首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
Based on the results of a detailed magnetic study of the Lower and Middle Benue Trough of Nigeria carried out by the author and results of previous geophysical studies of the Benue Trough and of similar structures elsewhere in the world, a possible model for the tectonic evolution of the Benue Trough has been developed. It is here suggested that the tectonic evolution of the Benue Trough of Nigeria involved the rise of a mantle plume or mantle upwelling, emplacement of intrusive igneous material in the crust, crustal stretching and thinning and consequently rifting. It is thought that this sequence of events may have been repeated in a cyclic manner with intercyclic structural deformations. The basic ideas of the model is shown to be in agreement with acceptable ideas on riftogenesis.
Zusammenfassung Es wird eine mögliche Modellvorstellung für die tektonische Entwicklung des Benue-Grabens aufgezeigt, die auf Ergebnissen einer detaillierten magnetischen Untersuchung des Autors im unteren und mittleren Benue-Graben fußt, sowie auf Ergebnissen aus vorangegangenen geophysikalischen Untersuchungen im Benue-Graben und in anderen, vergleichbaren Strukturen. Die tektonische Entwicklung des Benue-Grabens in Nigeria wird mit dem Aufstieg eines mantle plume, einer Mantelaufwölbung oder mit der Platznahme von intrusivem Magma in der Kruste, Krusten-Dehnung und -Ausdünnen in Verbindung gebracht. Es wird angenommen, daß diese Folge von Ereignissen sich zyklisch wiederholte mit strukturellen Deformationen zwischen den Zyklen. Die Grundgedanken dieses Modells stimmen mit den gängigen Vorstellungen über die Entstehung von Riffsystemen überein.

Résumé L-auteur présente un modèle possible de l'évolution tectonique du graben de Benue (Nigéria). Cette étude se base: d'une part sur une analyse magnétique détaillée, effectuée par l'auteur, des régions inférieure et centrale de la dépression, d'autre part sur des données géophysiques antérieures recueillies dans la même région, ainsi que dans d'autres structures analogues, ailleurs dans le monde. Le modèle propose pour l'évolution tectonique du graben, l'intervention de la montée d'une «mantle plume» ou d'un bombement du manteau, la mise en place de magmas intrusifs dans la croûte, l'étirement et l'amincissement de la croûte, et la fracturation en graben. Cette suite d'événements a pu se répéter de manière cyclique, avec déformations structurales entre les cycles. Les conceptions de base de ce modèle sont en accord avec les idées admises au sujet de la genèse des rifts.

Benue . Benue , , . , . .
  相似文献   

2.
This study considers the role of sill genesis in the tectonic evolution of the Onega Trough during the Middle to Late Paleoproterozoic (Jatulian-Vepsian). The evolution of the Onega Trough is divided into three stages: pre-sill, or preparatory, subsynchronous, and post-sill. Sill magmatism manifested itself most completely at the subsynchronous stage of the evolution of the Onega Trough within the initial, principal, and final phases of sill genesis. Sill formation followed the stage of regional downwarping of the area reaching its maximum during the Early Ludicovian. Paragenesis of sills and high carbon shungite rocks was accompanied by the formation of peperites, while sills influenced the structure of the host rocks. A model reflecting the regular patterns of manifestations of sill genesis identified in the Onega Trough has been proposed.  相似文献   

3.
Apatite fission‐track analyses on samples from eastern Sardinia document a complex tectonic history, whose reconstruction is problematic because of the reactivation of faults and structures at different times from Jurassic to Miocene. The oldest ages (150–154 Ma) have been detected on the southern margin of the Gulf of Orosei and are related to the extensional tectonics that characterize the European passive margin during Early and Middle Jurassic times. Thermal modelling of these data allows reconstruction of the burial history of the Mesozoic basin and estimation of a sedimentary thickness of 2000 m. Part of these sediments was eroded during the following uplift, documented by mid‐Cretaceous fission‐track ages. A further exhumation episode of Eocene age has been revealed by fission‐track data on granite samples, and has been inferred to be related to the Alpine orogenic phase. This tectonic episode caused the exhumation of crustal blocks bound by faults that were finally reactivated during the Late Oligocene–Early Miocene.  相似文献   

4.
珠江口盆地白云凹陷新生代构造演化动力学   总被引:42,自引:0,他引:42  
白云凹陷构造演化史的研究对在白云凹陷开展油气勘探和深水沉积研究具有重要的意义。通过对断裂与沉积结构平面和剖面特点的分析,结合岩浆活动特点,文中提出白云凹陷是一个复式地堑,推测这种结构特点与凹陷下地壳的强烈韧性减薄和颈缩变形有关,表现为热岩石圈的伸展。其发育机制推测与白云凹陷位于构造转换带上有关,特殊的构造位置使白云凹陷成为强烈构造变形区,岩石圈地壳强烈减薄,伴随伸展过程和地幔上涌,脆性地壳或上地幔中部分熔融物质的出现导致岩石圈强度的急剧降低,在区域伸展应力场下以韧性流变方式减薄。岩浆在构造转换带下聚集并发育主岩浆房,由于白云凹陷南北边缘没有发育正断裂系统,岩浆主要沿垂直伸展的方向运移,因此在珠琼运动一幕和二幕南南东向伸展应力作用下,岩浆向白云凹陷的东部和西部运移至北西向基底深大断裂处,那里由于北西向断裂表现为左行张剪性质而成为压力较低的地区,从而成为岩浆上涌和侵位的地方。在岩浆聚集的地区,活动岩浆体附近的脆性变形被分散的韧性变形所取代,因此在凹陷的东北和西南两个角上,发育了张性和张剪性小断裂群,由于热岩石圈弹性较差,白云凹陷长期持续沉降。白云凹陷的断裂活动和沉积演化史还受到南海海盆扩张活动的影响。  相似文献   

5.
《Gondwana Research》2014,25(1):170-189
The Lhasa terrane in southern Tibet is composed of Precambrian crystalline basement, Paleozoic to Mesozoic sedimentary strata and Paleozoic to Cenozoic magmatic rocks. This terrane has long been accepted as the last crustal block to be accreted with Eurasia prior to its collision with the northward drifting Indian continent in the Cenozoic. Thus, the Lhasa terrane is the key for revealing the origin and evolutionary history of the Himalayan–Tibetan orogen. Although previous models on the tectonic development of the orogen have much evidence from the Lhasa terrane, the metamorphic history of this terrane was rarely considered. This paper provides an overview of the temporal and spatial characteristics of metamorphism in the Lhasa terrane based mostly on the recent results from our group, and evaluates the geodynamic settings and tectonic significance. The Lhasa terrane experienced multistage metamorphism, including the Neoproterozoic and Late Paleozoic HP metamorphism in the oceanic subduction realm, the Early Paleozoic and Early Mesozoic MP metamorphism in the continent–continent collisional zone, the Late Cretaceous HT/MP metamorphism in the mid-oceanic ridge subduction zone, and two stages of Cenozoic MP metamorphism in the thickened crust above the continental subduction zone. These metamorphic and associated magmatic events reveal that the Lhasa terrane experienced a complex tectonic evolution from the Neoproterozoic to Cenozoic. The main conclusions arising from our synthesis are as follows: (1) The Lhasa block consists of the North and South Lhasa terranes, separated by the Paleo-Tethys Ocean and the subsequent Late Paleozoic suture zone. (2) The crystalline basement of the North Lhasa terrane includes Neoproterozoic oceanic crustal rocks, representing probably the remnants of the Mozambique Ocean derived from the break-up of the Rodinia supercontinent. (3) The oceanic crustal basement of North Lhasa witnessed a Late Cryogenian (~ 650 Ma) HP metamorphism and an Early Paleozoic (~ 485 Ma) MP metamorphism in the subduction realm associated with the closure of the Mozambique Ocean and the final amalgamation of Eastern and Western Gondwana, suggesting that the North Lhasa terrane might have been partly derived from the northern segment of the East African Orogen. (4) The northern margin of Indian continent, including the North and South Lhasa, and Qiangtang terranes, experienced Early Paleozoic magmatism, indicating an Andean-type orogeny that resulted from the subduction of the Proto-Tethys Ocean after the final amalgamation of Gondwana. (5) The Lhasa and Qiangtang terranes witnessed Middle Paleozoic (~ 360 Ma) magmatism, suggesting an Andean-type orogeny derived from the subduction of the Paleo-Tethys Ocean. (6) The closure of Paleo-Tethys Ocean between the North and South Lhasa terranes and subsequent terrane collision resulted in the formation of Late Permian (~ 260 Ma) HP metamorphic belt and Triassic (220 Ma) MP metamorphic belt. (7) The South Lhasa terrane experienced Late Cretaceous (~ 90 Ma) Andean-type orogeny, characterized by the regional HT/MP metamorphism and coeval intrusion of the voluminous Gangdese batholith during the northward subduction of the Neo-Tethyan Ocean. (8) During the Early Cenozoic (55–45 Ma), the continent–continent collisional orogeny has led to the thickened crust of the South Lhasa terrane experiencing MP amphibolite-facies metamorphism and syn-collisional magmatism. (9) Following the continuous continent convergence, the South Lhasa terrane also experienced MP metamorphism during Late Eocene (40–30 Ma). (10) During Mesozoic and Cenozoic, two different stages of paired metamorphic belts were formed in the oceanic or continental subduction zones and the middle and lower crust of the hanging wall of the subduction zone. The tectonic imprints from the Lhasa terrane provide excellent examples for understanding metamorphic processes and geodynamics at convergent plate boundaries.  相似文献   

6.
中亚天山造山带中央克兹勒库姆铀成矿区是世界驰名的铀矿产地,区域构造上属叠加于海西期地槽褶皱造山带上的喜马拉雅期活化造山带中的次级造山带,有大量层间氧化带砂岩型和碳硅质板岩型铀矿床分布。经活化构造成矿分析,铀成矿作用经历了多个大地构造演化阶段,地槽造山阶段形成铀源层、体,地台阶段形成部分有利铀成矿和储矿的砂岩层,活化造山阶段形成淋积和热流体成因的工业铀矿床。  相似文献   

7.
《China Geology》2022,5(4):555-578
The eastern Central Asian Orogenic Belt (CAOB) in NE China is a key area for investigating continental growth. However, the complexity of its Paleozoic geological history has meant that the tectonic development of this belt is not fully understood. NE China is composed of the Erguna and Jiamusi blocks in the northern and eastern parts and the Xing’an and Songliao-Xilinhot accretionary terranes in the central and southern parts. The Erguna and Jiamusi blocks have Precambrian basements with Siberia and Gondwana affinities, respectively. In contrast, the Xing ’an and Songliao-Xilinhot accretionary terranes were formed via subduction and collision processes. These blocks and terranes were separated by the Xinlin-Xiguitu, Heilongjiang, Nenjiang, and Solonker oceans from north to south, and these oceans closed during the Cambrian (ca. 500 Ma), Late Silurian (ca. 420 Ma), early Late Carboniferous (ca. 320 Ma), and Late Permian to Middle Triassic (260 –240 Ma), respectively, forming the Xinlin-Xiguitu, Mudanjiang-Yilan, Hegenshan-Heihe, Solonker-Linxi, and Changchun-Yanji suture zones. Two oceanic tectonic cycles took place in the eastern Paleo-Asian Ocean (PAO), namely, the Early Paleozoic cycle involving the Xinlin-Xiguitu and Heilongjiang oceans and the late Paleozoic cycle involving the Nenjiang-Solonker oceans. The Paleozoic tectonic pattern of the eastern CAOB generally shows structural features that trend east-west. The timing of accretion and collision events of the eastern CAOB during the Paleozoic youngs progressively from north to south. The branch ocean basins of the eastern PAO closed from west to east in a scissor-like manner. A bi-directional subduction regime dominated during the narrowing and closure process of the eastern PAO, which led to “soft collision” of tectonic units on each side, forming huge accretionary orogenic belts in central Asia.©2022 China Geology Editorial Office.  相似文献   

8.
The continental crust of the Central Baltic Shield evolved by accretion towards the west during the Svecokarelian orogeny 1700–2200 Ma ago. The following features are consistent with a plate tectonic mechanism involving subduction of oceanic crust below an Archean craton in the east: flysch-sediments with serpentinite masses and pillow lavas, linear high-grade metamorphic zones, island-arc type volcanic belts and late tectonic batholiths with porphyry type Cu-Mo deposits.Semi-consolidated new crust was affected by late Svecokarelian deformation (Dn) after 1850 Ma; NNE-trending folds with crenulation cleavage were overprinted on older structures together with associated NW trending ductile transcurrent shear zones that curve the Fn folds into gentle S and Z shapes. The late tectonic batholiths intruded partly at the same time as and partly after the Dn deformation.
Zusammenfassung Die kontinentale Kruste des zentralen Baltischen Schildes entwickelte sich durch nach Westen gerichtetes Anwachsen während der Svecokarelischen Orogenese vor 1700 bis 2200 Ma. Die folgenden Erscheinungsformen lassen sich mit einem plattentektonischen Mechanismus in Einklang bringen, der Subduktion von ozeanischer Kruste unter einen Archaischen Kraton im Osten einschließt: Flysch-Sedimente mit Serpentinit-Massen und Kissenlaven, lineare hochmetamorphe Zonen, vulkanische Gürtel vom Inselbogen-Typ und spättektonische Batholithe mit porphyrischen Cu-Mo-Lagerstätten.Die halbkonsolidierte neue Kruste wurde durch späte Svecokarelische Deformation (Dn) nach 1850 Ma erfaßt; NNE-orientierte Falten mit Krenulationsschieferung wurden älteren Strukturen aufgeprägt in Verbindung mit NW-streichenden, plastischen Transcurrent-Scherzonen, die die Fn-Falten in sanfte S- und Z-Formen verbiegen. Die spättektonischen Batholithe intrudierten teils während, teils nach der Dn-Deformation.

Résumé La croûte continentale du Boucher baltique central a évolué par voie d'accrétion vers l'ouest durant l'orogénie svécocarélienne 1700–2200 Ma. Les événements suivants sont en accord avec un mécanisme de tectonique de plaques impliquant la subduction d'une croûte océanique sous un craton archéen à l'est: sédiments flyschoïdes avec masses de serpentinite et de laves en coussins, zones linéaires à haut degré de métamorphisme, ceintures volcaniques du type guirlande d'îles et batholithes tectoniques tardifs avec gisements porphyriques de type Cu-Mo.La nouvelle croûte à semi-consolidée fut affectée par une déformation svécocarélienne tardive (Dn) postérieure à 1850 Ma. Des plis de direction NNE avec clivage de crénulation ont été superposés sur des structures plus anciennes, associés à des zones de cisaillement transcurrentes de direction NW qui ont incurvé les plis Fn suivant des formes en S et Z. Le batholithe tectonique tardif s'est mis en place en partie au même moment que, et en partie après, la déformation Dn.

, , 1500–2200 . , , : ; ; - . , 1850 ; NNE- , , NW , , Fn S Z. , .
  相似文献   

9.
The northeastern South China Sea continental margin holds the key to understanding Late Mesozoic tectonics and evaluating hydrocarbon potentials in Mesozoic tectonic and stratigraphic structures offshore southeast China. With newly obtained and processed seismic data, and new drilling and logging data, we correlate regional Mesozoic stratigraphy and analyze major Mesozoic tectonic events and structures. In particular, we focus our study on the three major tectonic units in the area, the Chaoshan Depression, the Tainan Basin, and the Dongsha–Penghu Uplift, which are separated by basement high, thrust fold, and (or) faults. Stratigraphic correlations suggest a major phase of southeastward regression, spanning in time from the late Early Jurassic (180 Ma) to the Early Cretaceous (120 Ma). Seismic data reveal two major tectonic events, with the first one in the Late Jurassic to the Early Cretaceous, contemporary with the regression, and the second one in the Late Cretaceous. Regional magnetic anomaly map after the reduction to the pole clearly reveals the boundary between the Dongsha–Penghu Uplift and the Chaoshan–Tainan depositional system. The seismic and magnetic data also suggest that, while the Dongsha–Penghu Uplift has highly magnetized sources buried mostly in the upper crust at depths from about 2 km to about 20 km, the Chaoshan–Tainan depositional system has thick Mesozoic sediments of low magnetization.  相似文献   

10.
Tertiary and/or Quaternary tectonic faulting is documented in three areas of southernmost Illinois: the Fluorspar Area Fault Complex (FAFC) in Pope and Massac Counties, the Ste. Genevieve Fault Zone (SGFZ) in Alexander and Union Counties, and the Commerce Fault Zone (CFZ) in Alexander County.

In the FAFC, faults that strike NE and NNE displace Mounds Gravel (late Miocene to early Pleistocene) and, locally, the Metropolis terrace gravel (Pleistocene; pre-Woodfordian). No Woodfordian or younger deposits are deformed. Faults typically outline narrow, linear grabens that formed under tension with a component of strike slip.

North-south to NW-trending vertical faults near the southeast end of the SGFZ displace Eocene sediments. Again, faults outline narrow grabens and show indications of strike slip. Deformed Quaternary sediments have not been observed.

The CFZ, which trends northeast, displaces Mounds Gravel in Illinois and units as young as Peoria Silt (Woodfordian) in Missouri. Quaternary movement has been interpreted as right-lateral strike-slip. The CFZ coincides with a subtle gravity and magnetic lineament and seems to reflect a major feature in the basement. Surface expression in Illinois is subtle, but mafic and ultramafic intrusions, hydrothermal alteration and small faults align with the Commerce geophysical lineament. Earthquake foci in Missouri and Illinois lie on or close to the CFZ; some focal mechanisms fit the fault trend.

Among these structures, only the CFZ exhibits slip that conforms to the current stress field (principal compressive stress axis E-W to ENE-WSW). Possibly, the stress field changed during Neogene time. Alternatively, high fluid pressures or local stress concentrations may have induced slip on less favorably oriented fractures. Tighter constraints are needed on timing, magnitude, and direction of Neogene displacement.  相似文献   


11.
Models for the Tertiary evolution of SE Asia fall into two main types: a pure escape tectonics model with no proto-South China Sea, and subduction of proto-South China Sea oceanic crust beneath Borneo. A related problem is which, if any, of the main strike–slip faults (Mae Ping, Three Pagodas and Aliao Shan–Red River (ASRR)) cross Sundaland to the NW Borneo margin to facilitate continental extrusion? Recent results investigating strike–slip faults, rift basins, and metamorphic core complexes are reviewed and a revised tectonic model for SE Asia proposed. Key points of the new model include: (1) The ASRR shear zone was mainly active in the Eocene–Oligocene in order to link with extension in the South China Sea. The ASRR was less active during the Miocene (tens of kilometres of sinistral displacement), with minor amounts of South China Sea spreading centre extension transferred to the ASRR shear zone. (2) At least three important regions of metamorphic core complex development affected Indochina from the Oligocene–Miocene (Mogok gneiss belt; Doi Inthanon and Doi Suthep; around the ASRR shear zone). Hence, Paleogene crustal thickening, buoyancy-driven crustal collapse, and lower crustal flow are important elements of the Tertiary evolution of Indochina. (3) Subduction of a proto-South China Sea oceanic crust during the Eocene–Early Miocene is necessary to explain the geological evolution of NW Borneo and must be built into any model for the region. (4) The Eocene–Oligocene collision of NE India with Burma activated extrusion tectonics along the Three Pagodas, Mae Ping, Ranong and Klong Marui faults and right lateral motion along the Sumatran subduction zone. (5) The only strike–slip fault link to the NW Borneo margin occurred along the trend of the ASRR fault system, which passes along strike into a right lateral transform system including the Baram line.  相似文献   

12.
The application of the SHRIMP U/Pb dating technique to zircon and monazite of different rock types of the Sierras de Córdoba provides an important insight into the metamorphic history of the basement domains. Additional constraints on the Pampean metamorphic episode were gained by Pb/Pb stepwise leaching (PbSL) experiments on two titanite and garnet separates. Results indicate that the metamorphic history recorded by Crd-free gneisses (M2) started in the latest Neoproterozoic/earliest Cambrian (553 and 543 Ma) followed by the M4 metamorphism at ~530 Ma that is documented in the diatexites. Zircon ages of 492 Ma in the San Carlos Massif correlate partly with rather low Th/U ratios (<0.1) suggesting their growth by metamorphic fluids. This age is even younger than the PbSL titanite ages of 506 Ma. It is suggested that the fluid alteration relates to the beginning of the Famatinien metamorphic cycle in the neighbouring Sierra de San Luis and has not affected the titanite ages. The PTt evolution can be correlated with the plate tectonic processes responsible for the formation of the Pampean orogene, i.e., the accretion of the Pampean basement to the Río de La Plata craton (M2) and the later collision of the Western Pampean basement with the Pampean basement.  相似文献   

13.
贺兰山构造带及邻区形成演化经历有多期叠加改造和多个伸展—聚敛旋回构造运动,形成了区域内多套构造—地层层序,因此,开展贺兰山构造带构造—地层层序及构造演化研究对深入理解其地质结构和油气勘探有着重要的意义。本文旨在综合利用野外调查、地震数据和1:50 000区域地质资料,采用野外实地调查和地震剖面精细解析相结合的方法对研究区区域不整合面的分布特征和规律进行详尽分析研究,根据区域不整合面的发育特征,建立区域地层年代格架,划分构造—地层层序,进而对盆地演化阶段进行探讨。研究表明,研究区自下至上发育Pt2Ch-Jx/Pt1、∈1/An ∈、C2/O、T/P、J1-2/An J、K1/An K1、E3q—N/AnE,据此将研究区垂向上划为7个构造—地层层序:基底构造层、中元古界构造层、震旦系—奥陶系构造层、石炭系—三叠系构造层、侏罗系构造层、下白垩统构造层、新生界构造层。贺兰山构造带构造演化经历中新元古代—早古生代陆缘盆地坳陷—裂谷演化阶段;晚古生代—中三叠世陆相盆地坳陷沉积阶段;晚三叠世局部伸展;中侏罗世—早白垩世大规模逆冲推覆阶段,普遍发育多条大型北东向逆冲断裂;始新世开始进入盆—岭构造形成阶段。  相似文献   

14.
贺兰山构造带及邻区形成演化经历有多期叠加改造和多个伸展—聚敛旋回构造运动,形成了区域内多套构造—地层层序,因此,开展贺兰山构造带构造—地层层序及构造演化研究对深入理解其地质结构和油气勘探有着重要的意义。本文旨在综合利用野外调查、地震数据和1:50 000区域地质资料,采用野外实地调查和地震剖面精细解析相结合的方法对研究区区域不整合面的分布特征和规律进行详尽分析研究,根据区域不整合面的发育特征,建立区域地层年代格架,划分构造—地层层序,进而对盆地演化阶段进行探讨。研究表明,研究区自下至上发育Pt2Ch-Jx/Pt1、∈1/An∈、C2/O、T/P、J1-2/An J、K1/An K1、E3q—N/AnE,据此将研究区垂向上划为7个构造—地层层序:基底构造层、中元古界构造层、震旦系—奥陶系构造层、石炭系—三叠系构造层、侏罗系构造层、下白垩统构造层、新生界构造层。贺兰山构造带构造演化经历中新元古代—早古生代陆缘盆地坳陷—裂谷演化阶段;晚古生代—中三叠世陆相盆地坳陷沉积阶段;晚三叠世局部伸展;中侏罗世—早白垩世大规模逆冲推覆阶段,普遍发育多条大型北东向逆冲断裂;始新世开始进入盆—岭构造形成阶段。  相似文献   

15.
孙枢 《地学前缘》2016,23(6):1-2
再过一些时间就是王鸿祯院士的百年诞辰,此时此刻,更令我对他深深怀念。在他离去的这些年当中,每当我看到有关的书籍、文献,就会想到他老人家;他的学术思想、治学态度和奋斗精神,更时时激励我前进。在王鸿祯院士生前,我有时是当面请教得到指导,更多是通过学习他的著述而收益。 20世纪50年代初,我有几位同学在新建的北京地质学院研究生班学习,他们谈起校内教授中的“少壮派”--在国外获得博士学位,年纪30多岁,执掌教研室和系主任岗位,个个风华正茂,其中就有王鸿祯教授。但我第一次见到王先生是在1955年,那年夏季,苏联科学院代表团访华,代表团成员、著名大地构造学家别洛乌索夫通讯院士在我所(当时位于城内沙滩松公府夹道、原北京大学地质馆的中国科学院地质研究所)做包括苏联大地构造、中国大地构造的有关问题以及大洋盆地的成因等系列报告。王鸿祯先生参加了有关会议,他提出问题发表讨论意见,我当时负责会议记录和部分接待工作,有幸第一次近距离地同他有过接触,他和蔼可亲,时间虽短但留下了长期的印象。 1956年,王鸿祯先生著的《地史学教程》出版,我很快购得一本并开始学习。一天,叶连俊先生在办公室里见我手里拿着这本书,说道:“这(地史学)同我们的沉积学关系也很大”,我说:“我的基础知识不够,许多内容不懂”,叶先生说:“慢慢来,先掌握一点基本概念”。这是叶先生对我学习《地史学教程》的指导。王先生的《地史学教程》使我初步开阔了对世界地质在空间和时间上的视野。受此书的影响,我形成了一个习惯,尽管有许多地质问题,我自己并不直接研究,但愿意去了解,从中获取知识的享受。 1985年,王鸿祯先生主编的《中国古地理图集》出版,受到学术界的广泛注意和高度评价。图集以全球构造的活动论与历史发展的阶段论有机结合作为主导原则,代表王鸿祯先生学术思想发展的新阶段。图集内容十分丰富,我曾较为仔细地阅读了差不多每一幅图件并认真阅读了图集说明书,还读了图集的英文说明,以便了解图集的有些名词术语同国外文献的对照和衔接。我后来也曾向王先生请教过一些问题,如今还记得的有:豫陕(图集引用了我的文章)和燕辽裂陷盆地(拗拉槽)、俄罗斯地台的拗拉槽、扬子地台有无拗拉槽,以及拗拉槽是否都是三支裂谷系的废弃支等等,他同我也谈到朱夏先生将aulacogen译作“拗拉槽”可称杰作。王先生还向我指出国内需要重视古大陆的重建问题,这是国际关注的热点,但意见分歧很大,我国应该有更多些学者进入这一领域进行探讨。王先生的一系列意见对我真可谓受益匪浅。 1989年在华盛顿参加国际地质大会期间,在国际岩石圈计划的会上,我遇到美国的Scotese教授,他当时已着手“古地图”(PaleoMap)项目并送给我一点有关资料,Scotese在会上强调编制古地图的三个支柱是板块构造、古地磁和古生物地理。回国后我向王先生汇报了有关情况,王先生也特别强调古生物地理对古地理重建的重要性。据我所知,在王鸿祯先生的率领下,中国地质大学在20世纪80年代后期,已经开展全球构造与古大陆再建研究,采用计算机成图并开发了有关软件。在1996年国际地质大会(北京)上,展出了古大陆再造的系列图件,这在当时是国内学者首次作出这样的努力。就中国地质大学而言,王鸿祯先生和殷鸿福教授等都曾在古生物地理方面做出许多贡献。 20世纪90年代初,原国家科委推出了以“攀登计划”为名的基础研究资助计划。有个年度我担任地学与资源环境领域的评审组长,那一回总共约有6、7项申请,王鸿祯先生领衔的中国古大陆及边缘层序地层与海平面变化研究的申请,在经过讨论后,投票排名第二。当时国家科委只限定资助一项,我和评审专家组其他专家都认为王先生的建议项目有价值,是值得资助的,但投票结果也是公正和正确的。因此,我们决定向科委建议,给我们组增加一个项目指标,科委有关负责人听取了我的意见,但一时也无变通的余地。过了一段时间,国家科委又推出“攀登计划B”,层序地层学项目可以入选,但需承担项目的主管部门提供部分联合资助。我把这个情况转告王鸿祯先生,王先生当时已年近八旬,他亲自同地质矿产部科学技术司沟通,终于获得成功。王先生已80高龄,亲自领导了由若干单位几十位专家组成的团队,经过四五年的浩繁研究工作,获得了圆满的成功。我有幸数年中应邀参加了该项目的学术研讨会,分享王鸿祯先生的学术思想和项目在学术上的新进展。 在科学研究中,王鸿祯先生重视基础研究,可以说他的一生都在追求揭示自然的奥秘,开展创新性研究。我在国家自然科学基金委员会和中国科学院地学部工作期间,向他请教学科发展战略问题等,他都强调基础研究的重要性,强调基础学科的发展。事实证明,基础研究在我国科学技术事业的发展中,具有根本的重要性。王先生为我国地质科学的基础研究贡献了毕生的精力。 王鸿祯院士是国内外著名的地质学家、古生物学家和地质教育家。在地层学、古生物学、大地构造学、地史学和地质学史研究等诸多领域成就卓著,在发展地质教育和培养人才方面作出重要贡献。王鸿祯先生青少年时代就胸怀“科学救国”之志,勤奋学习,砥砺意志,殚思竭虑发展教育事业,孜孜不倦献身科学研究,学科综合交叉和继承发展创新贯穿他的毕生学术生涯。王鸿祯院士是我国地质界著名宗师之一,在纪念他诞辰100周年之际,我应当继续不断学习他对地质科学和地质教育的献身精神。他的大量文章著作和重要学术思想是留给我们的宝贵财富,必将得到继承发展并不断发扬光大。  相似文献   

16.
The orientation of the maximum horizontal stress SH is obtained from the analysis of borehole breakouts, covering a depth range from 300 to 3415 m (below sea level) in twelve offshore exploration wells in the northwestern Valencia Trough. The orientation of SH is roughly coincident with the strike of major extensional structures. From N to S it changes counterclockwise from a NE–SW orientation to a N–S orientation. Estimates of the tectonic regimes indicate that the area is characterised predominantly by normal-faulting with a strike-slip component. Both the stress orientations and the tectonic regimes are consistent with neotectonic studies in the nearby Catalan Coastal Ranges. An established method of estimating the tectonic regime by Moos and Zoback (1990) was modified by the inclusion of a nontrivial cohesion, but this changes the results insignificantly.  相似文献   

17.
Large-scale geological maps available for individual areas in the Central Sakhalin Fault zone and geological-geophysical maps of Sakhalin and surrounding sea areas were analyzed to elucidate the tectonic evolution of the fault zone determined by movements of crustal blocks due to the opening of rift basins. Changes in the direction of horizontal compression in the Sakhalin fold system from diagonal (NW-SE) to near-latitudinal resulted in the transformation of near-meridional right-lateral strike-slip faults into reversed faults in the Late Miocene. This allows Sakhalin faults to be interpreted as a zone of recent right-lateral shear between Eurasian and Sea of Okhotsk plates.  相似文献   

18.
A review of available stratigraphic, structural, and magmatic evolution in northernmost Chile, and adjacent Peru and Bolivia shows that in this region: (1) compression on the Paleogene intra-arc during the middle Eocene Incaic phase formed the NNE-SSW-oriented Incaic range along the present-day Precordillera and Western Cordillera, and (2) post-Incaic tectonic conditions remained compressive until present, contrasting with other regions of the Andes, where extensional episodes occurred during part of this time lapse. A late Oligocene–early Miocene peak of deformation caused further uplift. The Incaic range formed a pop-up structure bounded by two thrusts systems of diverging vergencies; it represented a major paleogeographic feature that separated two domains with different tectonic and paleogeographic evolutions, and probably formed the Andean water divide. This range has been affected by intense erosion and was symmetrically flanked by two major basins, the Pampa del Tamarugal and the Altiplano. Magmatic activity remained located along the previous Late Cretaceous–early Eocene arc with slight eastward shift. Further compression caused westvergent thrusting and uplift along the western Eastern Cordillera bounding the Altiplano basin to the east by another pop-up shaped ridge. Eastward progression of deformation caused eastvergent thrusting of the Eastern Cordillera and Subandean zone.  相似文献   

19.
Ages of Cenozoic sedimentary basins yield information that can be used to infer detailed spatial and temporal evolution in the Alpine foreland. The Tertiary deposits of the NW Iberian Peninsula comprise the remains of a broken foreland basin (the West Duero Basin). This work constrains the timing of tectonic fragmentation and the evolution of the western termination of the Alpine Pyrenean–Cantabrian Orogen (NW Iberian Peninsula). The discovery of Issiodoromys cf. minor 1 and Pseudocricetodon in the lower formation of the Tertiary depression of Sarria (the Toral Formation) constrains its age to the late Early Oligocene (MP23–MP25), similar to its age in the El Bierzo depression (MP24–MP25). Sedimentation initiated in the NE of the study area at Oviedo during the Middle Eocene (Bartonian–Early Priabonian MP16–MP17) and migrated towards the west and south during the Early Oligocene. The Toral Formation was deposited in a foreland basin that connected the present day outcrops of the El Bierzo, Sarria and As Pontes Tertiary depressions. The basin was segmented during the westward migration of structural deformation associated with the Orogen, and the subsequent uplift of the Galaico–Leoneses Mountains. The present‐day height above reference level of the base of the Toral Formation has been used to quantify Alpine segmentation that took place after Early Oligocene times. Minimum tectonic uplift assessed is 960 m in the Cantabrian Mountains and 1050 m in the Galaico–Leoneses Mountains. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
巴尔喀什成矿带晚古生代地壳增生与构造演化   总被引:2,自引:4,他引:2  
巴尔喀什成矿带是中亚成矿域重要的晚古生代斑岩铜钼成矿带。巴尔喀什成矿带晚古生代花岗岩类(石炭-二叠纪)主要为高钾钙碱性系列,晚期出现钾玄岩系列岩石,主要为I型花岗岩类;石炭纪处在同碰撞和火山弧环境,二叠纪为后碰撞环境。分析表明,博尔雷属于经典的岛弧花岗岩区,科翁腊德、阿克斗卡和萨亚克属于埃达克岩(Adakite)区。巴尔喀什成矿带内花岗岩类εNd(t)值为(-5.87~+5.94),εSr(t)值为(-17.16~+51.10)。以巴尔喀什中央断裂为界,成矿带东、西分带,断裂两侧具有不同的地壳生长历史:断裂以东的萨亚克和阿克斗卡地区εNd(t)值较高,具有亏损地幔组分特征,为古生代增生的新生陆壳;以西的科翁腊德和博尔雷εNd(t)值较低,主要是壳幔岩浆混合的结果,反映了古老基底的存在,主要为新元古代增生地壳。成矿带花岗岩类206Pb/204Pb、207Pb/204Pb和208Pb/204Pb比值范围分别为18.3346~20.9929、15.5213~15.7321和38.2874~40.0209,为造山带花岗岩类,具有与天山、阿尔泰和准噶尔花岗岩类的亲缘性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号