首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
A previous study aiming to characterize the water dynamics of a cloud forest in the Garajonay National Park (La Gomera) from measurements taken in a plot located in the upper part of a selected watershed within the park is here commented. Reported magnitudes of hydrological variables and conclusions based on them are in disagreement with those of numerous studies carried out previously at the same site. Large data dispersion and inapplicability of some of the hypothesis assumed are shown to invalidate most of the results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
3.
Curtis D. Holder 《水文研究》2003,17(10):2001-2010
Fog precipitation occurs when fog droplets are filtered by the forest canopy and coalesce on the vegetative surfaces to form larger water droplets that drip to the forest floor. This study examines the quantity of throughfall compared with incident precipitation produced by the canopy of a lower montane rain forest (2100 m) and an upper montane cloud forest (2550 m) in the Sierra de las Minas Biosphere Reserve, Guatemala. Fog precipitation was measured with throughfall and precipitation gauges from 23 July 1995 to 7 June 1996. Fog precipitation occurred during sampling periods when throughfall exceeded incident precipitation. Fog precipitation contributed <1% of total water inputs in the cloud forest at 2100 m during the 44‐week period, whereas fog precipitation contributed 7·4% at 2550 m during the same period. The depth equivalent of fog precipitation was greater at 2550 m (203·4 mm) than at 2100 m (23·4 mm). The calculation of fog precipitation in this study is underestimated. The degree of underestimation may be evident in the difference in apparent rainfall interception between 2100 m (35%) and 2550 m (4%). Because the apparent interception rate at 2550 m is significantly lower than 2100 m, the canopy probably is saturated for longer periods as a result of cloud water contributions. Data show a seasonal pattern of fog precipitation most evident at the 2550 m site. Fog precipitation represented a larger proportion of total water inputs during the dry season (November to May). Because cloud forests generate greater than 1 mm day?1 of fog precipitation in higher elevations of the Sierra de las Minas, the conservation of the cloud forest may be important to meet the water demands of a growing population in the surrounding arid lowlands. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
The Kiryu Experimental Catchment (KEW) is a small (5.99 ha) forest catchment located in Shiga Prefecture, central Japan (34°58′ N, 136°00′ E; www.bluemoon.kais.kyoto-u.ac.jp/kiryu/contents.html ). Around this area, forest devastation occurred from ca. 1250 to ca. 150 years ago because of overuse of forest and timbers. Then, hillside forestation was carried out for more than 100 years to prevent soil erosion and support the timber industry, and consequently, most of this area is now covered with plantation forests mainly by Chamaecyparis obtusa Sieb. et Zucc. (Japanese cypress) planted around 1960's. This plantation forest is not actively managed. The KEW is one of the leading experimental forests with long-term monitoring data in Japan. Research in the KEW began in 1967 to elucidate the hydrological and biogeochemical processes in the forested catchment in relation to climate, geology, soil, and vegetation growth. Since then, the long-term hydrological data of precipitation, runoff and sediment transport are continuously monitoring. In this study, we provide the data and preliminarily discuss the rainfall–runoff patterns and sediment transport through 50 years in the KEW. The annual precipitation and the maximum daily rainfall have been greater than the average over the last decade. In response to the rainfall patterns, the ratio of annual direct runoff to precipitation was also larger in the last decade. The sediment transport in this decade was consequently larger than the preceding decades. Our data presented here suggest that a close relationship exists between the climate condition, rainfall–runoff response, sediment dynamics, as well as a slowly progressing change of forest condition.  相似文献   

5.
The incidence of large rain events in Mediterranean ecosystems vary among years. Summer aridity is interpreted as a resetting event, eliminating previous soil‐moisture dynamics. The dynamics of soil moisture and retention are critical to tree survival, particularly in dry regions. This study examines the long‐term soil water content (θV) dynamics in two distinct locations within the forest, under the canopy and forest clearing, within two diverse oak forests: subhumid mixed oak forests (MG) and semiarid monospecific oak woodlands (YE). Plots were established at small‐scale catchments and soil water contents were measured during 2010–2013, at three depths in the two different locations. Cumulative rainfall was used as an independent proxy for θV analysis. A novel bell‐bilogistic mathematical model of wetting, saturation, and drying arms was developed. We aimed to study the θV distribution differences between soil profiles giving the large climatic gradient between the two forested sub basins, the differences in vegetation traits along with soil attributes. We further aimed at determining the role of an individual tree in regulating soil‐moisture dynamics. We hypothesized the occurrence of distinct responses between sites in all soil‐moisture indices with higher θV at the wetter site. We tested the hypothesis that seasonal cumulative rainfall dictates the variations in soil‐moisture regimes throughout contiguous years. Annual rainfall was higher than long‐term average throughout the study. Soil profiles under the canopies at both sites were consistently wetter. Infiltration and depletion constants were higher at MG whereas maximum soil moisture was higher at YE. Homogenous recharge patterns were seen at MG although YE evinced more variation. Oaks had no effect on recharge at MG compared with the forest clearing. Soil properties primarily affected the wetting arm whereas vegetation composition regulated the drying arm. Mixed‐stands characterized by ever‐green and deciduous species may maintain favourable soil‐moisture conditions, in comparison with other mixed stand morphologies. The increasing role of slacking forces in infiltration process may alter the interaction between trees and herbaceous vegetation.  相似文献   

6.
Although considerable effort has been deployed to understand the impact of climate variability and vegetation change on runoff in major basins across Africa, such studies are scarce in the Gulf of Guinea Basin (GGB). This study combines the Budyko framework and elasticity concept along with geospatial data to fill this research gap in 44 nested sub-basins in the GGB. Annual rainfall from 1982 to 2021 show significant decreasing and increasing trends in the northern and southern parts of the GGB, respectively. Annual potential evapotranspiration (PET) also shows significant increasing trends with higher magnitudes observed in the northern parts of the GGB. Changing trends in climate variables corroborates with shift to arid and wetter conditions in the north and south, respectively. From 2000 to 2020 vegetation cover estimated using enhanced vegetation index (EVI) shows significant increasing trends in all sub-basins including those experiencing a decline in annual rainfall. Vegetation composition measured using vegetation continuous fields (VCFs) from 2000 to 2020 show an increase in tree canopy cover (TC), a decline in short vegetation cover and marginal changes in bare ground cover (BG). Elasticity coefficients show that a 10% increase in annual rainfall and PET may lead to a 33% increase and 24% decline in runoff, respectively. On the other hand, a 10% increase in EVI may lead to a 4% decline in runoff while a 10% increase in TC, SV and BG may reduce runoff by 4% and increase runoff by 3% and 2%, respectively. Even though changes are marginal, decomposing vegetation into different parameters using EVI and VCFs may lead to different hydrological effects on runoff which is one of the novelties of this study that may be used for implementing nature-based solutions. The study also demonstrates that freely available geospatial data together with analytical methods are a promising approach for understanding the impact of climate variability and vegetation change on hydrology in data-scarce regions.  相似文献   

7.
ABSTRACT

Estimating river flows at ungauged sites is generally recognised as an important area of research. In countries or regions with rapid land development and sparse hydrological gauging networks, three particular challenges may arise—data scarcity, data quality, and hydrological non-stationarity. Using data from 44 gauged sub-catchments of the upper Ping catchment in northern Thailand from the period 1995–2006, three relevant flow response indices (runoff coefficient, base flow index and seasonal elasticity of flow) were regionalised by regression against available catchment properties. The runoff coefficient was the most successfully regionalised, followed by base flow index and lastly the seasonal elasticity. The non-stationarity (represented by the differences between two 6-year sub-periods) was significant both in the flow response indices and in land use indices; however relationships between the two sets of indices were weak. The regression equations derived from regionalisation were not helpful in predicting the non-stationarity in the flow indices except somewhat for the runoff coefficient. A partly subjective data quality scoring system was devised, and showed the clear influence of rainfall and flow data quality on regionalisation uncertainty. Recommendations towards improving data support for hydrological regionalisation in Thailand include more relevant soils databases, improved records of abstractions and investment in the gauge network. Widening of the regionalisation beyond the upper Ping and renewed efforts at using remotely sensed rainfall data are other possible ways forward.

EDITOR Z.W. Kundzewicz ASSOCIATE EDITOR T. Wagener  相似文献   

8.
Seasonally dry forests in tropical regions show over 300% inter-annual biomass variability that directly affects the runoff and erosion dynamics. However, biomass fluctuation is mostly overlooked in hydrosedimentological analysis, including in connectivity analysis. The aim of this paper is to understand how the dryland vegetation seasonality in Brazilian drylands affects the potential runoff and sediment connectivity using the Index of Connectivity (stream and outlet targets). Two main analytical steps were used to identify the influence of dry forest biomass fluctuation on connectivity: Creation of vegetation scenarios based on the relationship between rainfall patterns and NDVI fluctuations (Landsat images); Identification of the effect of the vegetation scenarios on Index of Connectivity. The method was applied to a 90 km2 watershed in NE Brazil, creating a daily vegetation classification using five vegetation scenarios related to rainfall parameters, with average NDVI values from 0.18 during very dry scenarios (<20 mm of antecedent rainfall) to 0.62 in very wet scenario (>500 mm of antecedent rainfall). The primary connectivity behaviour is controlled by a continuous connectivity decrease, reaching 32%, related to increase of humidity and vegetation biomass. At the same time, due to rainfall irregularity, high magnitude rainfall events can occur even during very dry scenarios, when the watershed shows very high potential connectivity. It indicates that connectivity in runoff-dominated regions is temporally variable due to the highly seasonal vegetation and variable incidence of intense rainstorms.  相似文献   

9.
Projected changes in rainfall seasonality and interannual variability are expected to have severe impacts on arid and semi‐arid tropical vegetation, which is characterized by a fine‐tuned adaptation to extreme rainfall seasonality. To study the response of these ecosystems and the related changes in hydrological processes to changes in the amount and seasonality of rainfall, we focused on the caatinga biome, the typical seasonally dry forest in semi‐arid Northeast Brazil. We selected four sites across a gradient of rainfall amount and seasonality and analysed daily rainfall and biweekly Normalized Difference Vegetation Index (NDVI) data for hydrological years 2000 to 2014. Rainfall seasonal and interannual statistics were characterized by recently proposed metrics describing duration, timing and intensity of the wet season and compared to similar metrics of NDVI time series. The results show that the caatinga tends to have a more stable response with longer and less variable growing seasons (3.1 ± 0.1 months) compared to the duration wet seasons (2.0 ± 0.5 months). The ecosystem ability to buffer the interannual variability of rainfall is also evidenced by the stability in the timing of the growing season compared to the wet season, which results in variable delays (ranging from 0 to 2 months) between the peak of the rainfall season and the production of leaves by the ecosystem. The analyses show that the shape and size of the related hysteresis loops in the rainfall–NDVI relations are linked to the buffering effects of soil moisture and plant growth dynamics. Finally, model projections of vegetation response to different rainfall scenarios reveal the existence of a maximum in ecosystem productivity at intermediate levels of rainfall seasonality, suggesting a possible trade‐off in the effects of intensity (i.e. amount) and duration of the wet season on vegetation growth and related soil moisture dynamics and transpiration rates. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Jing Fu  Jun Niu  Bellie Sivakumar 《水文研究》2018,32(12):1814-1827
Vegetation cover plays an important role in linking the atmosphere, water, and land and is deemed as a key indicator in the terrestrial ecological system. Therefore, it is of great importance to monitor vegetation dynamics and understand the mechanisms of vegetation change, including that driven by climate change. This study examines (a) the evolution of vegetation dynamics over the Heihe River Basin in the typical arid zone in north‐western China using nonparametric Mann–Kendall test and Thiel Sen's slope; (b) the relationships between remotely sensed vegetation indices (normalized difference vegetation index [NDVI] and enhanced vegetation index [EVI]) and hydroclimatic variables based on correlation analysis; and (c) the prediction of vegetation anomalies using a multiple linear regression model. For the analysis, the Moderate Resolution Imaging Spectroradiometer NDVI/EVI product and the gridded daily meteorological data at a spatial resolution of 0.125° over the period 2001–2010 are considered. The results indicate that vegetation cover improved over a large proportion during 2001–2010, with a significant trend towards warm and wet, characterized by an increase in average annual temperature and precipitation by 0.042 °C/year and 5.8 mm/year, respectively. We test the feasibility of NDVI and EVI in quantifying the responses of vegetation anomaly to climate change and develop a statistical model to predict vegetation dynamics in the basin. The NDVI‐based model is found to be more reliable than the EVI‐based model, partly due to the vegetation characteristics and geomorphologic properties of the study region. The proposed model performs well when there is no lag time between meteorological factors and vegetation indices for grassland and cropland, whereas 1‐month lead time prediction is found to be best for forest. The soil water content is introduced as an extra explanatory variable, which effectively improves the prediction accuracy for different land use types. In general, the predictive ability of the proposed model is stable and satisfactory, and the model can provide useful early warning information for regional water resources management under changing climate.  相似文献   

11.
Hydrological processes in mountain headwater basins are changing as climate and vegetation change. Interactions between hydrological processes and subalpine forest ecological function are important to mountain water supplies due to their control on evapotranspiration (ET). Improved understanding of the sensitivity of these interactions to seasonal and interannual changes in snowmelt and summer rainfall is needed as these interactions can impact forest growth, succession, health, and susceptibility to wildfire. To better understand this sensitivity, this research examined ET for a sub-alpine forest in the Canadian Rockies over two contrasting growing seasons and quantified the contribution of transpiration (T) from the younger tree population to overall stand ET. The younger population was focused on to permit examination of trees that have grown under the effect of recent climate change and will contribute to treeline migration, and subalpine forest densification and succession. Research sites were located at Fortress Mountain Research Basin, Kananaskis, Alberta, where the subalpine forest examined is composed of Abies lasiocarpa (Subalpine fir) and Picea engelmannii (Engelmann spruce). Seasonal changes in water availability from snowmelt, precipitation, soil moisture reserves yielded stark differences in T and ET between 2016 and 2017. ET was higher in the drier year (2017), which had late snowmelt and lower summer rainfall than in the wetter year (2016) that had lower snowmelt and a rainy summer, highlighting the importance of spring snowmelt recharge of soil moisture. However, stand T of the younger trees (73% of forest population) was greater (64 mm) in 2016 (275 mm summer rainfall) than 2017 (39 mm T, 147 mm summer rainfall), and appears to be sensitive to soil moisture decreases in fall, which are largely a function of summer period rainfall. Relationships between subalpine forest water use and different growing season and antecedent (snowmelt period) hydrological conditions clarify the interactions between forest water use and alpine hydrology, which can lead to better anticipation of the hydrological response of subalpine forest-dominated basins to climate variability and change.  相似文献   

12.
The variability of rainfall-dependent streamflow at catchment scale modulates many ecosystem processes in wet temperate forests. Runoff in small mountain catchments is characterized by a quick response to rainfall pulses which affects biogeochemical fluxes to all downstream systems. In wet-temperate climates, water erosion is the most important natural factor driving downstream soil and nutrient losses from upland ecosystems. Most hydrochemical studies have focused on water flux measurements at hourly scales, along with weekly or monthly samples for water chemistry. Here, we assessed how water and element flows from broad-leaved, evergreen forested catchments in southwestern South America, are influenced by different successional stages, quantifying runoff, sediment transport and nutrient fluxes during hourly rainfall events of different intensities. Hydrograph comparisons among different successional stages indicated that forested catchments differed in their responses to high intensity rainfall, with greater runoff in areas covered by secondary forests (SF), compared to old-growth forest cover (OG) and dense scrub vegetation (CH). Further, throughfall water was greatly nutrient enriched for all forest types. Suspended sediment loads varied between successional stages. SF catchments exported 455 kg of sediments per ha, followed by OG with 91 kg/ha and CH with 14 kg/ha, corresponding to 11 rainfall events measured from December 2013 to April 2014. Total nitrogen (TN) and phosphorus (TP) concentrations in stream water also varied with rainfall intensity. In seven rainfall events sampled during the study period, CH catchments exported less nutrients (46 kg/ha TN and 7 kg/ha TP) than SF catchments (718 kg/ha TN and 107 kg/ha TP), while OG catchments exported intermediate sediment loads (201 kg/ha TN and 23 kg/ha TP). Further, we found significant effects of successional stage attributes (vegetation structure and soil physical properties) and catchment morphometry on runoff and sediment concentrations, and greater nutrients retention in OG and CH catchments. We conclude that in these southern hemisphere, broad-leaved evergreen temperate forests, hydrological processes are driven by multiple interacting phenomena, including climate, vegetation, soils, topography, and disturbance history.  相似文献   

13.
The study of how cave drip‐water discharge responds to recharge events is fundamental to evaluating the potential of actively forming speleothems as high‐resolution climate archives. Most previous research has focused on caves of the Northern Hemisphere middle latitudes, where recharge is strongly seasonal. Few studies have explored drip‐water behaviour from regions where the expected seasonal rainfall pattern is significantly perturbed on an irregular basis by changing regional atmospheric circulation patterns. Here, we report the results of a 4‐year study of cave drip‐water–climate relationships from two caves in eastern Australia. The discharge of 10 drip sites located beneath bedrock thicknesses of 12, 22 and 45 m was monitored either continuously (using automated infrared sensors) or at discrete approximately monthly intervals and compared with local rainfall and water balance data. The study period traversed two major droughts, including the severe 2002–2003 El Niño. Drips at 12 and 22 m depths responded almost simultaneously to individual recharge events, although the time lag between individual events varied according to the volume of recharge and pre‐event storage. Overall, a steady decline in discharge is evident through the moisture‐deficit period, with increased flows through phases of positive water balance. Speleothems growing at these and similar shallow‐chamber sites have potential for reconstructing palaeo‐rainfall trends at high‐resolution, although the highly variable nature of year‐to‐year recharge would make it difficult to obtain data on a calendrical time‐scale. Drips at 45 m depth did not respond consistently to individual recharge events and displayed hydrological behaviour markedly dissimilar to one another and to the near‐surface drip sites, indicating great complexity in karst architecture and the absence of fissure flow. Although speleothems at this depth may well preserve information on longer‐term rainfall trends, their potential to encode a palaeo‐rainfall variability signal at interannual resolution is poor. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Numerous studies investigated the influence of abiotic (meteorological conditions) and biotic factors (tree characteristics) on stemflow generation. Although these studies identified the variables that influence stemflow volumes in simply structured forests, the combination of tree characteristics that allows a robust prediction of stemflow volumes in species‐rich forests is not well known. Many hydrological applications, however, require at least a rough estimate of stemflow volumes based on the characteristics of a forest stand. The need for robust predictions of stemflow motivated us to investigate the relationships between tree characteristics and stemflow volumes in a species‐rich tropical forest located in central Panama. Based on a sampling setup consisting of ten rainfall collectors, 300 throughfall samplers and 60 stemflow collectors and cumulated data comprising 26 rain events, we derive three main findings. Firstly, stemflow represents a minor hydrological component in the studied 1‐ha forest patch (1.0% of cumulated rainfall). Secondly, in the studied species‐rich forest, single tree characteristics are only weakly related to stemflow volumes. The influence of multiple tree parameters (e.g. crown diameter, presence of large epiphytes and inclination of branches) and the dependencies among these parameters require a multivariate approach to understand the generation of stemflow. Thirdly, predicting stemflow in species‐rich forests based on tree parameters is a difficult task. Although our best model can capture the variation in stemflow to some degree, a critical validation reveals that the model cannot provide robust predictions of stemflow. A reanalysis of data from previous studies in species‐rich forests corroborates this finding. Based on these results and considering that for most hydrological applications, stemflow is only one parameter among others to estimate, we advocate using the base model, i.e. the mean of the stemflow data, to quantify stemflow volumes for a given study area. Studies in species‐rich forests that wish to obtain predictions of stemflow based on tree parameters probably need to conduct a much more extensive sampling than currently implemented by most studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Isotopes of water (2H/1H and 18O/16O) are commonly used to trace hydrological processes such as moisture recycling, evaporation loss, and moisture source region and often vary temporally in a given region. This study provides a first‐ever characterization of temporally variable precipitation mechanisms of San Cristóbal Island, Galápagos. We collected fog, rain, and throughfall samples over three field seasons to understand the mechanisms driving seasonal‐ and event‐based variability in the isotopic composition of precipitation in Galápagos. We establish that fog is a common phenomenon in San Cristóbal, especially during the dry season, and we found that fog, compared with cocollected rainfall, is consistently enriched. We further suggest that the relative contribution of fog formed via different mechanisms (orographic, advective, radiation) varied seasonally. We found that the source region is the most dominant control of the isotopic composition of rainfall in the Galápagos at both the seasonal and event scales, but subcloud evaporative processes (the nontraditional manifestation of the amount effect) became a dominant control on the isotopic composition of rainfall during the dry season. Overall, our findings suggest that understanding seasonally variable water‐generating mechanisms is required for effective water resource management in San Cristóbal Island and other semiarid island ecosystems under current and future regimes of climate change.  相似文献   

16.
Better parameterization of a hydrological model can lead to improved streamflow prediction. This is particularly important for seasonal streamflow forecasting with the use of hydrological modelling. Considering the possible effects of hydrologic non‐stationarity, this paper examined ten parameterization schemes at 12 catchments located in three different climatic zones in east Australia. These schemes are grouped into four categories according to the period when the data are used for model calibration, i.e. calibration using data: (1) from a fixed period in the historical records; (2) from different lengths of historical records prior to prediction year; (3) from different climatic analogue years in the past; and (4) data from the individual months. Parameterization schemes were evaluated according to model efficiency in both the calibration and verification period. The results show that the calibration skill changes with the different historic periods when data are used at all catchments. Comparison of model performance between the calibration schemes indicates that it is worth calibrating the model with the use of data from each individual month for the purpose of seasonal streamflow forecasting. For the catchments in the winter‐dominant rainfall region of south‐east Australia, a more significant shift in rainfall‐runoff relationships at different periods was found. For those catchments, model calibration with the use of 20 years of data prior to the prediction year leads to a more consistent performance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A model developed for estimating the evaporation of rainfall intercepted by forest canopies is applied to estimate measurements of the average runoff from the roofs of six houses made in a previous study of hydrological processes in an urban environment. The model is applied using values of the mean rates of wet canopy evaporation and rainfall derived previously for forests and an estimate of the roof storage capacity derived from the data collected in the previous study. Although the model prediction is sensitive to the value of storage capacity, close correlation between the modelled and measured runoff indicates that the model captures the essential processes. It is concluded that the process of evaporation from an urban roof is sufficiently similar to that from a forest canopy for forest evaporation models to be used to give a useful estimate of urban roof runoff. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Vegetation cover pattern is one of the factors controlling hydrological processes. Spatially distributed models are the primary tools previously applied to document the effect of vegetation cover patterns on runoff and soil erosion. Models provide precise estimations of runoff and sediment yields for a given vegetation cover pattern. However, difficulties in parameterization and the problematic explanation of the causes of runoff and sedimentation rates variation weaken prediction capability of these models. Landscape pattern analysis employing pattern indices based on runoff and soil erosion mechanism provides new tools for finding a solution. In this study, the vegetation cover pattern was linked with runoff and soil erosion by two previously developed pattern indices, which were modified in this study, the Directional Leakiness Index (DLI) and Flowlength. Although they use different formats, both indices involve connectivity of sources areas (interpatch bare areas). The indices were revised by bringing in the functional heterogeneity of the plant cover types and the landscape position. Using both artificial and field verified vegetation cover maps, observed runoff and sediment production on experiment plots, we tested the indices’ efficiency and compared the indices with their antecedents. The results illustrate that the modified indices are more effective in indicating runoff at the plot/hillslope scale than their antecedents. However, sediment export levels are not provided by the modified indices. This can be attributed to multi-factor interaction on the hydrological process, the feedback mechanism between the hydrological function of cover patterns and threshold phenomena in hydrological processes.  相似文献   

19.
Streamflow is the runoff response integrated in space and time over a complex system involving climatic and catchment physiographic factors. In the Andes, accelerating runoff process understanding is hampered by the inability to quantify heterogeneity of surface and subsurface catchment properties. Here, we present a statistical approach based on regression models and correlation analysis that links hydrological signatures and catchment properties to unveil processes in a set of volcanic mountain catchments (latitude 0°30'N) in Ecuador. The catchments represent form and function diversity in the same hydrological unit. We found that despite of similar atmospheric-water inputs the water yield in the north-east region is about 5× larger than in the south-west region and their flow regimes are asymmetric. The soil-bedrock interface and lithology exert a first-order control on hydrologic partitioning, and this allowed us to hypothesize two hydrological mechanisms. Firstly, in the north-east region, the perennial streamflow is associated with seasonal rainfall patterns, and subsequent drainage processes taking place at the surface and subsurface level. The amount of streamflow is related to landform characteristics, high canopy density and root development of forest as well as water holding capacity of organic soils. From a mechanistic standpoint, the low concentration time, steep slopes and shallow infiltration limited by high-consolidated deposits of sedimentary and volcanics suggest a lateral movement of the flow. Secondly, in the south-west region the streamflow regime is mostly groundwater-dependent and it becomes seasonally enhanced by rainfall. Larger seasonal variations of precipitation and temperature result into enhanced evapotranspiration in the drier months, limiting shallow soil infiltration. Under the soil layers, highly permeable pyroclastic deposits and andesitic lavas promote deep percolation. The results highlight the degree of dissimilarity of hydrological processes in Andean settings, but unravelling their complexity seems plausible using streamflow signatures and causal explanatory models.  相似文献   

20.
Changes in potential evapotranspiration and surface runoff can have profound implications for hydrological processes in arid and semiarid regions. In this study, we investigated the response of hydrological processes to climate change in Upper Heihe River Basin in Northwest China for the period from 1981 to 2010. We used agronomic, climatic and hydrological data to drive the Soil and Water Assessment Tool model for changes in potential evapotranspiration (ET0) and surface runoff and the driving factors in the study area. The results showed that increasing autumn temperature increased snow melt, resulting in increased surface runoff, especially in September and October. The spatial distribution of annual runoff was different from that of seasonal runoff, with the highest runoff in Yeniugou River, followed by Babaohe River and then the tributaries in the northern of the basin. There was no evaporation paradox at annual and seasonal time scales, and annual ET0 was driven mainly by wind speed. ET0 was driven by relative humidity in spring, sunshine hour duration in autumn and both sunshine hour duration and relative humility in summer. Surface runoff was controlled by temperature in spring and winter and by precipitation in summer (flood season). Although surface runoff increased in autumn with increasing temperature, it depended on rainfall in September and on temperature in October and November. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号