首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultimate specific yield, i.e. the specific yield under steady‐state condition, is generally dependent on the water table depth in the shallow groundwater systems. This paper presents a new expression to describe this relationship. The expression is based on the relationship between soil water content–soil depths below ground surface near the saturation zone, i.e. water content profile, which can be fitted by the van Genuchten model. Because this model is highly nonlinear, a Taylor series expansion was used to solve the integral equation for specific yield in our study. The new expression was verified by a drainage experiment, and the results demonstrated that the new expression is reliable for eolian sand when the range of water table fluctuation is less than 30 cm. The expression is easily applicable because knowledge of the water content profile near the saturation zone is the only requirement. Compared with the expression obtained from the Brooks–Corey model, the new expression can be used for a variety of aquifer and soil media. The improved accuracy of the specific yield provides a better estimate of discharge rates in shallow groundwater systems with water table fluctuations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The soil water retention function is needed for modeling multiphase flow in porous media. Traditional techniques for measuring the soil water retention function, such as the hanging water column or pressure cell methods, yield average water retention data which have to be modeled using inverse procedures to extract relevant point parameters. In this study, we have developed a technique for directly measuring multiple point (pixel-scale) water retention curves for a repacked sand material using 2-D neutron radiography. Neutron radiographic images were obtained under quasi-equilibrium conditions at nine imposed basal matric potentials during monotonic drying of Flint sand at the High Flux Isotope Reactor (HFIR) Cold Guide (CG) 1D beamline at Oak Ridge National Laboratory. All of the images were normalized with respect to an image of the oven dry sand column. Volumetric water contents were computed on a pixel by pixel basis using an empirical calibration equation after taking into account beam hardening and geometric corrections. Corresponding matric potentials were calculated from the imposed basal matric potential and pixel elevations. Volumetric water content and matric potential data pairs corresponding to 120 selected pixels were used to construct 120 point water retention curves. Each curve was fitted to the Brooks and Corey equation using segmented non-linear regression in SAS. A 98.5% convergence rate was achieved resulting in 115 estimates of the four Brooks and Corey parameters. A single Brooks and Corey point water retention function was constructed for Flint sand using the median values of these parameter estimates. This curve corresponded closely with the point Brooks and Corey function inversely extracted from the average water retention data using TrueCell. Forward numerical simulations performed using HYDRUS 1-D showed that the cumulative outflows predicted using the point Brooks and Corey functions from both the direct (neutron radiography) and inverse (TrueCell) methods were in good agreement with independent measurements of cumulative outflow determined with a transducer. Our results indicate that neutron radiography can be used to quantify the point water retention curve of homogeneous mineral particles. Further research will be needed to extend this approach to more heterogeneous porous media.  相似文献   

3.
Hydrological scientists develop perceptual models of the catchments they study, using field measurements and observations to build an understanding of the dominant processes controlling the hydrological response. However, conceptual and numerical models used to simulate catchment behaviour often fail to take advantage of this knowledge. It is common instead to use a pre‐defined model structure which can only be fitted to the catchment via parameter calibration. In this article, we suggest an alternative approach where different sources of field data are used to build a synthesis of dominant hydrological processes and hence provide recommendations for representing those processes in a time‐stepping simulation model. Using analysis of precipitation, flow and soil moisture data, recommendations are made for a comprehensive set of modelling decisions, including Evapotranspiration (ET) parameterization, vertical drainage threshold and behaviour, depth and water holding capacity of the active soil zone, unsaturated and saturated zone model architecture and deep groundwater flow behaviour. The second article in this two‐part series implements those recommendations and tests the capability of different model sub‐components to represent the observed hydrological processes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The Beerkan method based on in situ single‐ring water infiltration experiments along with the relevant specific Beerkan estimation of soil transfer parameters (BEST) algorithm is attractive for simple soil hydraulic characterization. However, the BEST algorithm may lead to erroneous or null values for the saturated hydraulic conductivity and sorptivity especially when there are only few infiltration data points under the transient flow state, either for sandy soil or soils in wet conditions. This study developed an alternative algorithm for analysis of the Beerkan infiltration experiment referred to as BEST‐generalized likelihood uncertainty estimation (GLUE). The proposed method estimates the scale parameters of van Genuchten water retention and Brooks–Corey hydraulic conductivity functions through the GLUE methodology. The GLUE method is a Bayesian Monte Carlo parameter estimation technique that makes use of a likelihood function to measure the goodness‐of‐fit between modelled and observed data. The results showed that using a combination of three different likelihood measurements based on observed transient flow, steady‐state flow and experimental steady‐state infiltration rate made the BEST‐GLUE procedure capable of performing an efficient inverse analysis of Beerkan infiltration experiments. Therefore, it is more applicable for a wider range of soils with contrasting texture, structure, and initial and saturated water content. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Ross [Ross PJ. Modeling soil water and solute transport – fast, simplified numerical solutions. Agron J 2003;95:1352–61] developed a fast, simplified method for solving Richards’ equation. This non-iterative 1D approach, using Brooks and Corey [Brooks RH, Corey AT. Hydraulic properties of porous media. Hydrol. papers, Colorado St. Univ., Fort Collins; 1964] hydraulic functions, allows a significant reduction in computing time while maintaining the accuracy of the results. The first aim of this work is to confirm these results in a more extensive set of problems, including those that would lead to serious numerical difficulties for the standard numerical method. The second aim is to validate a generalisation of the Ross method to other mathematical representations of hydraulic functions.  相似文献   

6.
A conceptual water‐balance model was modified from a point application to be distributed for evaluating the spatial distribution of watershed water balance based on daily precipitation, temperature and other hydrological parameters. The model was calibrated by comparing simulated daily variation in soil moisture with field observed data and results of another model that simulates the vertical soil moisture flow by numerically solving Richards' equation. The impacts of soil and land use on the hydrological components of the water balance, such as evapotranspiration, soil moisture deficit, runoff and subsurface drainage, were evaluated with the calibrated model in this study. Given the same meteorological conditions and land use, the soil moisture deficit, evapotranspiration and surface runoff increase, and subsurface drainage decreases, as the available water capacity of soil increases. Among various land uses, alfalfa produced high soil moisture deficit and evapotranspiration and lower surface runoff and subsurface drainage, whereas soybeans produced an opposite trend. The simulated distribution of various hydrological components shows the combined effect of soil and land use. Simulated hydrological components compare well with observed data. The study demonstrated that the distributed water balance approach is efficient and has advantages over the use of single average value of hydrological variables and the application at a single point in the traditional practice. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
Draining soil water is an important runoff generator. This study aims to describe runoff‐generating processes on a plot scale (1 m2) in hydromorphic soils with different initial soil water contents. We irrigated 16 hydromorphic soils in the northern Pre‐Alps in Switzerland and recorded the variations in water content with time domain reflectometry (TDR) at five different depths per plot. Sprinkling was repeated three times at approximately 23‐h intervals and lasted for 1 h with a volume flux density of 70 mm h?1. The comparison between the measured water content of the drainages with two physically based models revealed which of the flow processes dominated during water recessions. We distinguished between vertical drainage, lateral outflow and infiltration without drainage. Approximately 45% of all recorded time series of soil water content did not drain within approximately 20 h after the end of irrigation, about 25% drained laterally and 10% of the outflow was vertical. The drainage of the remaining 20% was the result of both lateral and vertical water flow (≈12%), or was not interpretable with the approaches applied (≈8%). Vertical flow was only observed in layers without any or with just a few hydromorphic features. Lateral draining horizons had approximately half the storage capacity and amplitude of water recession of those with vertical flow. Vertical flow was only observed in the upper soil horizons. Thus, vertical flow transmitted water to layers with lateral outflow and did not delay runoff by deep percolation. Increasing initial soil moisture increased the percentage of water content recordings according to a lateral outflow slightly, while vertical flow was less frequent. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Estimates of groundwater volumes available in semiarid regions that rely on water balance calculations require the determination of both surface to groundwater lag times and volumes from irrigation or rainfall initiated recharge. Subsurface geologic material hydraulic properties (e.g. hydraulic conductivities, water retention functions) necessary for unsaturated flow modelling are rarely available as are the instrumented field tests that might determine such lag times. Here we develop a simple two‐parameter (specific yield, Sy, and pore‐size distribution index, λ), one‐dimensional unsaturated flow model from simplifications of the Richards equation (using the Brooks‐Corey relationships) to determine lag times from agricultural deep drainage associated with the irrigation of alfalfa hay and various row crops in the Antelope Valley of California, USA. Model‐predicted lag times to depths of 85 m bgs (below ground surface) were similar to that measured in a 2‐year ponded recharge field trial, slightly overestimating that measured by approximately 15% (0.51 vs 0.44 years). Lag time estimates were most sensitive to estimated deep percolation rates and roughly equally sensitive to the model hydraulic parameters. Generally, as subsurface material textures coarsen towards larger Sy and λ values for all Sy >10%, lag times progressively increase; however, at Sy <10%, lag times decrease substantially suggesting that particular combinations of Sy and λ values that may be associated with similarly textured materials can result in the prediction of different lag times for Sy approximately 10%. Overall, lag times of 1–3 years to a depth of 69 m bgs were estimated from deep drainage of agricultural irrigation across a variety of irrigation schedules and subsurface materials. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Laboratory experiments were used to investigate the influence of simulated cracks and roots on soil water repellency (SWR) dynamics with and without basal drainage impedance in wetting–drying cycles. Observations and measurements were taken following water application equivalent to 9.2‐mm rainfall and then periodically during 80 h of drying. In total, 180 experiments were carried out using 60 samples of three homogeneous, reconstituted soils with different organic matter contents and textures, but of similar initial severity of SWR [18% molarity of an ethanol droplet (MED)]. Water flowing down the cracks and roots left the soil matrix largely dry and water repellent except for vertical zones adjacent to them and a shallow surface layer. A hydrophilic shallow basal layer was produced in experiments where basal drainage was impeded. During drying, changes in SWR were largely confined to the zones that had been wetted. Soil that had remained dry retained the initial severity of SWR, while wetted soil re‐established either the same or slightly lower severity of SWR. In organic‐rich soil, the scale of recovery to pre‐wetting MED levels was much higher, perhaps associated with temporarily raised levels (up to 36% MED) of SWR recorded during drying of these soils. With all three soils, the re‐establishment of the original SWR level was less widespread for surface than subsurface soil and with impeded than unimpeded basal drainage. Key findings are that as follows: (1) with unimpeded basal drainage, the soils remained at pre‐wetting repellency levels except for a wettable thin surface layer and zones close to roots and cracks, (2) basal drainage impedance produced hydrophilic basal and surface layers, (3) thorough wetting delayed a return to water‐repellent conditions on drying, and (4) temporarily enhanced SWR occurred in organic‐rich soils at intermediate moisture levels during drying. Hydrological implications are discussed, and the roles of cracks and roots are placed into context with other influences on preferential flow and SWR under field conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Numerical experiments are performed to explore the influence of model assumptions and parameters on the prediction of two-phase flow during long-term NAPL redistribution. Sensitivity of numerical solutions to grid resolution and the use of alternative fitting functions for capillary retention data are examined. Due to the inclusion of capillary entrapment, numerical solutions in one- and two-dimensions are strongly dependent on grid resolution. Solution convergence tests based upon spreading behavior reveal that nodal spacings as small as one-fifth to one-tenth of the displacement pressure head may be required to obtain reasonable convergence in some simulations. Solutions employing the Brooks and Corey and van Genuchten functional forms are found to yield different solution behavior. These differences are attributed to the representation of capillary pressure below the entry pressure. Brooks and Corey solutions exhibited greater spreading, less inclination to penetrate semi-permeable layers, and poorer spatial convergence behavior.  相似文献   

11.
ABSTRACT

The problem of analysing and predicting the effect of vegetation removal on the hydrological regime or soil water potential on steep slopes was approached through an experimental model set up in a greenhouse. A tilting soil bin positioned at different slope angles simulated a soil layer overlying impervious bedrock, and a forest cover was modelled by a number of small trees. The response of the soil water potential to simulated rain storms was studied first for the forested and later for the cutover slope. Transpiration in the greenhouse was measured by means of phytometers.

The results showed that a forest cover accelerates the soil moisture depletion in a shallow soil mantle regardless of the steepness of the slope. For a storm of given intensity and duration, the recharge phase for the clear-cut slope was therefore much shorter than for the forested one. The slope angle was only responsible for the distribution of recharge and the initial hydrological conditions when drainage had ceased. During the drainage phase the flow in the slope was two-dimensional, whereas it was essentially one-dimensional (i.e. vertical upwards) after field capacity had been reached. At this point the matric suction increased exponentially with time for suctions within the tensiometer range. Within this same range water loss from any point in the soil took place at a constant rate. This result is consistent with field observations.  相似文献   

12.
Accurate estimation of the soil water balance (SWB) is important for a number of applications (e.g. environmental, meteorological, agronomical and hydrological). The objective of this study was to develop and test techniques for the estimation of soil water fluxes and SWB components (particularly infiltration, evaporation and drainage below the root zone) from soil water records. The work presented here is based on profile soil moisture data measured using dielectric methods, at 30‐min resolution, at an experimental site with different vegetation covers (barley, sunflower and bare soil). Estimates of infiltration were derived by assuming that observed gains in the soil profile water content during rainfall were due to infiltration. Inaccuracies related to diurnal fluctuations present in the dielectric‐based soil water records are resolved by filtering the data with adequate threshold values. Inconsistencies caused by the redistribution of water after rain events were corrected by allowing for a redistribution period before computing water gains. Estimates of evaporation and drainage were derived from water losses above and below the deepest zero flux plane (ZFP), respectively. The evaporation estimates for the sunflower field were compared to evaporation data obtained with an eddy covariance (EC) system located elsewhere in the field. The EC estimate of total evaporation for the growing season was about 25% larger than that derived from the soil water records. This was consistent with differences in crop growth (based on direct measurements of biomass, and field mapping of vegetation using laser altimetry) between the EC footprint and the area of the field used for soil moisture monitoring. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Rapidly depleting unconfined aquifers are the primary source of water for irrigation on the North China Plain. Yet, despite its critical importance, groundwater recharge to the Plain remains an enigma. We introduce a one‐dimensional soil‐water‐balance model to estimate precipitation‐ and irrigation‐generated areal recharge from commonly available crop and soil characteristics and climate data. To limit input data needs and to simplify calculations, the model assumes that water flows vertically downward under a unit gradient; infiltration and evapotranspiration are separate, sequential processes; evapotranspiration is allocated to evaporation and transpiration as a function of leaf‐area index and is limited by soil‐moisture content; and evaporation and transpiration are distributed through the soil profile as exponential functions of soil and root depth, respectively. For calibration, model‐calculated water contents of 11 soil‐depth intervals from 0 to 200 cm were compared with measured water contents of loam soil at four sites in Luancheng County, Hebei Province, over 3 years (1998–2001). Each 50‐m2 site was identically cropped with winter wheat and summer maize, but received a different irrigation treatment. Average root mean‐squared error between measured and model‐calculated water content of the top 180 cm was 4·2 cm, or 9·3% of average total water content. In addition, model‐calculated evapotranspiration compared well with that measured by a large‐scale lysimeter. To test the model, 12 additional sites were simulated successfully. Model results demonstrate that drainage from the soil profile is not a constant fraction of precipitation and irrigation inputs, but rather the fraction increases as the inputs increase. Because this drainage recharges the underlying aquifer, improving irrigation efficiency by reducing seepage will not reverse water‐table declines. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
The fate and transport of contaminants in the vicinity of septic fields remains poorly understood in many hydrogeomorphological environments. We report hydrometric data from an intensive hillslope‐scale experiment conducted between 29 August and 11 November 1998 at a residential leach field in New York State. The objective of our study was to characterize water flux within the vadose zone, understand the physical controls on the flux, and predict how this ultimately will affect subsurface water quality. Soil‐water flux was calculated using matric potential measurements from a network of 25 tensiometer nests, each nest consisting of three tensiometers installed to depths of 10, 50 and 130 cm. Unsaturated hydraulic conductivity curves were derived at each depth from field‐determined time‐domain reflectometry–tensiometry moisture‐release curves and borehole permeametry measurements. Flownets indicated that a strong upward flux of soil water occurred between rainstorms. Following the onset of (typically convective) rainfall, low near‐surface matric potentials were rapidly converted to near‐saturated and saturated conditions, promoting steep vertical gradients through the near‐surface horizons of the hillslope. Lateral hydraulic gradients were typically 10 times smaller than the vertical gradients. Resultant flow vectors showed that the flux was predominantly vertical through the vadose zone, and that the flux response to precipitation was short‐lived. The flux response was controlled primarily by the shape of the unsaturated hydraulic conductivity curves, which indicated a rapid loss of conductivity below saturation. Thus, soil water had a very high residence time in the vadose zone. The absence of rapid wetting at 130 cm and the delayed and small phreatic zone response to rainfall indicated that water movement through macropores did not occur on this hillslope. These results are consistent with a Cl tracing experiment, which demonstrated that the tracer was retained in the vadose zone for several months after injection to the system. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
H.K. McMillan 《水文研究》2012,26(18):2838-2844
This paper uses soil moisture data from 17 recording sensors within the 50 km2 Mahurangi catchment in New Zealand to determine how measured variability in soil moisture affects simulations of drainage in a typical lumped conceptual model. The data show that variability smoothes the simulated field capacity threshold such that a proportion of the catchment contributes to drainage even when mean soil moisture content is well below field capacity. Spatial variability in soil moisture controls by extension the catchment drainage behaviour: the resulting smoothed shape of the catchment‐scale drainage function is demonstrated and is also determined theoretically under simplifying assumptions. The smoothing effect increases the total simulated discharge by 130%. The analysis explains previous findings that different drainage equations are required at point scale versus catchment scale in the Mahurangi. The spatial variability and hence the emergent drainage behaviour are found to vary with season, suggesting that time‐varying parameters would be warranted to simulate drainage. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
In many parts of the world, watershed management practices have been extremely effective. However, implementation of soil and water conservation technologies in the humid African highlands, while beneficial in the short term, were remarkably unsuccessful in the long term. Insights from community knowledge perspectives have revealed that alternative methods are needed. Although conservation practices are designed to conserve water in semi‐arid areas, safely draining excess water is needed in humid areas. The objective of this paper is to review current watershed management approaches used in humid regions as exemplified by those used in Ethiopian highlands and then based on these findings propose more effective practices. Although current government sponsored practices primarily protect the hillsides, direct run‐off is generated from areas that become saturated on valley bottoms near rivers and on specific parts of the hillsides with degraded soils (or with highly permeable surface soils) and with perched water tables on slowly permeable horizons at shallow depths. In these areas, direct run‐off is increasing with deforestation and the soil degradation, demanding additional drainage ways that evolve in the form of gullies. Therefore, watershed management interventions for erosion control should prioritize revegetation of degraded areas, increasing sustainable infiltration, and rehabilitating gullies situated at saturated bottomlands.  相似文献   

17.
Digital elevation models (DEMs) at different resolutions (180, 360, and 720 m) are used to examine the impact of different levels of landscape representation on the hydrological response of a 690‐km2 catchment in southern Quebec. Frequency distributions of local slope, plan curvature, and drainage area are calculated for each grid size resolution. This landscape analysis reveals that DEM grid size significantly affects computed topographic attributes, which in turn explains some of the differences in the hydrological simulations. The simulations that are then carried out, using a coupled, process‐based model of surface and subsurface flow, examine the effects of grid size on both the integrated response of the catchment (discharge at the main outlet and at two internal points) and the distributed response (water table depth, surface saturation, and soil water storage). The results indicate that discharge volumes increase as the DEM is coarsened, and that coarser DEMs are also wetter overall in terms of water table depth and soil water storage. The reasons for these trends include an increase in the total drainage area of the catchment for larger DEM cell sizes, due to aggregation effects at the boundary cells of the catchment, and to a decrease in local slope and plan curvature variations, which in turn limits the capacity of the watershed to transmit water downslope and laterally. The results obtained also show that grid resolution effects are less pronounced during dry periods when soil moisture dynamics are mostly controlled by vertical fluxes of evaporation and percolation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Forests in the Southeastern United States are predicted to experience future changes in seasonal patterns of precipitation inputs as well as more variable precipitation events. These climate change‐induced alterations could increase drought and lower soil water availability. Drought could alter rooting patterns and increase the importance of deep roots that access subsurface water resources. To address plant response to drought in both deep rooting and soil water utilization as well as soil drainage, we utilize a throughfall reduction experiment in a loblolly pine plantation of the Southeastern United States to calibrate and validate a hydrological model. The model was accurately calibrated against field measured soil moisture data under ambient rainfall and validated using 30% throughfall reduction data. Using this model, we then tested these scenarios: (a) evenly reduced precipitation; (b) less precipitation in summer, more in winter; (c) same total amount of precipitation with less frequent but heavier storms; and (d) shallower rooting depth under the above 3 scenarios. When less precipitation was received, drainage decreased proportionally much faster than evapotranspiration implying plants will acquire water first to the detriment of drainage. When precipitation was reduced by more than 30%, plants relied on stored soil water to satisfy evapotranspiration suggesting 30% may be a threshold that if sustained over the long term would deplete plant available soil water. Under the third scenario, evapotranspiration and drainage decreased, whereas surface run‐off increased. Changes in root biomass measured before and 4 years after the throughfall reduction experiment were not detected among treatments. Model simulations, however, indicated gains in evapotranspiration with deeper roots under evenly reduced precipitation and seasonal precipitation redistribution scenarios but not when precipitation frequency was adjusted. Deep soil and deep rooting can provide an important buffer capacity when precipitation alone cannot satisfy the evapotranspirational demand of forests. How this buffering capacity will persist in the face of changing precipitation inputs, however, will depend less on seasonal redistribution than on the magnitude of reductions and changes in rainfall frequency.  相似文献   

19.
The growth and decay of tree roots can stir and transport soil. This is one process that contributes to the mass‐movement of soil on hillslope. To explore the efficiency of this process, we document the mounding of soil beside Ponderosa and Lodgepole pine trees in the forests that dominate the mid‐elevations of Colorado's Boulder Creek watershed. Mounds are best expressed around Ponderosa pines, reaching vertical displacements above the far‐field slopes of order 10–20 cm, fading into the slope by roughly 100 cm distance from the trunks with common diameters of 30 cm. Positive mounding occurs on all sides of trees on slopes, indicating that the mounding is not attributable to deflection of a creeping flow of soil around the tree, but rather to the insertion of root volume on all sides in the subsurface. Mounding is commonly asymmetric even on cross‐slope profiles. Significant variation in the mound sizes results in no clear relationship between tree diameter and root volume displaced. These observations motivated the development of a discrete element model of tree root growth using the LIGGGHTS model, in which grains we specified to be ‘root cells’ were allowed to enlarge within the simulated granular matrix. Mounding could be reproduced, with the majority of the vertical displacement of the surface being attributable to reduction of the bulk density due to dilation of the granular matrix during root enlargement. Finally, we develop a previous analysis of the role of roots in transporting soil during growth and decay cycles. We find that even in shallow soils, the root‐cycle can drive significant soil transport down forested montane slopes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A large weighing lysimeter was installed at Yucheng Comprehensive Experimental Station, north China, for evapotranspiration and soil‐water–groundwater exchange studies. Features of the lysimeter include the following: (i) mass resolution equivalent to 0·016 mm of water to accurately and simultaneously determine hourly evapotranspiration, surface evaporation and groundwater recharge; (ii) a surface area of 3·14 m2 and a soil profile depth of 5·0 m to permit normal plant development, soil‐water extraction, soil‐water–groundwater exchanges, and fluctuations of groundwater level; (iii) a special supply–drainage system to simulate field conditions of groundwater within the lysimeter; (iv) a soil mass of about 30 Mg, including both unsaturated and saturated loam. The soil consists mainly of mealy sand and light loam. Monitoring the vegetated lysimeter during the growing period of winter wheat, from October 1998 through to June 1999, indicated that during the period groundwater evaporation contributed 16·6% of total evapotranspiration for a water‐table depth from 1·6 m to 2·4 m below ground surface. Too much irrigation reduced the amount of upward water flow from the groundwater table, and caused deep percolation to the groundwater. Data from neutron probe and tensiometers suggest that soil‐water‐content profiles and soil‐water‐potential profiles were strongly affected by shallow groundwater. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号