首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By using the theories and methods of landscape ecology and the technology of GIS and RS, a study has been carried out on the responses of distribution pattern of desert riparian forest to hydrologic process on the basis of the hydrologic data from 1990 to 2000 and the TM image of 2001 year. The results showed that: (1) there appears an even distribution pattern for the relative forest area in oasis, however, the degenerated forest diaplays an increasing tendency from west to east; (2) the desert riparian forest in Ejina is in completely degenerated process at the patch scale; (3) the number of patch is influenced not only by hydrologic process,but also by agricultural activity such as cultivation. The severe deterioration of the degraded vegetation in whole oasis initiates from lower reaches, and gradually impels to upstream; the fragmentation of landscape in the terminal site is more obvious, which is influenced by river shape and decreasing flux of water. It is found that the influence of surface hydrologic process to the ground hydrologic process of desert riparian forest in Ejina oasis is little for the recent ten years. The relative area of the degenerated forest increased with increasing ground water depth in the direction of parallel to river channel. On the contrary, in the direction perpendicular to river channel, there is a decreasing tendency for the average patch area of the forest and the degenerated forest with increasing ground water depth.  相似文献   

2.
By using the theories and methods of landscape ecology and the technology of GIS and RS, a study has been carried out on the responses of distribution pattern of desert riparian forest to hydrologic process on the basis of the hydrologic data from 1990 to 2000 and the TM image of 2001 year. The results showed that: (1) there appears an even distribution pattern for the relative forest area in oasis, however, the degenerated forest diaplays an increasing tendency from west to east; (2) the desert riparian forest in Ejina is in completely degenerated process at the patch scale; (3) the number of patch is influenced not only by hydrologic process, but also by agricultural activity such as cultivation. The severe deterioration of the degraded vegetation in whole oasis initiates from lower reaches, and gradually impels to upstream; the fragmentation of landscape in the terminal site is more obvious, which is influenced by river shape and decreasing flux of water. It is found that the influence of surface hydrologic process to the ground hydrologic process of desert riparian forest in Ejina oasis is little for the recent ten years. The relative area of the degenerated forest increased with increasing ground water depth in the direction of parallel to river channel. On the contrary, in the direction perpendicular to river channel, there is a decreasing tendency for the average patch area of the forest and the degenerated forest with increasing ground water depth.  相似文献   

3.
Study on vegetation ecological water requirement in Ejina Oasis   总被引:11,自引:0,他引:11  
The Ecological Water Requirement (EWR) of desert oasis is the amount of water required to maintain a normal growth of vegetation in the special ecosystems. In this study EWR of the Ejina desert oasis is estimated through the relational equation between normalized difference vegetation index (NDVI), productivity and transpiration coefficient, which was established by a combination of the RS, GIS, GPS techniques with the field measurements of productivity. The results show that about 1.53×108 m3 water would be needed to maintain the present state of the Ejina Oasis, and the ecological water requirement would amount to 3.49×108 m3 if the existing vegetation was restored to the highest productivity level at present. Considering the domestic water requirement, river delivery loss, oasis vegetation water con-sumption, farmland water demand, precipitation recharge, etc., the draw-off discharge of the Heihe River (at Longxin Mount) should be 1.93×108―2.23 ×108 m3 to maintain the present state of the Ejina Oasis, and 4.28×108―5.17×108 m3 to make the existing vegetation be restored to the highest productiv-ity level at present.  相似文献   

4.
新疆艾比湖是典型的干旱区湖泊,具有特殊的湿地-干旱生态系统。晚更新世晚期开始,由于气候逐渐变干,艾比湖不断萎缩。20世纪50~80年代末,由于湖区人口的激增及其对水土资源的不合理开发利用加速了湖泊干缩的进程。本文对艾比湖干缩引起的生态响应进行了初步的分析,分析指出,艾比湖湖滨荒漠自然植被呈退化衰败趋势,生物多样性面临严重威胁;干涸湖底盐漠化,湖滨沙丘活化,沙漠扩展,浮尘天气成百倍增长;绿洲与荒漠之间缓冲空间日益缩小,盐碱化趋势增大。艾比湖的干缩是自然因素和人为因素共同作用的结果,但人为因素是第一位的,其中以河流上游大量截流引水和大规模开荒为主要原因。  相似文献   

5.
Streamflow series of five hydrological stations were analyzed with aim to indicate variability of water resources in the Tarim River basin. Besides, impacts of climate changes on water resources were investigated by analyzing daily precipitation and temperature data of 23 meteorological stations covering 1960–2005. Some interesting and important results were obtained: (1) the study region is characterized by increasing temperature, however, only temperature in autumn is in significant increasing trend; (2) precipitation changes present different properties. Generally, increasing precipitation can be detected. However, only the precipitation in the Tienshan mountain area is in significant increasing trend. Annual streamflow of major rivers of the Tarim River basin are not in significant trends, except that of the Akesu River which is in significantly increasing trend. Due to the geomorphologic properties of the Tienshan mountain area, precipitation in this area demonstrates significant increasing trend and which in turn leads to increasing streamflow of the Akesu River. Due to the fact that the sources of streamflow of the rivers in the Tarim River basin are precipitation and melting glacial, both increasing precipitation and accelerating melting ice has the potential to cause increasing streamflow. These results are of practical and scientific merits in basin-scale water resource management in the arid regions in China under the changing environment.  相似文献   

6.
The effects of land‐use changes on the runoff process in the midstream plain of this arid inland river basin are a key factor in the rational allocation of water resources to the middle and lower reaches. The question is whether and by how much increasingly heavy land use impacts the hydrological processes in such an arid inland river basin. The catchment of the Heihe River, one of the largest inland rivers in the arid region of northwest China, was chosen to investigate the hydrological responses to land‐use change. Flow duration curves were used to detect trends and variations in runoff between the upper and lower reaches. Relationships among precipitation, upstream runoff, and hydrological variables were identified to distinguish the effects of climatic changes and upstream runoff changes on middle and downstream runoff processes. The quantitative relation between midstream cultivated land use and various parameters of downstream runoff processes were analysed using the four periods of land‐use data since 1956. The Volterra numerical function relation of the hydrological non‐linear system response was utilized to develop a multifactor hydrological response simulation model based on the three factors of precipitation, upstream runoff, and cultivated land area. The results showed that, since 1967, the medium‐ and high‐coverage natural grassland area in the midstream region has decreased by 80·1%, and the downstream runoff has declined by 27·32% due to the continuous expansion of the cultivated land area. The contribution of cultivated land expansion to the impact on the annual total runoff is 14–31%, on the annual, spring and winter base flow it is 44–75%, and on spring and winter discharge it is 23–64%. Once the water conservation plan dominated by land‐use structural adjustments is implemented over the next 5 years, the mean annual discharge in the lower reach could increase by 8·98% and the spring discharge by 26·28%. This will significantly alleviate the imbalance between water supply and demand in both its quantity and temporal distribution in the middle and lower reaches. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Analysis of spatial and temporal variations of reference evapotranspiration (ETo) is important in arid and semi‐arid regions where water resources are limited. The main aim of this study was to analyse the spatial distribution and the annual, seasonal and monthly trends of the Penman–Monteith ETo for 21 stations in the arid and semi‐arid regions of Iran. Three statistical tests the Mann‐Kendall, Sen's slope estimator and linear regression were used for the analysis. The analysis revealed that ETo increased from January to July and deceased from July to December at almost all stations. Additionally, higher annual ETo values were found in the southeast of the study region and lower values in the northwest of the region. Although the results showed both positive and negative trends in annual ETo series, ETo generally increased, significantly so in six (~30%) of the stations. Analysis of the impacts of meteorological variables on the temporal trends of ETo indicated that the increasing trend of ETo was most likely due to a significant increase in minimum air temperature, while decreasing trend of ETo was mainly caused by a significant decrease in wind speed. At the sites where increasing ETo trends were statistically significant, the rate of increase varied from (+)8·36 mm/year at Mashhad station to (+)31·68 mm/year at Iranshahr station. On average, an increasing trend of (+)4·42 mm/year was obtained for the whole study area during the last four decades. Seasonal and monthly ETo have also tended to increase at the majority of the stations. The greatest numbers of significant trends were observed in winter on the seasonal time‐scale and in September on the monthly time‐scale. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Evapotranspiration(ET) and its controlling mechanism over the desert riparian forests in arid regions are the important scientific basis for the water resources managements of the lower reaches of the inland rivers of China. Nearly three years of continuous measurements of surface ET, soil water content at different depths and groundwater table over a typical Tamarix spp. stand and a typical Populus euphratica stand were conducted in the lower reach of the Tarim River. The ET seasonal trends in the growing season were controlled by plant phenology, and ET in non-growing season was weak. The diurnal variations of ET resulting from the comprehensive effects of all atmospheric factors were significantly related with reference ET. The spatial pattern of ET was determined by vegetation LAI, more vegetation coverage, more ET amount. Groundwater is the water source of surface ET, and the soil water in shallow layers hardly took part in the water exchange in the groundwatersoil-plant-air system. The temporal processes of ET over the Tamarix stand and the Populus stand were similar, but the water consumption of the well-grown Populus euphratica was higher than that of the well-grown Tamarix spp. Further analysis indicates that plant transpiration accounts for most of the surface ET, with soil evaporation weak and negligible; groundwater table is a crucial factor influencing ET over the desert riparian forests, groundwater influences the processes and amounts of ET by controlling the growth and spatial distribution of desert riparian forests; quantifying the water stress of desert riparian forests using groundwater table is more appropriate, rather than soil water content. Based on the understanding of ET and water movements in the groundwater-soil-plant-air system, a generalized framework expressing the water cycling and its key controlling mechanism in the lower reaches of the inland rivers of China is described, and a simple model to estimate water requirements of the desert riparian forests is presented.  相似文献   

9.
Using a nonstationary flood frequency model, this study investigates the impact of trends on the estimation of flood frequencies and flood magnification factors. Analysis of annual peak streamflow data from 28 hydrological stations across the Pearl River basin, China, shows that: (1) northeast parts of the West and the North River basins are dominated by increasing annual peak streamflow, whereas decreasing trends of annual peak streamflow are prevailing in other regions of the Pearl River basin; (2) trends significantly impact the estimation of flood frequencies. The changing frequency of the same flood magnitude is related to the changing magnitude or significance/insignificance of trends, larger increasing frequency can be detected for stations with significant increasing trends of annual peak streamflow and vice versa, and smaller increasing magnitude for stations with not significant increasing annual peak streamflow, pointing to the critical impact of trends on estimation of flood frequencies; (3) larger‐than‐1 flood magnification factors are observed mainly in the northeast parts of the West River basin and in the North River basin, implying magnifying flood processes in these regions and a higher flood risk in comparison with design flood‐control standards; and (4) changes in hydrological extremes result from the integrated influence of human activities and climate change. Generally, magnifying flood regimes in the northeast Pearl River basin and in the North River basin are mainly the result of intensifying precipitation regime; smaller‐than‐1 flood magnification factors along the mainstream of the West River basin and also in the East River basin are the result of hydrological regulations of water reservoirs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Jing Fu  Jun Niu  Bellie Sivakumar 《水文研究》2018,32(12):1814-1827
Vegetation cover plays an important role in linking the atmosphere, water, and land and is deemed as a key indicator in the terrestrial ecological system. Therefore, it is of great importance to monitor vegetation dynamics and understand the mechanisms of vegetation change, including that driven by climate change. This study examines (a) the evolution of vegetation dynamics over the Heihe River Basin in the typical arid zone in north‐western China using nonparametric Mann–Kendall test and Thiel Sen's slope; (b) the relationships between remotely sensed vegetation indices (normalized difference vegetation index [NDVI] and enhanced vegetation index [EVI]) and hydroclimatic variables based on correlation analysis; and (c) the prediction of vegetation anomalies using a multiple linear regression model. For the analysis, the Moderate Resolution Imaging Spectroradiometer NDVI/EVI product and the gridded daily meteorological data at a spatial resolution of 0.125° over the period 2001–2010 are considered. The results indicate that vegetation cover improved over a large proportion during 2001–2010, with a significant trend towards warm and wet, characterized by an increase in average annual temperature and precipitation by 0.042 °C/year and 5.8 mm/year, respectively. We test the feasibility of NDVI and EVI in quantifying the responses of vegetation anomaly to climate change and develop a statistical model to predict vegetation dynamics in the basin. The NDVI‐based model is found to be more reliable than the EVI‐based model, partly due to the vegetation characteristics and geomorphologic properties of the study region. The proposed model performs well when there is no lag time between meteorological factors and vegetation indices for grassland and cropland, whereas 1‐month lead time prediction is found to be best for forest. The soil water content is introduced as an extra explanatory variable, which effectively improves the prediction accuracy for different land use types. In general, the predictive ability of the proposed model is stable and satisfactory, and the model can provide useful early warning information for regional water resources management under changing climate.  相似文献   

11.
Climate change is expected to increase temperatures and lower rainfall in Mediterranean regions; however, there is a great degree of uncertainty as to the amount of change. This limits the prediction capacity of models to quantify impacts on water resources, vegetation productivity and erosion. This work circumvents this problem by analysing the sensitivity of these variables to varying degrees of temperature change (increased by up to 6·4 °C), rainfall (reduced by up to 40%) and atmospheric CO2 concentrations (increased by up to 100%). The SWAT watershed model was applied to 18 large watersheds in two contrasting regions of Portugal, one humid and one semi‐arid; incremental changes to climate variables were simulated using a stochastic weather generator. The main results indicate that water runoff, particularly subsurface runoff, is highly sensitive to these climate change trends (down by 80%). The biomass growth of most species showed a declining trend (wheat down by 40%), due to the negative impacts of increasing temperatures, dampened by higher CO2 concentrations. Mediterranean species, however, showed a positive response to milder degrees of climate change. Changes to erosion depended on the interactions between the decline in surface runoff (driving erosion rates downward) and biomass growth (driving erosion rates upward). For the milder rainfall changes, soil erosion showed a significant increasing trend in wheat fields (up to 150% in the humid watersheds), well above the recovery capacity of the soil. Overall, the results indicate a shift of the humid watersheds to acquire semi‐arid characteristics, such as more irregular river flows and increasingly marginal conditions for agricultural production. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
The planning and management of water resources in the Shiyang River basin, China require a tool for assessing the impact of groundwater and stream use on water supply reliabilities and improving many environment‐related problems such as soil desertification induced by recent water‐related human activities. A coupled model, integrating rule‐based lumped surface water model and distributed three‐dimensional groundwater flow model, has been established to investigate surface water and groundwater management scenarios that may be designed to restore the deteriorated ecological environment of the downstream portion of the Shiyang River basin. More than 66% of the water level among 24 observation wells have simulation error less than 1·0 m. The overall trend of the temporal changes of simulated and observed surface runoff at the Caiqi gauging station remains almost the same. The calibration was considered satisfactory. Initial frameworks for water allocation, including agricultural water‐saving projects, water diversion within the basin and inter‐basin water transfer, reducing agricultural irrigation area and surface water use instead of groundwater exploitation at the downstream were figured out that would provide a rational use of water resources throughout the whole basin. Sixteen scenarios were modelled to find out the most appropriate management strategies. The results showed that in the two selected management options, the groundwater budget at the Minqin basin was about 1·4 × 108 m3/a and the ecological environment would be improved significantly, but the deficit existed at the Wuwei basin and the number was about 0·8 × 108 m3/a. Water demand for domestic, industry and urban green area would be met in the next 30 years, but the water shortage for meeting the demand of agricultural water use in the Shiyang River basin was about 2·2 × 108 m3/a. It is suggested that more inter‐basin water transfer should be required to obtain sustainable water resource use in the Shiyang River basin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
曾冰茹  李云良  谭志强 《湖泊科学》2023,35(5):1796-1807
由于气候变化和人类活动等多重影响,流域河湖水系格局与连通程度发生了显著变化,进而引发洪涝灾害等一系列水资源问题。本文以鄱阳湖流域为研究区,基于Google Earth Engine(GEE)提取1989—2020年5期水系数据,采用图论方法构建水系评价体系,定量分析该地区近30年来水系格局和结构连通性的时空演变特征,并结合该时期地形、土地利用和归一化植被指数(NDVI)等数据,利用连通性指数(index of connectivity,IC)评估功能连通性的动态变化,进而探讨水文连通与径流量和输沙量的联系。结果表明,近30年来鄱阳湖流域水系结构趋于复杂化,主要体现在流域北部。除干流外,其他等级河流的数量和长度均有所增加,其中Ⅲ级河流最为明显。河网密度、水面率、河网复杂度和发育系数均呈增加趋势,2000年后的变化率约为2000年前的两倍。水系连通环度、节点连接率和水系连通度总体增加,结构连通性呈好转趋势且变化幅度较小。功能连通分析表明,近30年来大部分流域IC减少,流域下游靠近主河道的平坦地区IC较高,上游远离河道的植被密集区域IC较低。此外,IC与年径流量和输沙量表现为显著的正相关性(...  相似文献   

14.
Songjun Han  Heping Hu 《水文研究》2012,26(20):3041-3051
The spatial pattern and temporal changes in potential evaporation (1960–2006) were evaluated using data from 48 meteorological stations in the Tarim Basin. These stations are located in four typical landscapes with varying irrigation influences. Mean annual potential evaporation is low in stations in the mountainous regions, next in the large oasis regions with extensive irrigation and small oasis regions with restricted irrigation, whereas they are high in the desert regions. The spatial pattern of annual mean potential evaporation is owing to the aerodynamic term, while the radiation term is relatively constant in different regions. The significant levels of the trends in potential evaporation and the radiation and aerodynamic terms in different regions were detected using the non‐parametric Mann–Kendall test. More significant decreasing trends in annual potential evaporation with relatively constant radiation term were found in the oasis regions (especially the large oasis regions) than that in the mountainous and desert regions. In the large oasis regions, the pronounced decrease in potential evaporation is mainly attributed to the decrease in wind speed and the increase in relative humidity. The long‐term mean and annual potential evaporation with an almost constant radiation term were found to be complementary with actual evaporation influenced by irrigation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The temporal trends of reference evapotranspiration (ETref) reflect the combined effects of radiometric and aerodynamic variables, such as global solar radiation (Rs), wind speed, relative humidity and air temperature. The temporal trends of annual ETref during 1961–2006 calculated by Penman‐Monteith method were explored and the underlying causes for these trends were analysed in the Yellow River Basin (YRB). The contributions of key meteorological variables to the temporal trend of ETref were detected using the detrended method and then sensitivity coefficients of ETref to meteorological variables were determined. For ETref, positive trends in the upper, middle and whole of YRB, and significant negative trend (P = 0·05) in the lower basin were obtained by the linear fitted model. Significant increasing trend (P = 0·05) in air temperature and decreasing trend in relative humidity were the main causes for the increasing trends of ETref in the upper, middle and whole basins. For the whole basin, the increasing trend of ETref was mainly caused by the significant increase (P = 0·05) in air temperature and to a lesser extent by a decrease in the relative humidity, decreasing trends of Rs and wind speed reduced ETref. The spatial distribution of sensitivity coefficients addressed that the sensitive regions for ETref response to the changes of the four meteorological variables are different in the YRB. The sensitive region lay in the upper basin for Rs, the northwest portion of the middle basin for wind speed, the south portion of YRB for relative humidity and the west portion of the upper basin and the north portion of the middle basin for air temperature. In general, Rs was the most sensitive variable for ETref, followed by relative humidity, air temperature and wind speed in the basin scale. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract

Abstract The Shiyang River basin is a typical interior river basin that faces water shortage and environmental deterioration in the arid northwest of China. Due to its arid climate, limited water resources and some inappropriate water-related human activities, the area has developed serious loss of vegetation, and gradual soil salinization and desertification, which have greatly impeded the sustainable development of agriculture and life in this region. In this paper, the impacts of human activities on the water–soil environment in Shiyang River basin are analysed in terms of precipitation, runoff in branches of the river, inflow into lower reaches, water conveyance efficiency of the canal system and irrigation water use efficiency in the field, replenishment and exploitation of groundwater resources, soil salinization, vegetation cover and the speed of desertification. The results show that human activities and global climate change have no significant influence on the precipitation, but the total annual runoff in eight branch rivers showed a significant decrease over the years. The proportion of water use in the upper and middle reaches compared to the lower reach was increased from 1:0.57 in the 1960s, to 1:0.27 in the 1970s and 1:0.09 in the 1990s. A reduction of about 74% in the river inflow to the lower reaches and a 15-m drop in the groundwater table have occurred during the last four decades. Strategies for improving the water–soil environment of the basin, such as the protection of the water resources of the Qilian Mountains, sustainable use of water resources, maintenance of the balance between land and water resources, development of water-saving agriculture, diverting of water from other rivers and control of soil desertification, are proposed. The objective of this paper is to provide guidelines for reconstruction of the sustainable water management and development of agriculture in this region.  相似文献   

17.
Accurately quantifying the evaporation loss of surface water is essential for regional water resources management, especially in arid and semi-arid areas where water resources are already scarce. The long-term monitoring of stable isotopes (δ18O and δ2H) in water can provide a sensitive indicator of water loss by evaporation. In this study, we obtained surface water samples of Shiyang River Basin from April to October between 2017 and 2019. The spatial and temporal characteristics of stable isotopes in surface water show the trend of enrichment in summer, depletion in spring, enrichment in deserts and depletion in mountains. The Local Evaporation Line (LEL) obtained by the regression of δ2H and δ18O in surface water has been defined by the lines: δ2H = 7.61δ18O + 14.58 for mountainous area, δ2H = 4.19δ18O − 17.85 for oasis area, δ2H = 4.08δ18O − 18.92 for desert area. The slope of LEL shows a gradual decrease from mountain to desert, indicating that the evaporation of surface water is gradually increasing. The evaporation loss of stable isotopes in surface water is 24.82% for mountainous area, 32.19% for oasis area, and 70.98% for desert area, respectively. Temperature and air humidity are the main meteorological factors affecting the evaporation loss, and the construction of reservoirs and farmland irrigation are the main man-made factors affecting the evaporation loss.  相似文献   

18.

Water relation characteristics of the desert legumeAlhagi sparsifolia were investigated during the vegetation period from April to September 1999 in the foreland of Qira oasis at the southern fringe of the Taklamakan Desert, Xinjiang Uygur Autonomous Region of China. The seasonal variation of predawn water potentials and of diurnal water potential indicated thatAlhagi plants were well water supplied over the entire vegetation period. Decreasing values in the summer months were probably attributed to increasing temperatures and irradiation and therefore a higher evapotranspirative demand. Data from pressure-volume analysis confirmed thatAlhagi plants were not drought stressed and xylem sap flow measurements indicated thatAlhagi plants used large amounts of water during the summer months. Flood irrigation had no influence on water relations inAlhagi probably becauseAlhagi plants produced only few fine roots in the upper soil layers. The data indicate thatAlhagi sparsifolia is a drought-avoiding species that utilizes ground water by a deep roots system, which is the key characteristic to adjust the hyper-arid environment. Because growth and survival ofAlhagi depends on ground water supply, it is important that variations of ground water depth are kept to a minimum. The study will provide a theoretical basis for the restoration and management of natural vegetation around oasis in arid regions.

  相似文献   

19.
This paper describes the hydrological changes caused by inter‐basin water transfer and the reservoir development on the hydrological regimes of two rivers. The Sabljaki Reservoir in the Zagorska Mre?nica River and the Bukovik Reservoir in the upper Dobra River began operation in 1959. Both are part of the hydroelectric power plant (HEPP) Gojak, whose installed capacity is 50 m3/s. Their water volumes at the spillway altitudes of 320·10 and 320·15 m a. s. l. are 3·3 × 106 and 0·24 × 106 m3 respectively. Both the Dobra and Mre?nica Rivers are losing, sinking and underground karst rivers. A 9376‐m‐long tunnel provides water from the Sabljaki Reservoir to the HEPP Gojak, which was constructed in the Lower Dobra River. The Sabljaki Reservoir is located in the Pla?ki karst polje, while the Bukovik Reservoir is located in the neighbouring Ogulin karst polje. The consequences of the inter‐basin water transfer are strong and have caused abrupt changes in the hydrological regimes of the downstream sections of both rivers. At the same time, the construction and development of both the reservoirs have also caused hydrological changes to the upstream section of the Upper Dobra River. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Due to rapid socioeconomic development, continuous population growth and urbanization, the world is facing a severe shortage of fresh water, particularly in arid and semi‐arid regions. A lack of water will put pressure on agricultural production, water pollution, as well as eco‐environmental degradation. Traditional water resources assessment mainly focused on blue water, ignoring green water. Therefore, analysis of spatiotemporal distribution of blue and green water resources in arid and semi‐arid regions is of great significance for water resources planning and management, especially for harmonizing agricultural water use and eco‐environmental water requirements. This study applied the Soil and Water Assessment Tool (SWAT) model and the Sequential Uncertainty Fitting algorithm (SUFI‐2) to calibrate and validate the SWAT model based on river discharges in the Wei River, the largest tributary of the Yellow River in China. Uncertainty analysis was also performed to quantify the blue and green water resources availability at different spatial scales. The results showed that most parts of the Wei River basin (WRB) experienced a decrease in blue water resources during the recent 50 years with a minimum value in the 1990s. The decrease is particularly significant in the most southern part of the WRB (the Guanzhong Plain), one of the most important grain production bases in China. Variations of green water flow and green water storage were relatively small both on spatial and temporal dimensions. This study provides strategic information for optimal utilization of water resources in arid and semi‐arid river basin. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号