共查询到20条相似文献,搜索用时 0 毫秒
1.
Hydrological models are useful tools for better understanding the hydrological processes and performing the hydrological prediction. However, the reliability of the prediction depends largely on its uncertainty range. This study mainly focuses on estimating model parameter uncertainty and quantifying the simulation uncertainties caused by sole model parameters and the co‐effects of model parameters and model structure in a lumped conceptual water balance model called WASMOD (Water And Snow balance MODeling system). The validity of statistical hypotheses on residuals made in the model formation is tested as well, as it is the base of parameter estimation and simulation uncertainty evaluation. The bootstrap method is employed to examine the parameter uncertainty in the selected model. The Yingluoxia watershed at the upper reaches of the Heihe River basin in north‐west of China is selected as the study area. Results show that all parameters in the model can be regarded as normally distributed based on their marginal distributions and the Kolmogorov–Smirnov test, although they appear slightly skewed for two parameters. Their uncertainty ranges are different from each other. The model residuals are tested to be independent, homoscedastic and normally distributed. Based on such valid hypotheses of model residuals, simulation uncertainties caused by co‐effects of model parameters and model structure can be evaluated effectively. It is found that the 95% and 99% confidence intervals (CIs) of simulated discharge cover 42.7% and 52.4% of the observations when only parameter uncertainty is considered, indicating that parameter uncertainty has a great effect on simulation uncertainty but still cannot be used to explain all the simulation uncertainty in this study. The 95% and 99% CIs become wider, and the percentages of observations falling inside such CIs become larger when co‐effects of parameters and model structure are considered, indicating that simultaneous consideration of both parameters and model structure uncertainties accounts sufficient contribution for model simulation uncertainty. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
2.
The effects of land‐use changes on the runoff process in the midstream plain of this arid inland river basin are a key factor in the rational allocation of water resources to the middle and lower reaches. The question is whether and by how much increasingly heavy land use impacts the hydrological processes in such an arid inland river basin. The catchment of the Heihe River, one of the largest inland rivers in the arid region of northwest China, was chosen to investigate the hydrological responses to land‐use change. Flow duration curves were used to detect trends and variations in runoff between the upper and lower reaches. Relationships among precipitation, upstream runoff, and hydrological variables were identified to distinguish the effects of climatic changes and upstream runoff changes on middle and downstream runoff processes. The quantitative relation between midstream cultivated land use and various parameters of downstream runoff processes were analysed using the four periods of land‐use data since 1956. The Volterra numerical function relation of the hydrological non‐linear system response was utilized to develop a multifactor hydrological response simulation model based on the three factors of precipitation, upstream runoff, and cultivated land area. The results showed that, since 1967, the medium‐ and high‐coverage natural grassland area in the midstream region has decreased by 80·1%, and the downstream runoff has declined by 27·32% due to the continuous expansion of the cultivated land area. The contribution of cultivated land expansion to the impact on the annual total runoff is 14–31%, on the annual, spring and winter base flow it is 44–75%, and on spring and winter discharge it is 23–64%. Once the water conservation plan dominated by land‐use structural adjustments is implemented over the next 5 years, the mean annual discharge in the lower reach could increase by 8·98% and the spring discharge by 26·28%. This will significantly alleviate the imbalance between water supply and demand in both its quantity and temporal distribution in the middle and lower reaches. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
3.
4.
High‐resolution data obtained from airborne remote sensing is increasing opportunities for representation of small‐scale structural elements (e.g. walls, buildings) in complex floodplain systems using two‐dimensional (2D) models of flood inundation. At the same time, 2D inundation models have been developed and shown to provide good predictions of flood inundation extent, with respect to both full solution of the depth‐averaged Navier–Stokes equations and simplified diffusion‐wave models. However, these models have yet to be applied extensively to urban areas. This paper applies a 2D raster‐based diffusion‐wave model to determine patterns of fluvial flood inundation in urban areas using high‐resolution topographic data and explores the effects of spatial resolution upon estimated inundation extent and flow routing process. Model response shows that even relatively small changes in model resolution have considerable effects on the predicted inundation extent and the timing of flood inundation. Timing sensitivity would be expected, given the relatively poor representation of inertial processes in a diffusion‐wave model. Sensitivity to inundation extent is more surprising, but is associated with: (1) the smoothing effect of mesh coarsening upon input topographical data; (2) poorer representation of both cell blockage and surface routing processes as the mesh is coarsened, where the flow routing is especially complex; and (3) the effects of (1) and (2) upon water levels and velocities, which in turn determine which parts of the floodplain the flow can actually travel to. It is shown that the combined effects of wetting and roughness parameters can compensate in part for a coarser mesh resolution. However, the coarser the resolution, the poorer the ability to control the inundation process, as these parameters not only affect the speed, but also the direction of wetting. Thus, high‐resolution data will need to be coupled to a more sophisticated representation of the inundation process in order to obtain effective predictions of flood inundation extent. This is explored in a companion paper. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
5.
Jun‐Zhi Wang Xiao‐Wei Jiang Zhi‐Yuan Zhang Li Wan Xu‐Sheng Wang Hailong Li 《水文研究》2017,31(22):4006-4018
Although it has been increasingly acknowledged that groundwater flow pattern is complicated in the three‐dimensional (3‐D) domain, two‐dimensional (2‐D) water table‐induced flow models are still widely used to delineate basin‐scale groundwater circulation. However, the validity of 2‐D cross‐sectional flow field induced by water table has been seldom examined. Here, we derive the analytical solution of 3‐D water table‐induced hydraulic head in a Tóthian basin and then examine the validity of 2‐D cross‐sectional models by comparing the flow fields of selected cross sections calculated by the 2‐D cross‐sectional model with those by the 3‐D model, which represents the “true” cases. For cross sections in the recharge or discharge area of the 3‐D basin, even if head difference is not significant, the 2‐D cross‐sectional models result in flow patterns absolutely different from the true ones. For the cross section following the principal direction of groundwater flow, although 2‐D cross‐sectional models would overestimate the penetrating depth of local flow systems and underestimate the recharge/discharge flux, the flow pattern from the cross‐sectional model is similar to the true one and could be close enough to the true one by adjusting the decay exponent and anisotropy ratio of permeability. Consequently, to determine whether a 2‐D cross‐sectional model is applicable, a comparison of hydraulic head difference between 2‐D and 3‐D solutions is not enough. Instead, the similarity of flow pattern should be considered to determine whether a cross‐sectional model is applicable. This study improves understanding of groundwater flow induced by more natural water table undulations in the 3‐D domain and the limitations of 2‐D models accounting for cross‐sectional water table undulation only. 相似文献
6.
Results are presented from a numerical simulation of three‐dimensional flow hydraulics around a mid‐channel bar carried out using the FLUENT/UNS computational fluid dynamics (CFD) software package. FLUENT/UNS solves the three‐dimensional Reynolds‐averaged form of the Navier–Stokes equations. Turbulence closure is achieved using a RNG k–ϵ model. Simulated flow velocities are compared with measured two‐dimensional velocities (downstream and cross‐stream) obtained using an electromagnetic current meter (ECM). The results of the simulation are qualitatively consistent with the flow structures observed in the field. Quantitative comparison of the simulated and measured velocity magnitudes indicates a strong positive correlation between the two (r=0·88) and a mean difference of 0·09 m s−1. Deviations between simulated and measured velocities may be identified that are both random and systematic. The former may reflect a number of factors including subgrid‐scale natural spatial variability in flow velocities associated with local bed structures and measurement uncertainty resulting from problems of ECM orientation. Model mesh configuration, roughness parameterization and inlet boundary condition uncertainty may each contribute to systematic differences between simulated and measured flow velocities. These results illustrate the potential for using CFD software to simulate flow hydraulics in natural channels with complex configurations. They also highlight the need for detailed spatially distributed datasets of three‐dimensional flow variables to establish the accuracy and applicability of CFD software. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
7.
Land‐cover/climate changes and their impacts on hydrological processes are of widespread concern and a great challenge to researchers and policy makers. Kejie Watershed in the Salween River Basin in Yunnan, south‐west China, has been reforested extensively during the past two decades. In terms of climate change, there has been a marked increase in temperature. The impact of these changes on hydrological processes required investigation: hence, this paper assesses aspects of changes in land cover and climate. The response of hydrological processes to land‐cover/climate changes was examined using the Soil and Water Assessment Tool (SWAT) and impacts of single factor, land‐use/climate change on hydrological processes were differentiated. Land‐cover maps revealed extensive reforestation at the expense of grassland, cropland, and barren land. A significant monotonic trend and noticeable changes had occurred in annual temperature over the long term. Long‐term changes in annual rainfall and streamflow were weak; and changes in monthly rainfall (May, June, July, and September) were apparent. Hydrological simulations showed that the impact of climate change on surface water, baseflow, and streamflow was offset by the impact of land‐cover change. Seasonal variation in streamflow was influenced by seasonal variation in rainfall. The earlier onset of monsoon and the variability of rainfall resulted in extreme monthly streamflow. Land‐cover change played a dominant role in mean annual values; seasonal variation in surface water and streamflow was influenced mainly by seasonal variation in rainfall; and land‐cover change played a regulating role in this. Surface water is more sensitive to land‐cover change and climate change: an increase in surface water in September and May due to increased rainfall was offset by a decrease in surface water due to land‐cover change. A decrease in baseflow caused by changes in rainfall and temperature was offset by an increase in baseflow due to land‐cover change. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
8.
A three‐dimensional, time‐dependent hydrodynamic and salinity model was applied to the Danshuei River estuarine system and adjacent coastal sea in Taiwan. The model forcing functions consist of tidal elevations along the open boundary and freshwater flows from the main stem and tributaries in the Danshuei River system. The bottom roughness height was calibrated and verified with model simulation of barotropic flow, and the turbulent diffusivities were calibrated through comparison of time‐series of salinity distributions. The overall model verification was achieved with comparisons of residual current and salinity distribution. The model simulation results are in qualitative agreement with the available field data. The model was then used to investigate the tidal current, residual current, and salinity patterns under the low freshwater flow condition in the modelling domain. The results reveal that the extensive intrusion of saline water imposes a significant baroclinic forcing and induces a strong residual circulation in the estuary. The downriver net velocity in the upper layer increases seaward despite the enlargement of the river cross‐section in that direction. Strong residual circulation can be found near the Kuan‐Du station. This may be the result of the deep bathymetric features there. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
9.
The environment of Bosten Lake in the Mid-Eastern Yanqi Basin (MEYB), an arid inland area in northwest China, has deteriorated greatly due to increasing groundwater exploitation and changes in the interactions between groundwater and surface water. This study intended to simulate the spatio-temporal variability of groundwater and surface water across the entire MEYB over the period 2000–2013. The applicable groundwater flow model and mass balance calculation method for river water were constructed to evaluate the change in groundwater recharged by and discharged to different segments of the Kaidu River. Simulation results show that the entire river seepage in the MEYB increased from 1.05 to 6.17 × 108 m3/year between 2000 and 2013. The increasing river seepage, induced by increasing groundwater exploitation, plays the most important role in the water level decline in the downstream reaches of the Kaidu River and in Bosten Lake. This implies that the current utilization of groundwater resources in the MEYB is unsustainable. 相似文献
10.
Marathwada Agricultural University, Pharbani, has developed about 560 hectares of Wagarwadi watershed in Pharbani district since 1987. Groundwater monitoring on 16 observations wells at weekly intervals commenced in January 1992, and rainfall and pan evaporation has been measured daily at a hydrometeorological station situated in the nearby university campus. Aquifer parameters, namely, transmissivity and specific yield, have been estimated by carrying out a pumping test on a large diameter well. Groundwater recharge resulting from rainfall has been estimated using a water balance model of the soil moisture zone considering soil zone thickness and crops grown. The SCS (Soil Conservation Service) curve number method was used for surface runoff estimation. The groundwater flow model has been constructed using the nested squares, finite difference method. Nested square meshes of sizes 160 m×160 m and 80 m×80 m have been used and the steady-state condition of aquifer system was simulated in the model assuming the June 1992 water level configuration under equilibrium conditions. The model has been calibrated for transient conditions incorporating additional seepage from the water harvesting structures and their contribution to the groundwater regime has been assessed. © 1998 John Wiley & Sons, Ltd. 相似文献
11.
Natural ecosystems in the region of the lower Tarim River in northwestern China strongly deteriorated since the 1950s due to an expanding desertification. As a result, the downstream Tarim River reaches became permanently dry land. This historical evolution in land‐use change is typically the result of the anthropogenic impact on natural ecosystems. On the basis of a spatially distributed hydrological catchment model bidirectionally linked with a fully hydrodynamic MIKE11 river model, land‐use changes characterized by historical changes in leaf area index (LAI) of vegetation, as well as the evolution of irrigated surface areas, can be causally related to changes in water resources (groundwater storage and surface water resources). An increased surface area of irrigated (agricultural) land, together with a majority of inefficient irrigation methods, did lead to a strong increase of water resources consumption of the farmlands located in the upper Tarim River area. Evidently, this evolution influenced available water resources downstream in the Tarim basin. As a result, farmland has been gradually relocated to the upstream regions. This has led to reduced flows from the upper Tarim stream, which subsequently accelerated the dropping of the groundwater level downstream in the basin. This study moreover demonstrates that land surface biomass changes (cumulative LAI) along the lower Tarim River are strongly related to the changes in groundwater storage. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
12.
Qiu Yang Honglang Xiao Liangju Zhao Yonggang Yang Caizhi Li Liang Zhao Li Yin 《水文研究》2011,25(8):1271-1283
We used hydrochemistry and environmental isotope data (δ18O, δD, tritium, and 14C) to investigate the characteristics of river water, groundwater, and groundwater recharge in China's Heihe River basin. The river water and groundwater could be characterized as Ca2+? Mg2+? HCO3?? SO42? and Na+? Mg2+? SO42?? Cl? types, respectively. Hydrogeochemical modelling using PHREEQC software revealed that the main hydrogeochemical processes are dissolution (except for gypsum and anhydrite) along groundwater flow paths from the upper to middle Heihe reaches. Towards the lower reaches, dolomite and calcite tend to precipitate. The isotopic data for most of the river water and groundwater lie on the global meteoric water line (GMWL) or between the GMWL and the meteoric water line in northwestern China, indicating weak evaporation. No direct relationship existed between recharge and discharge of groundwater in the middle and lower reaches based on the isotope ratios, d‐excess, and 14C values. On the basis of tritium in precipitation and by adopting an exponential piston‐flow model, we evaluated the mean residence time of shallow groundwater with high tritium activities, which was around 50 years (a). Furthermore, based on the several popular models, it is calculated that the deep groundwaters in piedmont alluvial fan zone of the middle reaches and in southern part of the lower reaches are modern water, whereas the deep groundwaters in the edge of the middle reaches and around Juyan Lake in the lower reaches of Heihe river basin are old water. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
13.
Evaluation of irrigation water use efficiency using remote sensing in the middle reach of the Heihe river,in the semi‐arid Northwestern China 下载免费PDF全文
Irrigation of agricultural oases is the main water consumer in semi‐arid and arid regions of Northwestern China. The accurate estimation of evapotranspiration (ET) on the oases is extremely important for evaluating water use efficiency so as to reasonably allocate water resources, particularly in semi‐arid and arid areas. In this study, we integrated the soil moisture information into surface energy balance system (SEBS) for improving irrigated crop water consumption estimation. The new approach fed with the moderate resolution imaging spectro‐radiometer images mapped spatiotemporal ET on the oasis in the middle reach of the Heihe river. The daily ET outputs of the new approach were compared with those of the original SEBS using the eddy correlation observations, and the results demonstrate that the modified SEBS remedied the shortcoming of general overestimating ET without regard to soil water stress. Meanwhile, the crop planting structure and leaf area index spatiotemporal distribution in the studied region were derived from the high‐resolution Chinese satellite HJ‐1/CCD images for helping analyse the pattern of the monthly ET (ETmonthly). The results show that the spatiotemporal variation of ETmonthly is closely related to artificial irrigation and crop growth. Further evaluation of current irrigation water use efficiency was conducted on both irrigation district scale and the whole middle reach of the Heihe river. The results reveal that the average fraction of consumed water on irrigation district scale is 57% in 2012. The current irrigation water system is irrational because only 52% of the total irrigated amount was used to fulfil plant ET requirement and the rest of the irrigation water recharged into groundwater in the oasis in 2012. However, in view of the whole middle reach of the Heihe river, the irrigation water use efficiency could reach to 66% in 2012. But pumping groundwater for reused irrigation wastes mostly energy instead of water. An improved irrigation water allocation system according to actual ET requirement is needed to increase irrigation efficiency per cubic meter water resource in an effort to save both water and energy. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
14.
The Annualized Agricultural Non‐point Source (AnnAGNPS) pollution model has been widely used to assess and predict runoff, soil erosion, sediment and nutrient loading with a geographic information system. This article presents a case study of the effect of land‐use changes on nonpoint source (NPS) pollution using the AnnAGNPS model in the Xizhi River watershed, eastern Pearl River Delta of Guangdong province, China. The land‐use changes in the Xizhi River watershed between 1998 and 2003 were examined using the multitemporal remote sensing data. The runoff, soil erosion, sediment transport and nutrient loading 1998 and 2003 were assessed using AnnAGNPS. The effects of land‐use changes on NPS were studied by comparing the simulation results of each year. Our results showed that (i) the NPS loadings increased when forest and grass land converted into paddy, orchard and farmland land, and population size and gross domestic product size as well as the usage amounts of fertilizer and pesticide in the entire watershed were firmly correlated with the NPS loadings; (ii) the land‐use change during fast urbanization in particular when other land types were converted into the development land and buildup land led to increasing of NPS pollution; and (iii) urban land expansion showed more important effects on total organic carbon (TOC) loading compared with nitrogen and phosphorus loadings. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
15.
Comparing the performance of empirical black‐box models for river flow forecasting in the Heihe River Basin,Northwestern China 下载免费PDF全文
For many practical reasons, the empirical black‐box models have become an increasingly popular modelling tool for river flow forecasting, especially in mountainous areas where very few meteorological observatories exist. In this article, precipitation data are used as the only input to estimate river flow. Using five empirical black‐box models—the simple linear model, the linear perturbation model, the linearly varying gain factor model, the constrained nonlinear system model and the nonlinear perturbation model–antecedent precipitation index—modelling results are compared with actual results in three catchments within the Heihe River Basin. The linearly varying gain factor model and the nonlinear perturbation model yielded excellent predictions. For better simulation accuracy, a commonly used multilayer feed‐forward neural network model (NNM) was applied to incorporate the outputs of the individual models. Comparing the performance of these models, it was found that the best results were obtained from the NNM model. The results also suggest that more reliable and precise predictions of river flow can be obtained by using the NNM model while also incorporating the combined outputs of different empirical black‐box models. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
16.
This study reports the results of a large woody debris (LWD) removal experiment in a meander bend along a low‐energy stream in the Midwestern United States. The LWD obstacle was located in the center of the channel at the bend exit and consisted of a mature tree with an intact soil‐covered root wad and a large accumulation of logs, branches and pieces of lumber on top of and adjacent to the main tree. The results indicate that the LWD obstruction influenced 3D flow structure in this bend at all flow stages. The main effect of LWD is to dramatically decelerate flow throughout the majority of the bend, while locally accelerating flow where it passes through the narrow chute at the downstream end of the LWD obstruction. Results from the LWD removal experiment indicate that patterns of three‐dimensional flow structure in meander bends are sensitive to complete removal of LWD. After the removal of LWD from the bend, both downstream and secondary velocities increased and, though still weak, secondary flow intensified. Large, relatively stable, obstructions that span a significant portion of the channel may act as natural dams, effectively ponding water upstream of the LWD, thereby producing substantial convective deceleration of the flow. This research is the first to document three‐dimensional flow structure before and after a controlled removal of LWD from a meander bend. Studies of the type reported here represent a first step toward determining the ensemble of process interactions between LWD and bend dynamics. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
17.
Soil conservation practices have been widely implemented on the Loess Plateau to reduce severe soil erosion in north‐central China over the past three decades. However, the hydrologic impacts of these practices are not well documented and understood. The objective of this study was to examine how water yield has changed after implementing soil conservation practices that resulted in changes in land use and land cover in a small agriculture‐dominated watershed, the LuErGou Watershed in Tianshui City, Gansu Province, China. We collected 23 years of hydro‐meteorological data along with three land use surveys of 1982, 1989, and 2000. The land use survey in 2000 suggested that the soil conservation efforts resulted in a 16·6%, 4%, and 16% increase in area of grassland, forested land, and terraces respectively over the two periods from 1982 to 1988 (baseline) and 1989 to 2003 (soil conservation measures implemented). Rainfall–runoff regression models developed for both time periods at the annual and monthly time steps were used to examine the significance of change in water yield in the second time period. The averaged annual run‐off coefficient over 1989–2003 did not change significantly (at the α = 0·05 level) as compared to that in the period 1982–1988. However, we found that soil conservation practices that included re‐vegetation and terracing reduced water yield during wet periods. This study highlights the importance of the precipitation regime in regulating hydrologic effects of soil conservation measures in a semi‐arid environment. We concluded that adequately evaluating the effects of land use change and soil conservation measures on water yield must consider the climatic variability under an arid environment. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
18.
This paper develops and tests a sub‐grid‐scale wetting and drying correction for use with two‐dimensional diffusion‐wave models of urban flood inundation. The method recognizes explicitly that representations of sub‐grid‐scale topography using roughness parameters will provide an inadequate representation of the effects of structural elements on the floodplain (e.g. buildings, walls), as such elements not only act as momentum sinks, but also have mass blockage effects. The latter may dominate, especially in structurally complex urban areas. The approach developed uses high‐resolution topographic data to develop explicit parameterization of sub‐grid‐scale topographic variability to represent both the volume of a grid cell that can be occupied by the flow and the effect of that variability upon the timing and direction of the lateral fluxes. This approach is found to give significantly better prediction of fluvial flood inundation in urban areas than traditional calibration of sub‐grid‐scale effects using Manning's n. In particular, it simultaneously reduces the need to use exceptionally high values of n to represent the effects of using a coarser mesh process representation and increases the sensitivity of model predictions to variation in n. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
19.
Ecosystem services evaluation aims at understanding the status of ecosystem services on different spatial and temporal scale. In this paper, we selected the middle reach of the Heihe River Basin (HRB), which is the second largest inland river basin in China, as one of the typical area to estimate the ecosystem services values (ESVs) corresponding to the land use changes. Based on the land use data and ecosystem service value coefficients, the total ecosystem services values (TESVs) of the middle reach of the HBR are quantitatively calculated, which were 9.244 × 108, 9.099 × 108, 9.131 × 108 and 9.146 × 108 USD in 1988, 2000, 2005 and 2008 respectively. During 1988–2008, the decrease of grassland, forest land, water area and unused land contributed 148.94%, 57.85%, 87.87% and 16.42% respectively to the net loss of TESVs, while the dramatic increase of cultivated land improved the TESVs with contribution of −211.08% to the net loss of TESVs. Expansion of cultivated land, which especially caused the loss of grassland and forest land, directly exerted negative impacts on the provision of ecosystem services in the study area. The findings of this research indicated that land use change was an important form of human activities, which had a strong impact on ecosystem services. 相似文献
20.
Despite an increasing recognition that human activity is currently the dominant force modifying landscapes, and that this activity has been increasing through the Holocene, there has been little integrative work to evaluate human interactions with geomorphic processes. We argue that agent‐based models (ABMs) are a useful tool for overcoming the limitations of existing, highly empirical approaches. In particular, they allow the integration of decision‐making into process‐based models and provide a heuristic way of evaluating the compatibility of knowledge gained from a wide range of sources, both within and outwith the discipline of geomorphology. The application of ABMs to geomorphology is demonstrated from two different perspectives. The SPASIMv1 (Special Protection Area SIMulator version 1) model is used to evaluate the potential impacts of land‐use change – particularly in relation to wildfire and subsequent soil conditions, runoff and erosion – over a decadal timescale from the present day to the mid‐twenty‐first century. It focuses on the representation of farmers with traditional versus commercial perspectives in central Spain, and highlights the importance of land‐tenure structure and historical contingencies of individuals' decision‐making. CYBEROSION, however, considers changes in erosion and deposition over the scale of at least centuries. It represents both wild and domesticated animals and humans as model agents, and investigates the interactions of them in the context of early agriculturalists in southern France in a prehistoric context. We evaluate the advantages and disadvantages of the ABM approach, and consider some of the major challenges. These challenges include potential process‐scale mismatches, differences in perspective between investigators from different disciplines, and issues regarding model evaluation, analysis and interpretation. If the challenges can be overcome, this fully integrated approach will provide geomorphology a means to conceptualize soundly the study of human–landscape interactions by bridging the gap between social and physical approaches. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献