt structures and thus represent unperturbed crustal heat flow. Two-D numerical lithospheric thermal models are developed for a 500 km section along the DEKORP-BASIN 9601 deep seismic line across the basin with a north-eastward extension across the Tornquist Zone. A detailed conceptual model of crustal structure and composition, thermal conductivity, and heat production distribution is developed. Different boundary conditions for the thickness of thermal lithosphere were used to fit surface heat flow. The best fit is achieved with a thickness of thermal lithosphere of about 75 km beneath the NEGB. This estimate is corroborated by seismological studies and somewhat less than typical for stabilized Phanerozoic lithosphere. Modelled Moho temperatures in the basin are about 800 °C; heat flow from the mantle is about 35 to 40 mW m− 2. In the southernmost part of the section, beneath the Harz Mountains, higher Moho temperatures up to 900 to 1000 °C are shown. While the relatively high level of surface heat flow in the NEGB obviously is of longer wave length and related to lithosphere thickness, changes in crustal structure and composition are responsible for short-wave-length anomalies.  相似文献   

8.
毛小平  汪新伟  李克文  郭少斌 《地球科学》2018,43(11):4256-4266
地热能越来越受到重视,但地热田的形成机制和热量的来源仍存在争议,多数学者认为岩浆囊可以为地热田直接供热.以二维热传导正演模拟为手段得出,盖层是形成地热田的必要条件;在浅部存在高热传导层时,地温剖面会出现镜像倒影形态,温度在垂向上分为高梯度段、低梯度段和低温段,侵位较浅(< 10 km)的岩浆囊散热和进入热平衡时间小于20~50万a.结合大量地热田温度资料分析认为,地热田的热量不是因为存在异常热源(如岩浆囊),而是来源于正常的基底热流.当深部热量传递到地表时,由于近地表物质的热传导能力的差异引起温度场发生变化,即地热田之下存在高热传导层快速地将基底热量传递到浅层而形成异常高温.   相似文献   

9.
The evolution and deep structure of the Songliao and Zeya-Bureya basins can be divided into the rift, platform (subsidence), and neotectonic phases. The rift phase (Middle Jurassic-Early Cretaceous) climaxed at the formation of a basin-wide near N-S-oriented rift system, which was followed (Late Cretaceous) by the deposition of the deep-water organic-rich lacustrine source facies with the maximum thickness identified in the Songliao basin (up to 1100 m). The neotectonic phase was marked by the pronounced differences in the basin’s development caused by the formation of a series of E-W-trending transverse structures, which eventually separated the basins, changed the drainage pattern, and blocked the rivers draining southwards from the Zeya-Bureya to the Songliao basin. The differences in the deep structure of the basins are also strongly pronounced. High heat flow values of more than 70 mW/m2 are typical of the Songliao basin, and its mantle heat flow component is higher than the crustal one, as compared to the Zeya-Bureya basin (below 50 mW/m2). The crustal thickness of the Zeya-Bureya basin is higher than that of the Songliao basin (38–42 km and 29–34 km) with a lithospheric thickness of 110–140 km and 50–75 km, respectively. The only exception is the southern Zeya-Bureya basin, which has an electrical structure similar to that of the Songliao basin. These differences have important implications for the evaluation of the hydrocarbon potential of the rift basins. It was suggested that the evaluation of the hydrocarbon potential of the sedimentary basins or parts of these basins should account for two factors: (1) the influence of the lithospheric motions and the related collisional processes and (2) the anomalies in the deep lithospheric structures (the high heat flow and the reduced crustal and lithospheric thickness). The results of this study indicate that the southern part of the Zeya-Bureya basin (in particular, the Lermontovka, Dmitrievka, Mikhailovka, Ekaterinoslavka, and Arkhara troughs) is interpreted to have a fairly high hydrocarbon potential.  相似文献   

10.
A two‐dimensional thermorheological model of the Central Alps along a north–south transect is presented. Thermophysical and rheological parameters of the various lithological units are chosen from seismic and gravity information. The inferred temperature distribution matches surface heat flow and results in Moho temperatures between 500 and 800 °C. Both European and Adriatic lithospheres have a ‘jelly‐sandwich’ structure, with a 15–20 km thick brittle upper crust overlying a ductile lower crust and a mantle lid whose uppermost part is brittle. The total strength of the lithosphere is of the order of 0.5–1.0 × 1013 N m−1 if the upper mantle is dry, or slightly less if the upper mantle is wet. In both cases, the higher values correspond to the Adriatic indenter.  相似文献   

11.
阿坝-简阳地学剖面深部温度及热结构   总被引:3,自引:0,他引:3       下载免费PDF全文
徐明  朱传庆  饶松  胡圣标 《地质科学》2011,46(1):203-212
在青藏高原东部到四川盆地这两个构造单元进行了稳态钻孔温度测量和岩石热导率测试,确定了相应钻孔的大地热流数据.应用这些可靠的热流数据,对横穿这两个构造单元的阿坝-简阳地学断面进行了2-D温度场研究,获得其深部热结构的认识.模拟结果显示,松潘-甘孜地块地表为高热流区域,达到80~110 mW/m2,四川盆地地表为中低热流区...  相似文献   

12.
The geothermal structure beneath of the Barramiya?CRed Sea coast area of the Central Eastern Desert of Egypt has been determined using Curie point depth (CPD), which is temperature-dependent. The CPD and the surface heat flow (q) maps of such area are estimated by analyzing aeromagnetic data. Such data are low-pass-filtered and analyzed to estimate the magnetic bottom using the centroid method. The heat flow map reflects the geothermic nature of the region. However, it is suggested that the shallow Curie point temperature depth pattern depends on the tectonic regime and morphology, which continues eastwards through the Red Sea. Particularly, the coastal regions are characterized by high heat flow (83.6?mW/m2) and shallow Curie depth (22.5?km), whereas the western portion of the studied area has a lower heat flow (<50?mW/m2) and deeper Curie depth (~40?km). In addition to its bordering to the Red Sea margin, such high heat flow anomaly is associated with the increased earthquake swarms activity in the Abu Dabbab area. El-Hady (1993) attributed the swarm activity to the geothermal evolution. Also, the heat flow pattern is correlatable by the numerous results of shallow borehole temperature measurements as reported by Morgan and Swanberg (1979). A significant low heat flow extending in the northeast?Csouthwest direction, which is associated with NE?CSW large areal extent negative Bouguer gravity anomaly and NE/SW-trending belt of the deep CPD region, seems to be directly related to the surface outcrops of Precambrian older granitoids of the mountainous range of that trend.  相似文献   

13.
东台坳陷现今地温场特征与油藏分布关系   总被引:1,自引:0,他引:1  
东台坳陷为中国东部苏北盆地油气资源最丰富的地区。为了加深对东台坳陷地温场和油藏关系的理解,根据符合地温场研究要求的54口井连续测温资料和243口井试油温度数据,获得了深度1000~3500m地温、E2s-K2t各层位界面地温和各层地温梯度。地温场分布以凹陷或次凹成独立单元,地温随深度加深而线性增高,地温异常不明显。地温梯度总体呈现"浅层低、深层高"的特点,E2s-E2d地温梯度总体在22~30℃/km之间,E1f-K2t在28~38℃/km之间,平均约为30℃/km。不同深度的地温和地温梯度分布模式相似,正向构造单元高,负向构造单元低;而不同层位的地温分布规律则相反,即凹陷内温度高,凸起和隆起上的温度低。基底构造形态、沉积盖层厚度、深大断裂、地下水、地层放射性生热等因素决定了该坳陷总体为温盆特征。大部分地区目前还处在油气液态窗内,绝大多数油藏分布高于60℃的油气勘探开发黄金区域。  相似文献   

14.
Palaeo-heat flow values and thicknesses of eroded Permo-Carboniferous sediments in the Saar Basin were evaluated using one dimensional thermal modelling techniques. Thermal, burial and erosion histories for 16 wells were calibrated by comparing measured and calculated vitrinite reflectance using the kinetic EASY%Ro algorithm and by comparing measured and calculated temperature data. On the basis of 37 wells, coalification maps were constructed revealing a syn-kinematic coalification pattern. Thermal maturity of the sediments can only be explained by deep burial and moderate heat flows during time of maximum burial, i.e., in the Permo-Carboniferous. Calculated heat flow data range between 50 and 75 mW/m2, which implies a crustal thickness between 30 and 40 km during the time of maximum burial. These values are in accordance with the geodynamic setting of the basin. The influence of the Permo-Carboniferous volcanism on the palaeo-temperature distribution was overwhelmed by the subsequent deep burial. During Permian times, between 1800 and 3000 m of Permo-Carboniferous sediments were eroded. Different sedimentation and erosion histories are characteristic for anticlines and synclines, respectively.  相似文献   

15.
Thermal and rheological structures of the Xisha Trough, South China Sea   总被引:8,自引:0,他引:8  
The Xisha Trough, located in the northwest of the South China Sea (SCS) mainly rifted 30 Ma ago, has been a failed rift since the cessation of the seafloor spreading of the NW subbasin. Based on the velocity–depth model along Profile OBH-4 across the Xisha Trough, a seven-layer density–depth model is used to estimate density structure for the profile. The relationship between seismic velocity and radiogenic heat production is used to estimate the vertical distribution of heat sources in the lower crust. The 2-D temperature field is calculated by applying a 2-D numerical solution of the heat conduction equation and the thermal lithosphere thickness is obtained from the basalt dry solidus (BDS). The rheology of the profile is estimated on the basis of frictional failure in the brittle regime and power-law steady-state creep in the ductile regime. Rheological model is constructed for a three-layer model involving a granitic upper crust, a quartz diorite lower crust and an olivine upper mantle. Gravity modeling supports basically the velocity–depth model. The Moho along Profile OBH-4 is of relatively high heat flow ranging from 46 to 60 mW/m2 and the Moho heat flow is higher in the trough than on the flanks. The depth of the “thermal” lithospheric lower boundary is about 54 km in the center, deepens toward two sides, and is about 75 km at the northern slope area and about 70 km at the southern Xisha–Zhongsha Block. Rheological calculation indicates that the two thinnest ductile layers in the crust and the thickest brittle layer in the uppermost mantle lie in the central region, showing that the Xisha Trough has been rheologically strengthened, which are mainly due to later thermal relaxation. In addition, the strengthening in rheology during rifting was not the main factor in hampering the breakup of the Xisha Trough.  相似文献   

16.
Temperature measurements carried out on 9 hydrocarbon exploration boreholes together with Bottom Simulating Reflectors (BSRs) from reflection seismic images are used in this study to derive geothermal gradients and heat flows in the northern margin of the South China Sea near Taiwan. The method of Horner plot is applied to obtain true formation temperatures from measured borehole temperatures, which are disturbed by drilling processes. Sub-seafloor depths of BSRs are used to calculate sub-bottom temperatures using theoretical pressure/temperature phase boundary that marks the base of gas hydrate stability zone. Our results show that the geothermal gradients and heat flows in the study area range from 28 to 128 °C/km and 40 to 159 mW/m2, respectively. There is a marked difference in geothermal gradients and heat flow beneath the shelf and slope regions. It is cooler beneath the shelf with an average geothermal gradient of 34.5 °C/km, and 62.7 mW/m2 heat flow. The continental slope shows a higher average geothermal gradient of 56.4 °C/km, and 70.9 mW/m2 heat flow. Lower heat flow on the shelf is most likely caused by thicker sediments that have accumulated there compared to the sediment thickness beneath the slope. In addition, the continental crust is highly extended beneath the continental slope, yielding higher heat flow in this region. A half graben exists beneath the continental slope with a north-dipping graben-bounding fault. A high heat-flow anomaly coincides at the location of this graben-bounding fault at the Jiulong Ridge, indicating vigorous vertical fluid convection which may take place along this fault.  相似文献   

17.
Analysis of a 1.15 km deep apatite fission track (AFT) thermochronology profile at the Underground Research Laboratory (URL), in the southwestern Canadian Shield suggests two Phanerozoic heating and cooling episodes indicating significant, previously unsuspected, Phanerozoic heat flow variations. Phanerozoic temperature and heat flow variations are temporally associated with burial and erosion of the Precambrian crystalline shield and its overlying Phanerozoic successions, which are now eroded completely. Maximum Phanerozoic temperatures occurred in the late Paleozoic when the geothermal gradient is estimated to have been ~ 40-50 °C/km (compared to a present day gradient of ~ 14 ± 2 °C/km) and the sedimentary cover was ~ 800-1100 m thick. Our thermal history models, confirm regional stratigraphic relationships that suggest that the Paleozoic succession was completely eroded prior to beginning of Mesozoic sedimentation. A second heating phase occurred during Late Cretaceous-Paleogene burial when the geothermal gradient is estimated to have been ~ 20-25 °C/km and the Mesozoic and Cenozoic succession was ~ 1200 to 1400 m thick. The Phanerozoic thermal history at the URL site shows a pattern similar to that inferred previously for the epicratonic Williston Basin, the centre of which lies several 100 km to the west. This implies a common regional thermal history for cratonic rocks underlying both the basin and the currently exposed shield. It is suggested that the morphotectonic differences between the Williston Basin and the exposed shield at the URL are due to a dissimilar thermomechanical response to a common, but more complicated than previously inferred, Phanerozoic geodynamic history. The two Phanerozoic periods of variations in geothermal gradient (heat flow) were coeval with epeirogenic movements related to the deposition and erosion of sediments. These paleogeodynamic variations are tentatively attributed to far-field effects of orogenic processes occurring at the plate margin (i.e. the Antler and the Cordilleran orogenies) and the associated accumulation of cratonic seaway sedimentary sequences (Kaskaskia and Zuni sequences).  相似文献   

18.
朱自力 《地层学杂志》1991,15(3):161-172,180
<正> 贵州南部上石炭—下二叠统地层发育,沉积连续,各门类化石丰富,是石炭—二叠系界线地层研究的重点地区。各门类古生物由于生态的差异,通常不在一个剖面上共生,特别是和牙形刺在各剖面上成互为消长关系。在台地浅水区,相当丰富而牙形刺罕见;在盆地深水区,牙形刺丰富,但无原地生活的,所产的少量也为重力流带入;在水体较  相似文献   

19.
放射性生热率是岩石热物性参数之一,也是研究岩石圈热结构和构造热演化的重要参数。针对南海海盆区缺少岩石生热率资料的实际情况,本文通过整理和分析IODP349航次中的测井资料,测试钻井岩心样品的主要放射性生热元素,通过计算得出:玄武岩样品的生热率平均值为0.28±0.07μW/m~3,沉积碎屑岩样品的生热率为1.21±0.34μW/m~3,以及3个钻井的地热流值。获得以下认识:(1)本次研究的沉积碎屑岩样品生热率与中国东南沿海的同类岩石样品的生热率值相近,而洋壳中的基性火山岩生热率明显低于大陆碱性玄武岩。(2)用新资料计算南海西南次海盆段的岩石圈热结构得出其热岩石圈厚度约为39~42 km,平均壳幔热流比值为2.4%,说明西南次海盆岩石圈薄,海底热流主要受深部的地幔热源控制。(3)U1431D和U1433A钻井的热流密度值与附近探针热流密度值相近;而U1431C的热流密度值明显偏小,属于受地下水热循环影响所致。  相似文献   

20.
华北平原及其邻近地区大地热流资料报道与讨论   总被引:1,自引:0,他引:1       下载免费PDF全文
本文报道的我国第一批正式热流数据,系几年来我们在开展地温普查、矿山地温等工作的同时,选取了一部分较为理想的钻孔进行大地热流测量的结果。测点主要位于华北平原及其近邻的山区,个别在江淮地区。这项工作得到煤炭、地质、冶金等部门的大力协助。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号