首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neotectonic deformation in the western and central part of the Pannonian Basin was investigated by means of surface and subsurface structural analyses, and geomorphologic observations. The applied methodology includes the study of outcrops, industrial seismic profiles, digital elevation models, topographic maps, and borehole data. Observations suggest that most of the neotectonic structures in the Pannonian Basin are related to the inverse reactivation of earlier faults formed mainly during the Miocene syn- and post-rift phases. Typical structures are folds, blind reverse faults, and transpressional strike-slip faults, although normal or oblique-normal faults are also present. These structures significantly controlled the evolution of landforms and the drainage pattern by inducing surface upwarping and river deflections. Our analyses do not support the postulated tectonic origin of some landforms, particularly that of the radial valley system in the western Pannonian Basin. The most important neotectonic strike-slip faults are trending to east-northeast and have dextral to sinistral kinematics in the south-western and central-eastern part of the studied area, respectively. The suggested along-strike change of kinematics within the same shear zones is in agreement with the fan-shaped recent stress trajectories and with the present-day motion of crustal blocks derived from GPS data.  相似文献   

2.
Abstract. Hydrothermal deposits in the Gyeongsang Basin show the genetic relationship with igneous activity from Late Cretaceous to Early Tertiary in the spatial and temporal viewpoints. Many hydrothermal Au-Ag-Cu-Pb-Zn and clay deposits are dominantly distributed within the Gyeongsang Basin. The Gyeongsang Basin is divided into seven metallogenic provinces by spatial distribution. The age ranges of igneous activity and mineralization are 140∼40 Ma and 100∼40 Ma, respectively, and the most dominant age ranges of the both activities are from 90 Ma (Coniacian) to 50 Ma (Eocene). The age consistency between igneous activity and mineralization suggests that this age range is the climactic period of the hydrothermal activity of the Gyeongsang Basin. The metallogenic epochs in the Gyeongsang Basin are divided into three epochs of 100∼80 Ma (western part of the Gyeongsang Basin), 80∼60 Ma (central part of the Gyeongsang Basin), and 60∼40 Ma (eastern part of the Gyeongsang Basin). The mineralization and igneous activity tend to become young eastward in the Gyeongsang Basin.
NNW-SSE mineralized veins from 100 to 80 Ma in the western part of the Gyeongsang Basin are interpreted as the control of the parallel tensional fissures caused by NNW-SSE compressional stress. NW-SE mineralized veins from 80 to 60 Ma in the central part of the Gyeongsang Basin seem to have been formed under the same stress as that of the Gaeum and Yangsan Fault Systems. Namely, NW-SE tensional stress is associated with a conjugate set of fracturing of the WNW-ESE Gaeum Fault System and NNE-SSW Yangsan Fault System. Also NE-SW mineralized veins from 60 to 40 Ma in the eastern part of the Gyeongsang Basin seem to be controlled by the NE-SW fractures. The fractures are related with NE-SW compressional stress and are developed as secondary fractures within the dextral strike slip Yangsan Fault System.  相似文献   

3.
The complicated structural and rheologic properties of Western Carpathian lithosphere reflect the complex geodynamic history of the Carpathian orogen. Based on critical analysis of earlier models, new interpolation of existing geophysical data and results of integrated modelling, a new map of the lithosphere thickness for the Carpathian–Pannonian region has been constructed. The map allows for the distinction of a frontal orogen collision zone in the NE (from increased lithosphere thickness) as well as a zone of oblique collision with the Bohemian Massif in the West, where lithosphere is not significantly thickened. The MOHO discontinuity beneath the Western Carpathian hinterland (Danube and East Slovak Basins), as defined by deep reflection seismic profiling, is relatively shallow. This probably reflects recent crustal extension related to oblique collision between the European plate and the ALCAPA block and an increase of the asthenospheric updoming from the Middle Miocene onward.Crustal thickness reflects the combined effects of deep-seated orogenic processes and mantle thermal evolution beneath the Pannonian Basin system. In this study, we focus particularly the structures of: (1) the Late Alpine collision and Neogene back arc basin development, including deep-seated contacts between colliding plates, a zone of slab detachment, the compressional accretionary wedge of the Outer Western Carpathian Flysch Belt, and extensional structures produced by subduction rollback and asthenosphere upwelling; (2) Early Alpine structures related to Cretaceous thrust-stacking, including subhorizontal reflection packages (interpreted as multi-generational extensional structures), the underplated intra-Penninic (Oravic) continental ribbon, and ophiolite traces of the Meliatic oceanic suture; and (3) north-dipping reflectors interpreted as remnant Hercynian lithotectonic fragments with opposed vergency to the subducted Alpine units.  相似文献   

4.
青藏高原及其周围地区区域应力场与构造运动特征   总被引:14,自引:5,他引:14       下载免费PDF全文
徐纪人  赵志新 《中国地质》2006,33(2):275-285
本文系统解析并分析了1931年8月-2005年10月期间青藏高原及其周围发生的905个震级M4.5-8.5地震的震源机制结果,研究了青藏高原岩石圈的区域应力场与构造运动特征。结果表明,来自印度板块的北北东或北东方向的水平挤压应力控制了青藏高原及其周缘地区的岩石圈应力场。从喜马拉雅到贝加尔湖以南包括中国西部的广大范围内,主压应力P轴的水平分量位于近NE-SW方向,形成了一个广域的NE-SW方向的挤压应力场。特别是青藏高原周缘地区,除其东部边缘外,南部的喜马拉雅山前沿以及青藏高原的北部、西部边缘地区所发生的绝大部分地震都属于逆断层型或走滑逆断层型地震,表现出周缘地区的水平挤压应力更为强势。应力场特征充分表明, 印度板块的北上运动,以及它与欧亚板块之间的碰撞,所形成的挤压应力场是青藏高原强烈隆起的直接原因。在青藏高原周缘地区受到强烈挤压应力场控制的同时,有大量正断层型地震集中发生在青藏高原中部海拔4000m以上的地区,其中许多地震是纯正断层型地震。震源机制结果显示,近E-W向或WNW-ESE向的水平扩张应力控制着该区的岩石圈应力场;正断层型地震的断层走向多为南北方向,断层位错矢量的水平分量大体位于近东西方向。这表明青藏高原中部高海拔地区存在着近东西方向的扩张构造运动,且扩张构造运动是该区引张应力场的作用结果。其动力学原因可能与持续隆升的高原自重增大引起的重力崩塌及其周边区域构造应力状况有关。研究青藏高原存在挤压应力场与引张应力场及其构造运动的区域特征,对于认识青藏高原形成、发展的地球动力学机制,有着极其重要的意义。  相似文献   

5.
Peridotite xenoliths erupted by alkali basaltic volcanoes in the western Pannonian Basin can be divided into two fundamentally contrasting groups. Geochemical characteristics of the abundant protogranular, porphyroclastic and equigranular nodules suggest that these samples originate from an old consolidated and moderately depleted lithospheric mantle domain. In contrast, the geochemical features of the worldwide rare, but in the Pannonian Basin relatively abundant, poikilitic xenoliths attest to a more complex evolution. It has been argued that the origin of the peculiar texture and chemistry may be intimately linked to melt/rock reactions at successively decreasing liquid volumes in a porous melt flow system. The most likely site where such reactions can take place is the asthenosphere–lithosphere boundary. In this context, poikilitic xenoliths may provide petrological and geochemical evidence for reactions between magmatic liquids issued from the uprising asthenosphere and the solid mantle rocks of the lithosphere. These reactions are important agents of the thermal erosion of the lithosphere; thus, they could have considerably contributed to the thinning of the lithosphere in the Pannonian region. We suggest that in the Pannonian Basin, there could be a strong relation between the unusual abundance of poikilitic mantle xenoliths and the strongly eroded lithosphere.  相似文献   

6.
本文从地质、地震、形变、地应力测量等方面对三峡库首区现今构造应力场进行了系统的分析和论证,并用数值模拟进行了验证,认为三峡库首区现今构造应力场属于纯剪切变形体制,即:在来自西部NE-SW方向主压应力挤压的基础上,同时叠加有因江汉-洞庭盆地拉张而引起的NWW-SEE向主张应力的作用,这两种力源近于直交,可以分别作为研究区现今构造应力场的主压应力(σ1)和主张应力(σ3).   相似文献   

7.
中国岩石圈动力学概要   总被引:9,自引:0,他引:9       下载免费PDF全文
马杏垣 《地质科学》1987,(2):113-125
本文是1:400万“中国及邻近海域岩石圈动力学图”说明书的节要。它对我国现今活动着或在新生代活动过的地质和地球物理作用过程作了综合概括,重点是板内现象,并从板块构造作用基本过程上对它们加以解释。 中国的岩石圈很不均匀。其动力学涉及8个活动亚板块和有关的17个构造块体的性质、它们的相对运动和构造应力场、以及新构造变形的特征。阐明了我国岩石圈现今运动和变形  相似文献   

8.
The present-day drainage system of the Carpathian Basin originates from the gradual regression of the last marine transgression (brackish Pannonian Sea). The flow directions of the rivers including the Danube, are determined by the varying rates and locations of subsidence within the region. The Danube, which forms the main axis of the drainage network, first filled the depression of the Little Plain Lake and then, further southward, the Slavonian Lake. From the end of the Pliocene, the crustal movements which caused the uplift of the Transdanubian Mountains, forced the Danube to flow in an easterly direction, towards the antecedent Visegrid Gorge, and into the subsiding basins of the Great Plain. Climatic changes during the Pleistocene had the effect of forming up to seven fluvial terraces. The uplift of the mountains is demonstrated by the deformation of the terraces, while the subsidence of the Plains is proven by an accumulation of several hundred metres of sediment. The river only occupied its present position south of Budapest in the latest Pleistocene.  相似文献   

9.
Summary of the Lithospheric Dynamics in China   总被引:1,自引:0,他引:1  
This paper presents a summary of the explanatory notes for the 1: 4, 000.000 scale"Lithgspheric Dynamics Map of China and Adjacent Seas". Which gives an outline of the geological and geophysical processes that are presently active or were once active during the Cenozoic. The focus is concentrated on intraplate phenomena and on explaining them in terms of fundamental plate tectonic processes.The lithosphere in China is very heterogeneous. Its dynamics can be described in terms of the relative motions of 8 active subplates and related 17 tectonic blocks, and the characteristics of neotectonic deformation. The present-day movement and deformation of the lithosphere in China, their relationship with the deep-seated processes, and the lateral heterogeneity, mass difference and stress state within it that will tend to cause crustal movement in the future are illustrated.The intraplate tectonics and stress field are mainly controlled by the heterogeneity of the lithosphere and the mode of interaction between subplates and their boundary conditions. The collision of the Indian plate with the Eurasian plate began and proceeded along the Tethys ocean side, which has produced a strong compressional stress in western China and brought about a high shear stress in the regions round the eastern and western corners of the Himalaya block. However, the eastern part of China is directly influenced by the western Pacific plate boundaries. The minimum principal stress here is tensional. which makes the shear stress high, it may be the cause of the high seismicity in North China and maritime region of southeastern China.  相似文献   

10.
The joint analysis of current data on the topography and nonequilibrium part of the Martian gravity field allowed us to obtain a detailed pattern of the distribution of nonhydrostatic stresses in the Martian interior. The criteria for selection of possible sources of marsquakes were large values of shear stress against the background of significant tensional stresses. The rheological models considered were the elastic model, the one with the lithosphere, and the model with the lithosphere and possible melting zones in it. Independently from the rheological model chosen, zones of high shear and tensional stresses in the Martian crust and mantle were revealed beneath the Hellas and Argyre impact basins, Mare Acidalium, Arcadia Planitia, and Valles Marineris.  相似文献   

11.
The scheme of recent fault tectonics and neotectonic stresses of the area adjacent to the Strel’tsovka Caldera in the southeastern Transbaikal region has been compiled for the first time on the basis of structural and geomorphic study. The faults were ranked by criteria of slip direction stability along separate segments and their expression in topography. Neotectonic stresses of corresponding ranks were ascertained as well. The heterogeneity of neotectonic stress field is related to the mosaic development of compression, extension, and the three-axial stress state. Comparison of morphogenetic features of recent and older faults shows the different character of the deformation mechanism and orientation of tectonic displacements. It has been established that the Strel’tsovka Caldera and its northwestern segment, in particular, developed as an echeloned system of pull-apart grabens, but the caldera itself is situated in a recent rise, whereas the northwestern segment is located in a neotectonic depression corresponding to the Dry Urulyungui Basin filled with volcanic and sedimentary rocks. Such a structure markedly expands the outlook for discovery of hidden uranium mineralization in the studied area. The elaborated scheme of neotectonic faults and stresses reflects the postore geodynamic setting and completes the reconstruction of geodynamic conditions pertaining to the periods of preore preparation and ore-forming tectonomagmatic reactivation.  相似文献   

12.
New in situ data based on hydraulic fracturing and overcoring have been compiled for eastern Australia, increasing from 23 to 110 the number of in situ stress analyses available for the area between and including the Bowen and Sydney Basins. The Bowen Basin displays a consistent north‐northeast maximum horizontal stress (σH) orientation over some 500 km. Stress orientations in the Sydney Basin are more variable than in the Bowen Basin, with areas of the Sydney Basin exhibiting north‐northeast, northeast, east‐west and bimodal σH orientations. Most new data indicate that the overburden stress (σV) is the minimum principal stress in both the Bowen and Sydney Basins. The Sydney Basin is relatively seismically active, whereas the Bowen Basin is relatively aseismic. Despite the fact that in situ stress measurements sample the stress field at shallower depth than the seismogenic zone, there is a correlation between the stress measurements and seismicity in the two areas. Mohr‐Coulomb analysis of the propensity for failure in the Sydney Basin suggests 41% of the new in situ stress data are indicative of failure, as opposed to 13% in the Bowen Basin. The multiple pre‐existing structural grains in the Sydney Basin further emphasise the difference between propensity for failure in the two areas. Previous modelling of intraplate stresses due to plate boundary forces has been less successful at predicting stress orientations in eastern than in western and central Australia. Nonetheless, stress orientation in the Bowen Basin is consistent with that predicted by modelling of stresses due to plate boundary forces. Variable stress orientations in the Sydney Basin suggest that more local sources of stress, such as those associated with the continental margin and with local structure, significantly influence stress orientation. The effect of local sources of stress may be relatively pronounced because stresses due to plate boundary forces result in low horizontal stress anisotropy in the Sydney Basin.  相似文献   

13.
This paper examines the neotectonic stress field and faulting in the fold-and-thrust belt of the Nepal Himalaya using the 2D finite element technique, incorporating elastic material behavior under plane strain conditions. Three structural cross-sections (eastern, central and western Nepal), where the Main Himalayan Thrust (MHT) has different geometries, are used for the simulation, because each profile is characterized by different seismicity and neotectonic deformation. A series of numerical models are presented in order to understand the influence of a mid-crustal ramp on the stress field and on neotectonic faulting. Results show that compressive and tensional stress fields are induced to the north and south of the mid-crustal ramp, and consequently normal faults are developed in the thrust sheets moving on the mid-crustal ramp. Since the shear stress accumulation along the northern flat of the MHT is entirely caused by the mid-crustal ramp, this suggests that, as in the past, the MHT will be reactivated in a future large (Mw > 8) earthquake. The simulated fault pattern explains the occurrence of several active faults in the Nepal Himalaya. In all models, the distribution of the horizontal σ1 (maximum principal stress) is consistent with the sequence of thrusting observed in the fold-and-thrust belt of the Himalaya. Failure elements around the flat–ramp–flat coincide with the microseismic events in the area, which are believed to release elastic stress partly during interseismic periods.  相似文献   

14.
The Pannonian Basin, originating during the Early Miocene, is a large extensional basin incorporated between Alpine, Carpathian and Dinaride fold-thrust belts. Back-arc extensional tectonics triggered deposition of up to 500-m-thick continental fluvio-lacustrine deposits distributed in numerous sub-basins of the Southern Pannonian Basin. Extensive andesitic and dacitic volcanism accompanied the syn-rift deposition and caused a number of pyroclastic intercalations. Here, we analyze two volcanic ash layers located at the base and top of the continental series. The lowermost ash from Mt. Kalnik yielded an 40Ar/39Ar age of 18.07?±?0.07?Ma. This indicates that the marine-continental transition in the Slovenia-Zagorje Basin, coinciding with the onset of rifting tectonics in the Southern Pannonian Basin, occurs roughly at the Eggenburgian/Ottnangian boundary of the regional Paratethys time scale. This age proves the synchronicity of initial rifting in the Southern Pannonian Basin with the beginning of sedimentation in the Dinaride Lake System. Beside geodynamic evolution, the two regions also share a biotic evolutionary history: both belong to the same ecoregion, which we designate here as the Illyrian Bioprovince. The youngest volcanic ash level is sampled at the Glina and Karlovac sub-depressions, and both sites yield the same 40Ar/39Ar age of 15.91?±?0.06 and 16.03?±?0.06?Ma, respectively. This indicates that lacustrine sedimentation in the Southern Pannonian Basin continued at least until the earliest Badenian. The present results provide not only important bench marks on duration of initial synrift in the Pannonian Basin System, but also deliver substantial backbone data for paleogeographic reconstructions in Central and Southeastern Europe around the Early–Middle Miocene transition.  相似文献   

15.
《Earth》2006,74(3-4):127-196
Research on neotectonics and related seismicity has hitherto been mostly focused on active plate boundaries that are characterized by generally high levels of earthquake activity. Current seismic hazard estimates for intraplate domains are mainly based on probabilistic analyses of historical and instrumental earthquake catalogues. The accuracy of such hazard estimates is limited by the fact that available catalogues are restricted to a few hundred years, which, on geological time scales, is insignificant and not suitable for the assessment of tectonic processes controlling the observed earthquake activity. More reliable hazard prediction requires access to high quality data sets covering a geologically significant time span in order to obtain a better understanding of processes controlling on-going intraplate deformation.The Alpine Orogen and the intraplate sedimentary basins and rifts in its northern foreland are associated with a much higher level of neotectonic activity than hitherto assumed. Seismicity and stress indicator data, combined with geodetic and geomorphologic observations, demonstrate that deformation of the Northern Alpine foreland is still on-going and will continue in the future. This has major implications for the assessment of natural hazards and the environmental degradation potential of this densely populated area. We examine relationships between deeper lithospheric processes, neotectonics and surface processes in the northern Alpine Foreland, and their implications for tectonically induced topography.For the Environmental Tectonics Project (ENTEC), the Upper and Lower Rhine Graben (URG and LRG) and the Vienna Basin (VB) were selected as natural laboratories. The Vienna Basin developed during the middle Miocene as a sinistral pull-apart structure on top of the East Alpine nappe stack, whereas the Upper and Lower Rhine grabens are typical intracontinental rifts. The Upper Rhine Graben opened during its Late Eocene and Oligocene initial rifting phase by nearly orthogonal crustal extension, whereas its Neogene evolution was controlled by oblique extension. Seismic tomography suggests that during extension the mantle-lithosphere was partially decoupled from the upper crust at the level of the lower crust. However, whole lithospheric folding controlled the mid-Miocene to Pliocene uplift of the Vosges–Black Forest Arch, whereas thermal thinning of the mantle–lithosphere above a mantle plume contributed substantially to the past and present uplift of the Rhenish Massif. By contrast, oblique crustal extension, controlling the late Oligocene initial subsidence stage of the Lower Rhine Graben, gave way to orthogonal extension at the transition to the Neogene.The ENTEC Project integrated geological, geophysical, geomorphologic, geodetic and seismological data and developed dynamic models to quantify the societal impact of neotectonics in areas hosting major urban and industrial activity concentrations. The response of Europe's intraplate lithosphere to Late Neogene compressional stresses depends largely on its thermo-mechanical structure, which, in turn, controls vertical motions, topography evolution and related surface processes.  相似文献   

16.
地表变形、活动断裂和地球物理的综合分析表明,菲律宾洋壳向欧亚大陆的俯冲导致的地幔对流是控制中国东部沿海地区晚新生代以来构造作用的主导因素,是长江口地区地面沉降的主要深部动力学机制。由于地幔对流和青藏高原挤压共同作用导致的地壳热流值的差异则是长江口地区西部隆升、东部沉降且向东沉降速率增大的直接驱动力。预测未来长江口地区的基岩沉降范围将以>10cm/a的速率向西扩大,沉降速率将呈明显加速趋势,40000a之内上海市可能被海水淹没,但板块构造演化的“渐变”特征决定其对当地未来的人类活动不会造成显著影响。根据“地壳均衡理论”,建议在长江口南西部(浙江省北东部)的丘陵山区加大重力载荷如加快城市化进程或人工造山以减小和控制上海地区的沉降。  相似文献   

17.
Several selected seismic lines are used to show and compare the modes of Late-Cretaceous–Early Tertiary inversion within the North German and Polish basins. These seismic data illustrate an important difference in the allocation of major zones of basement (thick-skinned) deformation and maximum uplift within both basins. The most important inversion-related uplift of the Polish Basin was localised in its axial part, the Mid-Polish Trough, whereas the basement in the axial part of the North German Basin remained virtually flat. The latter was uplifted along the SW and to a smaller degree the NE margins of the North German Basin, presently defined by the Elbe Fault System and the Grimmen High, respectively. The different location of the basement inversion and uplift within the North German and Polish basins is interpreted to reflect the position of major zones of crustal weakness represented by the WNW-ESE trending Elbe Fault System and by the NW-SE striking Teisseyre-Tornquist Zone, the latter underlying the Mid-Polish Trough. Therefore, the inversion of the Polish and North German basins demonstrates the significance of an inherited basement structure regardless of its relationship to the position of the basin axis. The inversion of the Mid-Polish Trough was connected with the reactivation of normal basement fault zones responsible for its Permo-Mesozoic subsidence. These faults zones, inverted as reverse faults, facilitated the uplift of the Mid-Polish Trough in the order of 1–3 km. In contrast, inversion of the North German Basin rarely re-used structures active during its subsidence. Basement inversion and uplift, in the range of 3–4 km, was focused at the Elbe Fault System which has remained quiescent in the Triassic and Jurassic but reproduced the direction of an earlier Variscan structural grain. In contrast, N-S oriented Mesozoic grabens and troughs in the central part of the North German Basin avoided significant inversion as they were oriented parallel to the direction of the inferred Late Cretaceous–Early Tertiary compression. The comparison of the North German and Polish basins shows that inversion structures can follow an earlier subsidence pattern only under a favourable orientation of the stress field. A thick Zechstein salt layer in the central parts of the North German Basin and the Mid-Polish Trough caused mechanical decoupling between the sub-salt basement and the supra-salt sedimentary cover. Resultant thin-skinned inversion was manifested by the formation of various structures developed entirely in the supra-salt Mesozoic–Cenozoic succession. The Zechstein salt provided a mechanical buffer accommodating compressional stress and responding to the inversion through salt mobilisation and redistribution. Only in parts of the NGB and MPT characterised by either thin or missing Zechstein evaporites, thick-skinned inversion directly controlled inversion-related deformations of the sedimentary cover. Inversion of the Permo-Mesozoic fill within the Mid-Polish Trough was achieved by a regional elevation above uplifted basement blocks. Conversely, in the North German Basin, horizontal stress must have been transferred into the salt cover across the basin from its SW margin towards the basins centre. This must be the case since compressional deformations are concentrated mostly above the salt and no significant inversion-related basement faults are seismically detected apart from the basin margins. This strain decoupling in the interior of the North German Basin was enhanced by the presence of the Elbe Fault System which allowed strain localization in the basin floor due to its orientation perpendicular to the inferred Late Cretaceous–Early Tertiary far-field compression.  相似文献   

18.
The crustal structure of the Hawaiian Archipelago, northern Melanesia, and parts of the Central Pacific Basin have been studied by seismic refraction methods. The systematic variation found in crustal thickness in the Hawaiian Islands is explainable by a hypothesis of differential subsidence. The crustal structure of northern Melanesia points to tensional forces in an east-west direction and compressional forces in a north-south direction. In the Central Pacific Basin, a 7.4 km/sec layer in the lower crust seems to be present over a wide area.  相似文献   

19.
The evolution of the European Cenozoic Rift System (ECRIS) and the Alpine orogen is discussed on the base of a set of palaeotectonic maps and two retro-deformed lithospheric transects which extend across the Western and Central Alps and the Massif Central and the Rhenish Massif, respectively.During the Paleocene, compressional stresses exerted on continental Europe by the evolving Alps and Pyrenees caused lithospheric buckling and basin inversion up to 1700 km to the north of the Alpine and Pyrenean deformation fronts. This deformation was accompanied by the injection of melilite dykes, reflecting a plume-related increase in the temperature of the asthenosphere beneath the European foreland. At the Paleocene–Eocene transition, compressional stresses relaxed in the Alpine foreland, whereas collisional interaction of the Pyrenees with their foreland persisted. In the Alps, major Eocene north-directed lithospheric shortening was followed by mid-Eocene slab- and thrust-loaded subsidence of the Dauphinois and Helvetic shelves. During the late Eocene, north-directed compressional intraplate stresses originating in the Alpine and Pyrenean collision zones built up and activated ECRIS.At the Eocene–Oligocene transition, the subducted Central Alpine slab was detached, whereas the West-Alpine slab remained attached to the lithosphere. Subsequently, the Alpine orogenic wedge converged northwestward with its foreland. The Oligocene main rifting phase of ECRIS was controlled by north-directed compressional stresses originating in the Pyrenean and Alpine collision zones.Following early Miocene termination of crustal shortening in the Pyrenees and opening of the oceanic Provençal Basin, the evolution of ECRIS was exclusively controlled by west- and northwest-directed compressional stresses emanating from the Alps during imbrication of their external massifs. Whereas the grabens of the Massif Central and the Rhône Valley became inactive during the early Miocene, the Rhine Rift System remained active until the present. Lithospheric folding controlled mid-Miocene and Pliocene uplift of the Vosges-Black Forest Arch. Progressive uplift of the Rhenish Massif and Massif Central is mainly attributed to plume-related thermal thinning of the mantle-lithosphere.ECRIS evolved by passive rifting in response to the build-up of Pyrenean and Alpine collision-related compressional intraplate stresses. Mantle-plume-type upwelling of the asthenosphere caused thermal weakening of the foreland lithosphere, rendering it prone to deformation.  相似文献   

20.
P.K. Khan   《Gondwana Research》2003,6(4):867-877
The paper presents an analysis of spatial distribution of 6600 earthquake events which occurred during the period 1964 to 1999 between latitude 34 to 40°N and longitude 68 to 76°E. This large volume event is reported in the International Seismological Centre (ISC) catalog. In addition to this a total of 248 focal mechanism solutions are considered to derive a generalised predominant stress prevailing in the descending lithosphere below the Hindukush and Pamir regions.

The analysis of spatial distribution shows that the epicentres of the events at shallow level (depth<70 km) are sparsely distributed throughout except for a cluster at the northern end of both the Hindukush and Pamir. The concentration of epicentres at intermediate-depth level between 71 and 170 km below the Hindukush takes a strip-like pattern. It trends along SW-NE, and narrows at the northeastern end of the Hindukush. At deeper level (depth>170 km) the epicentres below the Hindukush are mainly concentrated in a triangular-shaped zone, and the mean points of concentration of the epicentres appear to be shifted towards southwest at increasing depth. The distribution of epicentres at the intermediate and deeper layers of the Pamir is observed to be diffused except a cluster of few events in each layer appears to be shifted towards south-southeast at increasing depth. The distribution of hypocentres changes its concentration from lesser to considerably higher at about 70 km depth, and further takes a minimum at about 170 km depth below the Hindukush and Pamir.

The present study further involves in analysing the composite/group effect of stresses associated with the descending lithosphere below the Hindukush and Pamir after deriving the best-fit generalized predominant directions of stresses. It shows that the intermediate-depth seismic zone below the Hindukush is acted upon by maximum compressive stresses (P axes) from two directions while the deeper-depth zone from three directions, and may convincingly be correlated with the changing shape of the respective seismic zones. Another interesting phenomenon observed here is the change in direction of maximum compressive stresses in clockwise fashion from intermediate to deep seismic zones below the Hindukush. At shallow depths below the Pamir the maximum and minimum (T axes) compressive stresses are acting almost along NNW-SSE and ENE-WSW and are oriented horizontally. T-axes for few events at these depths show almost vertical orientation. The observed down-dip extension is predominantly parallel with the descending lithosphere below the Hindukush. The entire analysis along with the observed scattering of P- and T-axes of some events at intermediate-depths might be indicating a slight contortion of the middle layer below the Hindukush. The spatial distribution of seismicity and the generalised stress pattern of both the regions infer the existence of two-isolated subducting lithosphere. It perhaps has created the eastward expulsion or lateral extrusion of Tibet along the major strike-slip faults like Karakorum, Altyn-Tagh, Kunlun and Red River. Finally, the whole analysis confirms the existence of shield-like continental rigid slab at depths greater than 170 km below the Hindukush.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号