首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The groundwater of the Korba plain represents major water resources in Tunisia. The Plio‐Quaternary unconfined aquifer of the Cap‐Bon (north‐east Tunisia) is subject to the intensive agricultural activities and high groundwater pumping rates due to the increasing of the groundwater extraction. The degradation of the groundwater quality is characterized by the salinization phenomena. Groundwater were sampled and analysed for physic‐chemical parameters: Ca2+, Mg2+, Na+, K+, Cl, SO42‐, HCO3, NO3, pH, electrical conductivity (EC), and the temperature (T°). The hydrochemical analysis is coupled with the calculation of the saturation indexes (SI gypsum, SI halite, SI calcite and SI dolomite), ionic derivation and with the ion correlations compared to chloride concentrations: Na+/ Cl, Ca2+/ Cl and Mg2+/ Cl ratios. Seawater fractions in the groundwater were calculated using the chloride concentration. Those processes can be used as indicators of seawater intrusion progression. EC methods were also conducted to obtain new informations on the spatial scales and dynamics of the fresh water–seawater interface of coastal groundwater exchange. The mixing zone between freshwater and saltwater was clearly observed from the EC profile in the investigated area where a strong increase in EC with depth was observed, corresponding to the freshwater and saltwater interface. Results of hydrochemical study revealed the presence of direct cation exchange linked to seawater intrusion and dissolution processes associated with cations exchange. These results, together with EC investigation, indicated that the groundwater is affected by seawater intrusion and is still major actor as a source of salinization of the groundwater in Korba coastal plain. Further isotopic and hydrological investigations will be necessary to identify and more understood the underlying mechanisms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Marine intrusion is the most serious problem facing the coastal Jorf shallow aquifer, located in south‐eastern Tunisia on the Mediterranean Sea. Jorf Aquifer is intensively exploited to supply the growing needs of agriculture and domestic sectors. This work proposes a multidisciplinary investigation, involving hydro‐geochemical, geoelectrical survey and geostatistical techniques for modelling the saltwater intrusion. For this purpose, 36 water samples were conducted and analysed. Electric conductivity, pH, total dissolved solids and major ions were measured and analysed. Pie and Durov Diagrams, Q‐mode hierarchical cluster and geostatistical analysis were considered to identify the main groundwater mineralization processes. Results revealed that the Na‐Cl‐Ca‐SO4 is the dominant water type suggesting that dissolution of halite and gypsum was the main mineralization source of groundwater in the central and southern part of study area. However, saltwater intrusion was shown to control groundwater quality essentially in coastal areas. Variographic analyses were used to select the variographic model that best fits the spatial development of apparent resistivity. Kriged apparent resistivity profiles showed an abnormal decrease of resistivity values in the coastal zone, implying highly saline water because of seawater intrusion. Apparent resistivity values also decrease considerably in the faulted areas, suggesting a contribution of faults to seawater intrusion. Finally, saltwater mixing ratio was computed for each sample, and a refined seawater intrusion map was developed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The present study examined groundwater recharge/discharge mechanisms in the regional Central Sudan Rift Basins (CSRB). Aquifers in CSRB constitute poorly sorted silisiclastics of sand, clay and gravels deposited in closed hydrologic systems of the Cretaceous–Pleistocene fluviolacustrine environments. CSRB are bounded to the north by the highlands of the Central African Shear Zone (CAZS) that represents the surface and groundwater divides. Sporadic recharge in the peripheries of the basins along the CASZ occurs subsequent to decadal and centennial storm events. Inflow from the Nile into the aquifers represents an additional source of recharge. Thus, groundwater resources cannot be labelled fossil nor can they be readily recharged. Closed hydrologic troughs located adjacent to the influent Nile system mark areas of main groundwater discharge characterized by lower hydraulic heads. This study has examined mechanisms that derive the discharge of the groundwater in these closed basins and concluded that only evapotranspirative discharge can provide a plausible explanation. Groundwater abstraction is mainly through deep‐rooted trees and effective evaporation. The increase of TDS along the flow indicates local recharge at the peripheries of basins and shows the influence of evaporation and rock/water interaction. The decline in groundwater level along a flow path was calculated using Darcy's law to estimate average recharge and evapotranspirative discharge, which are equal under natural equilibrium and make the only fluxes in CSRB. Steady‐state 2D flow modelling has demonstrated that an average recharge of 4–8 mm yr?1 and evapotranspirative discharge of 1–22 mm yr?1 will maintain natural equilibrium in CSRB. Sporadic storms provide recharge in the highlands to preserve the current hydraulic gradient and maintain aquifer dynamics. Simulated recharge from the Nile totals about 17·5 mm yr?1 and is therefore a significant contributor to the water balance. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Lahcen Zouhri 《水文研究》2010,24(10):1308-1317
An electrical prospecting survey is conducted in the Rharb basin, a semi‐arid region in the southern part of the Rifean Cordillera (Morocco) to delineate characteristics of the aquifer and the groundwater affected by the marine intrusion related to Atlantic Ocean. Analysis and interpretations of electrical soundings, bi‐logarithmic diagrams and the geoelectrical sections highlight a monolayer aquifer in the southern part, a multilayer system in the northern part of the Rharb basin and lenticular semi‐permeable formations. Several electrical layers have been deduced from the analysis of bi‐logarithmic diagrams: resistant superficial level (R0), conducting superficial level (C0), resistant level (R), intermediary resistant level (R′), conducting level (Cp) and intermediary layer of resistivity (AT). Spatial distribution of the resistivity deduced from the interpretation of apparent resistivity maps (AB = 400 and 1000 m) and the decreasing of resistivity values (35–10 Ωm), in particular in the coastal zone show that this heterogeneity is related to several anomalies identified in the coastal area, which result from hydraulic and geological processes: (i) heterogeneous hydraulic conductivity in particular in the southern part of the Rharb; (ii) lateral facies and synsedimentary faulting and (iii) the relationship between the electrical conductivity and chloride concentration of groundwater shows that salinity is the most important factor controlling resistivity. The distribution of fresh/salt‐water zones and their variations in space along geoelectrical sections are established through converting subsurface depth‐resistivity models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Chahardouly basin is located in the western part of Iran and is characterized by semi‐arid climatic conditions and scarcity in water resources. The main aquifer systems are developed within alluvial deposits. The availability of groundwater is rather erratic owing to the occurrence of hard rock formation and a saline zone in some parts of the area. The aquifer systems of the area show signs of depletion, which have taken place in recent years due to a decline in water levels. Groundwater samples collected from shallow and deep wells were analysed to examine the quality characteristics of groundwater. The major ion chemistry of groundwater is dominated by Ca2+ and HCO3?, while higher values of total dissolved solids (TDS) in groundwater are associated with high concentrations of all major ions. An increase in salinity is recorded in the down‐gradient part of the basin. The occurrence of saline groundwater, as witnessed by the high electrical conductivity (EC), may be attributed to the long residence time of water and the dissolution of minerals, as well as evaporation of rainfall and irrigation return flow. Based on SAR values and sodium content (%Na), salinity appears to be responsible for the poor groundwater quality, rendering most of the samples not suitable for irrigation use. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Abstract

The Korba aquifer, located in the north of Tunisia, suffers heavily from salinization due to seawater intrusion. In 2000, the aquifer was exploited from more than 9000 wells. The problem is that no precise information was recorded concerning the current extraction rates, their spatial distribution, or their evolution in time. In this study, a geostatistical model of the exploitation rates was constructed based on a multi-linear regression model combining incomplete direct data and exhaustive secondary information. The impacts of the uncertainty on the spatial distribution of the pumping rates on seawater intrusion were evaluated using a 3-D density-dependent groundwater model. To circumvent the large amount of computing time required to run transient models, the simulations were run in a parallel fashion on the Grid infrastructure provided by the Enabling Grid for E-Science in Europe project. Monte Carlo simulations results showed that 8.3% of the aquifer area is affected by input uncertainty.

Citation Kerrou, J., Renard, P., Lecca, G. & Tarhouni, J. (2010 Kerrou, J., Renard, P. and Tarhouni, J. 2010. Status of the Korba groundwater resources (Tunisia): observations and three-dimensional modelling of seawater intrusion. Hydrogeol. J., 18(5): 11731190. doi:10.1007/s10040-010-0573-5[Crossref], [Web of Science ®] [Google Scholar]) Grid-enabled Monte Carlo analysis of the impacts of uncertain discharge rates on seawater intrusion in the Korba aquifer (Tunisia). Hydrol. Sci. J. 55(8), 1325–1336.  相似文献   

7.
The time domain electromagnetic method (TDEM) is applied to monitor, to delineate and to map the saltwater intrusion zones in the Mediterranean Plio‐Quaternary aquifer. Forty‐two TDEM soundings were carried out in the coastal plain of Nabeul–Hammamet region (NE Tunisia). TDEM resistivity data were correlated with the existing borehole logging data to assign them to a particular lithology and to provide information about the position of the freshwater–seawater transition zone. The geoelectric sections showing the vertical configuration of seawater intrusion, with the brackish‐salty‐saturated zones, have a resistivity ranging from ~0.1 to 5 Ω?m and are detected at a depth lower than 1.5 m. The salinized zones are located at Nabeul (Sidi Moussa, Sidi El Mahrsi, Al Gasba and Mrazgua) and at Hammamet (Touristic zone of Hammamet north and south, Baraket Essahel) and reached a distance of 4 km from the coastline, indicating a severe state for the aquifer in these zones. These TDEM results are confirmed by the increase of chloride concentration content in the analysed water samples of monitoring wells. Moreover, in the northeastern part, the presence of a saltwater front located far from the coast and along the NW–SE major surface fault can be explained by two hypothesis: (i) this fault seems to provide a conduit for seawater to move readily towards the water wells and (ii) the clay and gypsum infiltration of marine Messinian deposits through the fault plane leads to low resistivities. Finally, it comes out from this study that TDEM survey has successfully depicted salinized zones of this coastal aquifer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Multiscene Landsat 5 TM imagery, Principal Component Analysis, and the Normalized Difference Vegetation Index were used to produce the first region‐scale map of riparian vegetation for the Pilbara (230,000 km2), Western Australia. Riparian vegetation is an environmentally important habitat in the arid and desert climate of the Pilbara. These habitats are supported by infrequent flow events and in some locations by groundwater discharge. Our analysis suggests that riparian vegetation covers less than 4% of the Pilbara region, whereas almost 10.5% of this area is composed of groundwater dependent vegetation (GDV). GDV is often associated with open water (river pools), providing refugia for a variety of species. GDV has an extremely high ecological value and are often important Indigenous sites. This paper demonstrates how Landsat data calibrated to Top of Atmosphere reflectance can be used to delineate riparian vegetation across 16 Landsat scenes and two Universal Transverse Mercator spatial zones. The proposed method is able to delineate riparian vegetation and GDV, without the need for Bidirectional Reflectance Distribution Function correction. Results were validated using ground truth data from local and regional scale vegetation surveys.  相似文献   

9.
Accurate runoff and soil erosion modeling is constrained by data availability, particularly for physically based models such as OpenLISEM that are data demanding, as the processes are calculated on a cell‐by‐cell basis. The first decision when using such models is to select mapping units that best reflect the spatial variability of the soil and hydraulic properties in the catchment. In environments with limited data, available maps are usually generic, with large units that may lump together the values of the soil properties, affecting the spatial patterns of the predictions and output values in the outlet. Conversely, the output results may be equally acceptable, following the principle of equifinality. To studyhow the mapping method selected affects the model outputs, four types of input maps with different degrees of complexity were created: average values allocated to general soil map units (ASG1), average values allocated to detailed map units (ASG2), values interpolated by ordinary kriging (OK) and interpolated by kriging with external drift (KED). The study area was Ribeira Seca, a 90 km2 catchment located in Santiago Island, Cape Verde (West Africa), a semi‐arid country subject to scarce but extreme rainfall during the short tropical summer monsoon. To evaluate the influence of rainfall on runoff and erosion, two storm events with different intensity and duration were considered. OK and KED inputs produced similar results, with the latter being closer to the observed hydrographs. The highest soil losses were obtained with KED (43 ton ha? 1 for the strongest event). To improve the results of soil loss predictions, higher accurate spatial information on the processes is needed; however, spatial information of input soil properties alone is not enough in complex landscapes. The results demonstrate the importance of selecting the appropriate mapping strategy to obtain reliable runoff and erosion estimates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
This paper studies the effect of drought and pumping discharge on groundwater supplies and marine intrusion. The investigation concerns the Mamora coastal aquifer, northwest of Morocco. A large‐scale groundwater model was established to model (a) the amount of freshwater discharge towards the ocean and the sea water volumes flowing inland as a consequence of the inverse hydraulic gradient, (b) the impact of drought and pumping discharge on the water table level and, as a consequence, on marine water intrusion. In fact, the simulated submarine groundwater discharge (SGWD) would decrease from 864 m3/d/km in 1987 to 425 m3/d/km in 2000. The simulated volumes of sea water intruding the aquifer as a result of inverse hydraulic gradient would increase from 0·25 Mm3/y in 1987 to 0·3 Mm3/y in 2000. As a consequence of a negative rainfall gradient of −5 mm/y, the simulated SGWD would decline to 9 m3/d/km and the sea water intrusion (SWI) would increase to 0·35 Mm3/y since the year 2010. Due to insufficient data on the trend of pumping discharge, a hypothetical increase of this latter from 38·3 Mm3/y to 53·2 Mm3/y is simulated to induce an increase of marine water intrusion from 0·25 Mm3/y to 0·9 Mm3/y. Consequently, to optimally exploit this seemingly fragile coastal aquifer, a plan of future actions to implement is proposed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Ammonium occurrence in a salinized lowland coastal aquifer (Ferrara,Italy)   总被引:1,自引:0,他引:1  
To understand the spatial distribution and the possible sources of high ammonium concentration in the unconfined coastal aquifer of the Po River Delta lowland (Italy), a detailed characterization of inorganic nitrogen species was completed. A total of 59 boreholes were drilled to collect core samples and groundwater samples of the aquifer. Among them, four piezometers, located along a representative flow line, were chosen to monitor the inorganic nitrogen concentrations with depth. Ammonium is the prevalent nitrogen inorganic species in groundwater, and its concentration increases with depth and salinity. Very high ammonium concentrations are found in coincidence with peaty sediments in the salinized anoxic aquifer and in the low‐lying aquitard. In particular, the elevated ammonium concentration derives from mineralization of organic matter present in fine sediments deposited in paleo‐marsh environments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Seawater intrusion causes many problems for groundwater quality, whereas natural remediation is time consuming. However, in cases where groundwater replenishment is feasible, groundwater quality remediation is possible and rapid. The alluvial aquifer in the lowland of the Glafkos River basin, which extends south of Patras city, was for over 30 years the major water source supplying the broader area. Groundwater quality has been degraded due to seawater intrusion, caused by overpumping and generally by inappropriate groundwater management. During the last decade, groundwater quality has been remedied due to diminished groundwater abstractions. The remediation rate was further higher because of rapid discharge of the brackish groundwater, through wells with freely flowing water in the coastal area, where, however, groundwater quality remains low. This paper deals with the hydrogeochemical processes that take place in the area. It is ascertained that ion exchange and mineral dilution processes are dominant. The ion relations between chloride, bromide and iodide, as well as the distribution maps of their concentrations, were used to determine the spatial distribution of the seawater intrusion front. In the lower part of the area in a distance from 1000 and 1500 m from the coast, the rBr?/rCl? ratio showed low values (<2·5 × 10?3) similar to those of seawater. The rI?/rCl? ratio also presented low values (<7 × 10?5), with the lowest one (2·7 × 10?5) detected along the coastline. In the upper part of the area, a gradual change of those ratios was observed upstream, until they receive values similar to those of the surface waters of Glafkos River. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Hydraulic connectivity on hillslopes and the existence of preferred soil moisture states in a catchment have important controls on runoff generation. In this study we investigate the relationships between soil moisture patterns, lateral hillslope flow, and streamflow generation in a semi‐arid, snowmelt‐driven catchment. We identify five soil moisture conditions that occur during a year and present a conceptual model based on field studies and computer simulations of how streamflow is generated with respect to the soil moisture conditions. The five soil moisture conditions are (1) a summer dry period, (2) a transitional fall wetting period, (3) a winter wet, low‐flux period, (4) a spring wet, high‐flux period, and (5) a transitional late‐spring drying period. Transitions between the periods are driven by changes in the water balance between rain, snow, snowmelt and evapotranspiration. Low rates of water input to the soil during the winter allow dry soil regions to persist at the soil–bedrock interface, which act as barriers to lateral flow. Once the dry‐soil flow barriers are wetted, whole‐slope hydraulic connectivity is established, lateral flow can occur, and upland soils are in direct connection with the near‐stream soil moisture. This whole‐slope connectivity can alter near‐stream hydraulics and modify the delivery of water, pressure, and solutes to the stream. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
This paper describes the application of environmental isotopes and injected tracer techniques in estimating the contribution of storms as well as annual precipitation to groundwater recharge and its circulation, in the semi‐arid region of Bagepalli, Kolar district, Karnataka. Environmental isotopes 2H, 18O and 3H were used to study the effect of storms on the hydrological system, and an isotope balance was used to compute the contribution of a storm component to the groundwater. Some of the groundwater samples collected during the post‐storm periods were highly depleted in stable isotope content with higher deuterium excess relative to groundwater from the pre‐storm periods. Significant variation in deuterium excess in groundwater from the same area, collected in two different periods, indicates the different origin of air masses. The estimated recharge component of a storm event of 600 mm to the groundwater was found to be in the range of 117–165 mm. There was no significant variation in environmental tritium content of post‐storm and pre‐storm groundwater, indicating the fast circulation of groundwater in the system. After completion of the environmental isotope work, an injected radiotracer 3H technique was applied to estimate the direct recharge of total precipitation to the groundwater. The estimated recharge to the groundwater is 33 mm of the 550 mm annual precipitation during 1992. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
This paper addresses the application of a data‐based mechanistic (DBM) modelling approach using transfer function models (TFMs) with non‐linear rainfall filtering to predict runoff generation from a semi‐arid catchment (795 km2) in Tanzania. With DBM modelling, time series of rainfall and streamflow were allowed to suggest an appropriate model structure compatible with the data available. The model structures were evaluated by looking at how well the model fitted the data, and how well the parameters of the model were estimated. The results indicated that a parallel model structure is appropriate with a proportion of the runoff being routed through a fast flow pathway and the remainder through a slow flow pathway. Finally, the study employed a Generalized Likelihood Uncertainty Estimation (GLUE) methodology to evaluate the parameter sensitivity and predictive uncertainty based on the feasible parameter ranges chosen from the initial analysis of recession curves and calibration of the TFM. Results showed that parameters that control the slow flow pathway are relatively more sensitive than those that control the fast flow pathway of the hydrograph. Within the GLUE framework, it was found that multiple acceptable parameter sets give a range of predictions. This was found to be an advantage, since it allows the possibility of assessing the uncertainty in predictions as conditioned on the calibration data and then using that uncertainty as part of the decision‐making process arising from any rainfall‐runoff modelling project. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
In the central part of the Bolivian Altiplano, the shallow groundwater presents electrical conductivities ranging from 0·1 to 20 mS/cm. In order to study the origin of this salinity pattern, a good knowledge is required of the geometry of the aquifer at depth. In this study, geophysics has been used to complement the sparse data available from drill holes. One hundred time‐domain electromagnetic (TDEM) soundings were carried out over an area of 1750 km2. About 20 geological logs were available close to some of the TDEM soundings. Three intermediate results were obtained from the combined data: (i) the relationship between the electrical conductivity of the groundwater and the formation resistivity, (ii) geoelectrical cross‐sections and (iii) geoelectrical maps at various depths. The limited data set shows a relationship between resistivity and the nature of the rock. From the cross‐sections, a conductive substratum with a resistivity of less than 1 Ω·m was identified at most of the sites at depths ranging from 50 to 350 m. This substratum could be a clay‐rich formation containing brines. Using derived relationships, maps of the nature of the formation (sandy, intermediate and clayey sediments) were established at depths of 10 and 50 m. Discrimination between sand and clays was impossible where groundwater conductivity is high (>3 mS/cm). In the central part of the area, where the groundwater conductivity is low, sandy sediments are likely to be present from the surface to a depth of more than 200 m. Clayey sediments are more likely to be present in the south‐east and probably constitute a hydraulic barrier to groundwater flow. In conclusion, the study demonstrates the efficiency of the TDEM sounding method to map conductive zones. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
We characterize the precipitation and groundwater in a mountainous (peaks slightly above 3000 m a.s.l.), semi‐arid river basin in SE Spain in terms of the isotopes 18O and 2H. This basin, with an extension of about 7000 km2, is an ideal site for such a study because fronts from the Atlantic and the Mediterranean converge here. Much of the land is farmed and irrigated both by groundwater and runoff water collected in reservoirs. A total of approximately 100 water samples from precipitation and 300 from groundwater have been analysed. To sample precipitation we set up a network of 39 stations at different altitudes (800–1700 m a.s.l.), with which we were able to collect the rain and snowfall from 29 separate events between July 2005 and April 2007 and take monthly samples during the periods of maximum recharge of the aquifers. To characterize the groundwater we set up a control network of 43 points (23 springs and 20 wells) to sample every 3 months the main aquifers and both the thermal and non‐thermal groundwater. We also sampled two shallow‐water sites (a reservoir and a river). The isotope composition of the precipitation forms a local meteoric water line (LMWL) characterized by the equation δD = 7·72δ18O + 9·90, with mean values for δ18O and δD of − 10·28‰ and − 69·33‰, respectively, and 12·9‰ for the d‐excess value. To correlate the isotope composition of the rainfall water with groundwater we calculated the weighted local meteoric water line (WLMWL), characterized by the equation δD = 7·40δ18O + 7·24, which takes into account the quantity of water precipitated during each event. These values of (dδD/dδ18O)< 8 and d‐excess (δD–8δ18O)< 10 in each curve bear witness to the ‘amount effect’, an effect which is more manifest between May and September, when the ground temperature is higher. Other effects noted in the basin were those of altitude and the continental influence. The isotopic compositions of the groundwater are represented by the equation δD = 4·79δ18O − 18·64. The groundwater is richer in heavy isotopes than the rainfall, with mean values of − 8·48‰ for δ18O and − 59·27‰ for δD. The isotope enrichment processes detected include a higher rate of evaporation from detrital aquifers than from carbonate ones, the effects of recharging aquifers from irrigation return flow and/or from reservoirs' leakage and enrichment in δ18O from thermal water. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Spatially distributed groundwater recharge was simulated for a segment of a semi‐arid valley using three different treatments of meteorological input data and potential evapotranspiration (PET). For the same area, timeframe, land cover characteristics and soil properties, groundwater recharge was estimate using (i) single‐station climate data with monthly PET calculated by the Thornthwaite method; (ii) single‐station climate data with daily PET calculated by the Penman–Monteith method; and (iii) daily gridded climate data with spatially distributed PET calculated using the Penman–Monteith method. For each treatment, the magnitude and distribution of actual evapotranspiration (AET) for summer months compared well with those estimated for a 5‐year crop study, suggesting that the near‐surface hydrological processes were replicated and that subsequent groundwater recharge rates are realistic. However, for winter months, calculated AET was near zero when using the Thornthwaite PET method. Mean annual groundwater recharge varied from ~3·2 to 10·0 mm when PET was calculated by the Thornthwaite method, and from ~1·8 to 7·5 mm when PET was calculated by the Penman–Monteith method. Comparisons of bivariate plots of seasonal recharge rates estimated from single‐station versus gridded surface climate reveal that there is greater variability between the different methods for spring months, which is the season of greatest recharge. Furthermore, these seasonal differences are shown to provide different results when compared to the depth to water table, which could lead to different results of evaporative extinction depth. These findings illustrate potential consequences of using different approaches for representing spatial meteorological input data, which could provide conflicting predictions when modelling the influence of climate change on groundwater recharge. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
G. Stamatis  K. Voudouris 《水文研究》2003,17(12):2327-2345
In this paper the groundwater quality of the southern part of Korinthos region (north‐east Peloponnese) is discussed. The geology is characterized by a thick sequence of Neogene marls alternating with sandstones, overlain by superficial Quaternary deposits. The latter consist of a mixture of loose materials such as conglomerates, marly sandstones, sands and clay to silty sands. The area is crossed by a fault system parallel to the coastline, and the Quaternary sediments have formed extended Tyrrhenian marine terraces. Two aquifers have been identified in the area. The first is unconfined and occurs within the Quaternary sediments whereas the other is a deep confined aquifer occurring within the underlying Neogene marl series. Analysis of hydrochemical evolution over the past 30 years has indicated significant deterioration of quality owing to seawater intrusion and nitrate pollution. The various sources of pollution have rendered, to a large extent, shallow groundwater unsuitable not only for potable water supply but also for irrigation purposes. However, this is not the case for the deeper confined aquifer. Statistical analysis was used to explore the evolution of salinization during the years 1968 and 1998. In view of the alarming conditions caused by the documented groundwater quality deterioration, the need for integrated water resources management is stressed to maintain the socio‐economic growth of the region studied. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
Anisotropy and heterogeneity of hydraulic conductivity (K) are seldom considered in models of mire hydrology. We investigated the effect of anisotropy and heterogeneity on groundwater flow in bog peat using a steady‐state groundwater model. In five model simulations, four sets of K data were used. The first set comprised measured K values from an anisotropic and heterogeneous bog peat. These data were aggregated to produce the following simplified data sets: an isotropic and heterogeneous distribution of K; an isotropic and homogeneous distribution; and an anisotropic and homogeneous distribution. We demonstrate that, where anisotropy and heterogeneity exist, groundwater flow in bog peat is complex. Fine‐scale variations in K have the potential to influence patterns and rates of groundwater flow. However, for our data at least, it is heterogeneity and not anisotropy that has the greater influence on producing complex patterns of groundwater flow. We also demonstrate that patterns and rates of groundwater flow are simplified and reduced when measured K values are aggregated to create a more uniform distribution of K. For example, when measured K values are aggregated to produce isotropy and homogeneity, the rate of modelled seepage is reduced by 28%. We also show that when measured K values are used, the presence of a drainage ditch can increase seepage through a modelled cross‐section. Our work has implications for the accurate interpretation of hydraulic head data obtained from peat soils, and also the understanding of the effect of drainage ditches on patterns and rates of groundwater flow. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号