共查询到20条相似文献,搜索用时 15 毫秒
1.
Holocene relative sea level (RSL) changes have been investigated by analysing and dating isolation sequences from five lakes near Sisimiut in south‐western Greenland. The transitions between marine and lacustrine sediments were determined from elemental analyses and analyses of macroscopic plant and animal remains. Radiocarbon dating was used to provide minimum ages for the transitions and to construct a RSL curve. Dating of a shell of the marine bivalve Macoma balthica indicates that deglaciation of the lowlands occurred in the early Holocene, at around 10 900 cal a BP. The RSL curve shows initial rapid regression from the marine limit at around 140 m, implying strong glacio‐isostatic rebound. We suggest that the margin of the Greenland Ice Sheet was located at the shelf break during the Last Glacial Maximum. Frequent remains of the ostracode Sarcypridopsis aculeata, which is a thermophilous brackish water species that is unknown from the extant fauna of Greenland, in one of the basins around 8500 cal a BP may mark the beginning of the Holocene thermal maximum in the region. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
2.
This paper presents the results of an investigation into Holocene relative sea-level (RSL) change, isostatic rebound and ice sheet dynamics in Disko Bugt, West Greenland. Data collected from nine isolation basins on Arveprinsen Ejland, east Disko Bugt, show that mean sea level fell continuously from ca. 70 m at 9.9 ka cal. yr BP (8.9 ka 14C yr BP) to reach a minimum of ca. −5 m at 2.8 ka cal. yr BP (2.5 ka 14C yr BP), before rising to the present day. A west–east gradient in isostatic uplift across Disko Bugt is confirmed, with reduced rebound observed in east Disko Bugt. However, RSL differences (up to 20 m at 7.8 ka to 6.8 ka cal. yr BP (7 ka to 6 ka 14C yr BP)) also exist within east Disko Bugt, suggesting a significant north–south component to the area’s isostatic history. The observed magnitude and timing of late Holocene RSL rise is not compatible with regional forebulge collapse. Instead, RSL rise began first in the eastern part of the bay, as might be expected under a scenario of crustal subsidence caused by neoglacial ice sheet readvance. The results of this study demonstrate the potential of isolation basin data for local and regional RSL studies in Greenland, and the importance of avoiding data compilations from areas where the isobase orientation is uncertain. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
3.
4.
5.
We present new results for relative sea‐level change for southern Greenland for the interval from 9000 cal. yr BP to the present. Together with earlier work from the same region this yields a nearly complete record from the time of deglaciation to the present. Isolation and/or transgression sequences in one lake and five tidal basins have been identified using lithostratigraphic analyses, sedimentary characteristics, magnetic susceptibility, saturated induced remanent magnetisation (SIRM), organic and carbonate content, and macrofossil analyses. AMS radiocarbon dating of macrofossils and bulk sediment samples provides the timescale. Relative sea level fell rapidly and reached present‐day level at ~9300 cal. yr BP and continued falling until at least 9000 cal. yr BP. Between 8000 and 6000 cal. yr BP sea level reached its lowest level of around ~10 m below highest astronomical tide. At around 5000 cal. yr BP, sea level had reached above 7.8 m below highest astronomical tide and slowly continued to rise, not reaching present‐day sea level until today. The isostatic rebound caused rapid isolation of the basins that are seen as distinct isolation contacts in the sediments. In contrast, the late Holocene transgressions are less well defined and occurred over longer time intervals. The late Holocene sea‐level rise may be a consequence of isostatic reloading by advancing glaciers and/or an effect of the delayed response to isostatic rebound of the Laurentide ice sheet. One consequence of this transgression is that settlements of Palaeo‐Eskimo cultures may be missing in southern Greenland. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
6.
More than 100 radiocarbon dates of penguin guano and remains, shells and seal skin afford ages for raised beaches adjacent to Terra Nova Bay, Antarctica. These dates permit construction of a new relative sea‐level curve that bears on the timing of deglaciation. Recession of the Ross Sea ice‐sheet grounding line from Terra Nova Bay occurred no earlier than 7200 14C yr (8000 cal. yr) BP. Retreat along the Victoria Land coast may have been rapid, possibly contributing to eustatic sea‐level rise centred at ca. 7600 cal. yr BP. The presence of a significant amount of ice remaining in the Ross Sea Embayment in Holocene time lessens the chance that Antarctica contributed significantly to meltwater pulse 1A several thousand years earlier. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
7.
The absence of a production rate calibration experiment on Greenland has limited the ability to link 10Be exposure dating chronologies of ice‐margin change to independent records of rapid climate change. We use radiocarbon age control on Holocene glacial features near Jakobshavn Isbræ, western Greenland, to investigate 10Be production rates. The radiocarbon chronology is inconsistent with the 10Be age calculations based on the current globally averaged 10Be production rate calibration data set, but is consistent with the 10Be production rate calibration data set from north‐eastern North America, which includes a calibration site nearby on north‐eastern Baffin Island. Based on the best‐dated feature available from the Jakobshavn Isbræ forefield, we derive a 10Be production rate value of 3.98 ± 0.24 atoms g a?1, using the ‘St’ scaling scheme, which overlaps with recently published reference 10Be production rates. We suggest that these 10Be production rate data, or the very similar data from north‐eastern North America, are used on Greenland. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
8.
Paleoenvironments during Younger Dryas‐Early Holocene retreat of the Greenland Ice Sheet from outer Disko Trough,central west Greenland 下载免费PDF全文
ANNE E. JENNINGS MARIAH E. WALTON COLM Ó COFAIGH AOIBHEANN KILFEATHER JOHN T. ANDREWS JOSEPH D. ORTIZ ANNE DE VERNAL JULIAN A. DOWDESWELL 《第四纪科学杂志》2014,29(1):27-40
9.
Evidence for relative sea‐level changes during the middle and late Holocene is examined from two locations on the Atlantic coast of Harris, Outer Hebrides, Scotland, using morphological mapping and survey, stratigraphical, grain size and diatom analysis, and radiocarbon dating. The earliest event identified is a marine flood, which occurred after 7982–8348 cal. a (7370 ± 80 14C a) BP, when the sea crossed a threshold lying at ?0.08 m Ordnance Datum Newlyn (OD) (?2.17 m mean high water springs (MHWS)) before withdrawing. This could have been due to a storm or to the Holocene Storegga Slide tsunami. By 6407–6122 cal. a (5500 ± 60 14C a) BP, relative sea levels had begun to fall from a sandflat surface with an indicated MHWS level of between 0.08 and ?1.96 m (?2.01 to ?4.05 m). This fall reached between ?0.30 and ?2.35 m (?2.39 to ?4.44 m) after 5841–5050 cal. a (4760 ± 130 14C a) BP, but was succeeded by a relative sea‐level rise which reached between 0.54 and ?1.57 m (?1.55 to ?3.66 m) by 5450–4861 cal. a (4500 ± 100 14C a) BP. This rise continued, possibly with an interruption, until a second sandflat surface was reached between 2.34 and ?0.26 m (0.25 to ?2.35 m) between 2952–3375 cal. a (3000 ± 80 14C a) and 1948–2325 cal. a (2130 ± 70 14C a) BP, before present levels were reached. The regressive episode from the earliest sandflat is correlated with the abandonment of the Main Postglacial Shoreline. It is maintained that the fluctuations in relative sea level recorded can be correlated with similar events elsewhere on the periphery of the glacio‐isostatic centre and may therefore reflect secular changes in nearshore sea surface levels. Despite published evidence from trim lines of differential ice sheet loading across the area, no evidence of variations in uplift between the locations concerned could be found. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
10.
Lateglacial and Holocene relative sea‐level changes and first evidence for the Storegga tsunami in Sutherland,Scotland 下载免费PDF全文
Antony J. Long Natasha L. M. Barlow Sue Dawson Jon Hill James B. Innes Catherine Kelham Fraser D. Milne Alastair Dawson 《第四纪科学杂志》2016,31(3):239-255
11.
12.
Robin J. Edwards 《第四纪科学杂志》2001,16(3):221-235
A foraminiferal transfer function for mean tide level (MTL) is used in combination with AMS radiocarbon dated material to construct a record of relative sea‐level (RSL) change from Poole Harbour, southern Britain. These new data, based on multiple cores from duplicate sites, indicate four phases of change during the last 5000 cal. (calendar) yr: (i) rising RSL between ca. 4700 cal. yr BP and ca. 2400 cal. yr BP; (ii) stable to falling RSL from ca. 2400 cal. yr BP until ca. 1200 cal. yr BP; (iii) a brief rise in RSL from ca. 1200 cal. yr BP to ca. 900 cal. yr BP, followed by a period of stability; (iv) a recent increase in the rate of RSL rise from ca. 400–200 cal. yr BP until the present day. In addition, they suggest that the region has experienced long‐term crustal subsidence at a rate of 0.5 mm C14 yr?1. Although this can account for the overall rise in MTL observed during the past 2500 yr, it fails to explain the changes in the rate of rise during this period. This implies that the phases of RSL change recorded in the marshes of Poole Harbour reflect tidal range variations or ‘eustatic’ fluctuations in sea‐level. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
13.
C. Ó Cofaigh J. T. Andrews A. E. Jennings J. A. Dowdeswell K. A. Hogan A. A. Kilfeather C. Sheldon 《第四纪科学杂志》2013,28(1):13-26
Along the West Greenland continental margin adjoining Baffin Bay, bathymetric data show a series of large submarine fans located at the mouths of cross‐shelf troughs. One of these fans, termed here ‘Uummannaq Fan’, is a trough‐mouth fan built largely by debris delivered from a fast‐flowing outlet of the Greenland Ice Sheet during past glacial maxima. Cores from this fan provide the first information on glacimarine sedimentary facies within a major West Greenland trough‐mouth fan and on the nature of Late Weichselian–Holocene glacigenic sediment delivery to this region of the Baffin Bay margin. Glacigenic debris flows deposited on the upper slope and extending to at least 1800 m water depth in front of the trough‐mouth are related to the remobilization of subglacial debris that was delivered onto the upper slope at times when an ice stream was positioned at the shelf edge. In contrast, sedimentary facies from the northern sector of the fan are characterized by hemipelagic and ice‐rafted sediments and turbidites; glacigenic debris flows are notably absent in cores from this region. Quantitative X‐ray diffraction studies of the <2‐mm sediment fraction indicate that the bulk of the sediment in the fan is derived from Uummannaq Trough but there are distinct intervals when sediment from northern Baffin Bay sources dominates, especially on the northern limit of the fan. These data demonstrate considerable variation in the nature of sediment delivery across the Uummannaq Fan when the Greenland Ice Sheet was at the shelf edge. They highlight the variability of glacimarine depositional processes operating on trough‐mouth fans on high‐latitude continental margins during the last glacial maximum and indicate that glacigenic debris flows are just one of a number of mechanisms by which such large depocentres form. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
14.
Ruth M. K. Plets S. Louise Callard J. Andrew G. Cooper Joseph T. Kelley Daniel F. Belknap Robin J. Edwards Antony J. Long Rory J. Quinn Derek W. T. Jackson 《第四纪科学杂志》2019,34(4-5):285-298
The interplay of eustatic and isostatic factors causes complex relative sea‐level (RSL) histories, particularly in paraglacial settings. In this context the past record of RSL is important in understanding ice‐sheet history, earth rheology and resulting glacio‐isostatic adjustment. Field data to develop sea‐level reconstructions are often limited to shallow depths and uncertainty exists as to the veracity of modelled sea‐level curves. We use seismic stratigraphy, 39 vibrocores and 26 radiocarbon dates to investigate the deglacial history of Belfast Lough, Northern Ireland, and reconstruct past RSL. A typical sequence of till, glacimarine and Holocene sediments is preserved. Two sea‐level lowstands (both max. ?40 m) are recorded at c. 13.5 and 11.5k cal a bp . Each is followed by a rapid transgression and subsequent periods of RSL stability. The first transgression coincides temporally with a late stage of Meltwater Pulse 1a and the RSL stability occurred between c. 13.0 and c. 12.2k cal a bp (Younger Dryas). The second still/slowstand occurred between c. 10.3 and c. 11.5k cal a bp . Our data provide constraints on the direction and timing of RSL change during deglaciation. Application of the Depth of Closure concept adds an error term to sea‐level reconstructions based on seismic stratigraphic reconstructions. 相似文献
15.
Kristian Vasskog John‐Inge Svendsen Jan Mangerud Kristian Agasster Haaga Arve Svean Eva Maria Lunnan 《第四纪科学杂志》2019,34(6):410-423
Based on six consistent radiocarbon dates from the isolation basins Grødheimsvatnet and Kringlemyr, we estimate a minimum deglaciation age for southern Karmøy, an island in outer Boknafjorden (south‐west Norway), of around 18 000 calibrated years before present (18k cal a bp ). We use microscopic phytoplankton, macrofossils, lithostratigraphic evidence and X‐ray fluorescence data to identify the isolation contacts in the basins, and date them to 17.52–17.18k cal a bp in Grødheimsvatnet [15.57 m above present mean sea level (MSL)] and 16.19–15.80k cal a bp in Kringlemyr (11.99 m above MSL). Combining these data with previous studies, we construct a relative sea‐level (RSL) curve from 18k cal a bp until the present, which is ~3 ka longer than any previous RSL reconstruction from southern Norway. Following deglaciation, southern Karmøy has experienced a net emergence of around 16–19 m, although with significant RSL fluctuations. This includes two RSL minima well below present MSL around ~13.8 and ~10k cal a bp , and two maxima that culminated around 5–7 m above MSL during the Younger Dryas and early to mid‐Holocene, respectively. Considering eustatic sea level and modelled gravitational deformation of the geoid, we estimate a net postglacial isostatic uplift of ~120 m. © 2019 John Wiley & Sons, Ltd 相似文献
16.
Kenai, located on the west coast of the Kenai Peninsula, Alaska, subsided during the great earthquake of AD 1964. Regional land subsidence is recorded within the estuarine stratigraphy as peat overlain by tidal silt and clay. Reconstructions using quantitative diatom transfer functions estimate co‐seismic subsidence (relative sea‐level rise) between 0.28±0.28 m and 0.70±0.28 m followed by rapid post‐seismic recovery. Stratigraphy records an earlier co‐seismic event as a second peat‐silt couplet, dated to ~1500–1400 cal. yr BP with 1.14±0.28 m subsidence. Two decimetre‐scale relative sea‐level rises are more likely the result of glacio‐isostatic responses to late Holocene and Little Ice Age glacier expansions rather than to co‐seismic subsidence during great earthquakes. Comparison with other sites around Cook Inlet, at Girdwood and Ocean View, helps in constructing regional patterns of land‐level change associated with three great earthquakes, AD 1964, ~950–850 cal. yr BP and ~1500–1400 cal. yr BP. Each earthquake has a different spatial pattern of co‐seismic subsidence which indicates that assessment of seismic hazard in southern Alaska requires an understanding of multiple great earthquakes, not only the most recent. All three earthquakes show a pre‐seismic phase of gradual land subsidence that marked the end of relative land uplift caused by inter‐seismic strain accumulation. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
17.
High‐resolution reconstruction of a coastal barrier system: impact of Holocene sea‐level change 下载免费PDF全文
Mikkel Fruergaard Thorbjørn J. Andersen Lars H. Nielsen Peter N. Johannessen Troels Aagaard Morten Pejrup 《Sedimentology》2015,62(3):928-969
This study presents a detailed reconstruction of the sedimentary effects of Holocene sea‐level rise on a modern coastal barrier system. Increasing concern over the evolution of coastal barrier systems due to future accelerated rates of sea‐level rise calls for a better understanding of coastal barrier response to sea‐level changes. The complex evolution and sequence stratigraphic framework of the investigated coastal barrier system is reconstructed using facies analysis, high‐resolution optically stimulated luminescence and radiocarbon dating. During the formation of the coastal barrier system starting 8 to 7 ka rapid relative sea‐level rise outpaced sediment accumulation. Not before rates of relative sea‐level rise had decreased to ca 2 mm yr?1 did sediment accumulation outpace sea‐level rise. From ca 5·5 ka, rates of regionally averaged sediment accumulation increased to 4·3 mm yr?1 and the back‐barrier basin was filled in. This increase in sediment accumulation resulted from retreat of the barrier island and probably also due to formation of a tidal inlet close to the study area. Continued transgression and shoreface retreat created a distinct hiatus and wave ravinement surface in the seaward part of the coastal barrier system before the barrier shoreline stabilized between 5·0 ka and 4·5 ka. Back‐barrier shoreline erosion due to sediment starvation in the back‐barrier basin was pronounced from 4·5 to 2·5 ka but, in the last 2·5 kyr, barrier sedimentation has kept up with and outpaced sea‐level. In the last 0·4 kyr the coastal barrier system has been prograding episodically. Sediment accumulation shows considerable variation, with periods of rapid sediment deposition and periods of non‐deposition or erosion resulting in a highly punctuated sediment record. The study demonstrates how core‐based facies interpretations supported by a high‐resolution chronology and a well‐documented sea‐level history allow identification of depositional environments, erosion surfaces and hiatuses within a very homogeneous stratigraphy, and allow a detailed temporal reconstruction of a coastal barrier system in relation to sea‐level rise and sediment supply. 相似文献
18.
M. J. Roberts J. D. Scourse J. D. Bennell D. G. Huws C. F. Jago B. T. Long 《第四纪科学杂志》2011,26(2):141-155
Deglacial sea‐level index points defining relative sea‐level (RSL) change are critical for testing glacial isostatic adjustment (GIA) model output. Only a few observations are available from North Wales and until recently these provided a poor fit to GIA model output for the British‐Irish Ice Sheet. We present results of an integrated offshore geophysical (seismic reflection), coring (drilling rig), sedimentological, micropalaeontological (foraminifera), biostratigraphical (palynology) and geochronological (AMS 14C) investigation into a sequence of multiple peat/organic sediment horizons interbedded within a thick estuarine–marine sequence of minerogenic clay‐silts to silty sands from the NE Menai Strait, North Wales. Ten new sea‐level index points and nine new limiting dates from the Devensian Late‐glacial and early Holocene are integrated with twelve pre‐existing Holocene sea‐level index points and one limiting point from North Wales to generate a regional RSL record. This record is similar to the most recent GIA predictions for North Wales RSL change, supporting either greater ice load and later deglaciation than in the GIA predictions generated before 2004, or a modified eustatic function. There is no evidence for a mid‐Holocene highstand. Tidally corrected RSL data indicate initial breaching of the Menai Strait between 8.8 and 8.4 ka BP to form a tidal causeway, with final submergence between 5.8 and 4.6 ka BP. Final breaching converted the NE Menai Strait from a flood‐dominated estuary into a high energy ebb tidal delta with extensive tidal scouring of pre‐existing Late‐glacial and Holocene sequences. The study confirms the value of utilising offshore drilling/coring technology to recover sea‐level records which relate to intervals when rates of both eustatic and isostatic change were at their greatest, and therefore of most value for constraining GIA models. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
19.
We reconstruct palaeoclimate and palaeoceanography of the Ísafjarðardjúp fjord system from two cores – one from the inner fjord and one near the fjord mouth – while separating the potential overprinting of relative sea‐level (RSL) and local fjord hydrographic changes on these records. The inner fjord core (B997‐339) reflects local fjord hydrography; the outer fjord core (MD99‐2266) reflects the regional oceanic signal. Glacial marine conditions ended at ca. 10 200 cal. a BP, indicated by both ice‐rafted debris records. The other proxy records show spatial and temporal variability within the fjord system. At the inner fjord site (B997‐339) foraminiferal assemblages and the δ18O record indicate lowered RSL between ca. 10 600 and 8900 cal. a BP and document the onset of fjord water overturning at ca. 8900 cal. a BP, which obscured the climate record. At the fjord mouth (MD99‐2266) mass accumulation rates suggest lowered RSL between ca. 10 200 and 5500 cal. a BP and local freshwater and/or reduced salinities of the Irminger Current water masses affected the δ18O signal between ca. 10 200 and 7900 cal. a BP. At MD99‐2266, foraminiferal fauna record the Holocene Thermal Maximum between ca. 8000 and 5700 cal. a BP and the onset of modern oceanic circulation at ca. 7000 cal. a BP. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
20.
Lateglacial to Holocene relative sea‐level changes in the Stykkishólmur area,northern Snæfellsnes,Iceland 下载免费PDF全文
Comparatively little research has been undertaken on relative sea‐level (RSL) change in western Iceland. This paper presents the results of diatom, tephrochronological and radiocarbon analyses on six isolation basins and two coastal lowland sediment cores from the Stykkishólmur area, northern Snæfellsnes, western Iceland. The analyses provide a reconstruction of Lateglacial to mid‐Holocene RSL changes in the region. The marine limit is measured to 65–69 m above sea level (asl), with formation being estimated at 13.5 cal ka BP. RSL fall initially occurred rapidly following marine limit formation, until ca. 12.6 cal ka BP, when the rate of RSL fall decreased. RSL fell below present in the Stykkishólmur area during the early Holocene (by ca. 10 cal ka BP). The rates of RSL change noted in the Stykkishólmur area demonstrate lesser ice thicknesses in Snæfellsnes than Vestfirðir during the Younger Dryas, when viewed in the regional context. Consequently, the data provide an insight into patterns of glacio‐isostatic adjustment surrounding Breiðafjörður, a hypothesized major ice stream at the Last Glacial Maximum. 相似文献