首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Polders are one of the most common artificial hydrological entities in the plain river network regions of China. Due to enclosed dikes, manual drainage, and irrigation intake operations, polders have had a significant impact on the hydrological processes of these areas. Distributed hydrological models are effective tools to understand and reproduce the hydrological processes of a watershed. To date, however, few models are able to simulate the drainage and irrigation intake interactions of polders at a watershed scale. This study develops a modified version of the Soil and Water Assessment Tool (SWAT) model, which is designed to better represent polders (SWATpld). The SWATpld model simulates drainage and irrigation intake processes by calculating the excess‐water storage in the inner rivers and irrigation schedule for paddy rice in the polder. Both SWAT and SWATpld models were tested for the Liyang watershed. SWATpld outperformed SWAT in simulating the daily discharge and intake of the experimental polder and predicting the monthly peak flow at the outlet of the Liyang watershed, which suggests that the modified model simulates the hydrological responses of the study watershed with polder operations more realistically than the original SWAT model does. Further evaluation at various locations and in various climate conditions would increase the confidence of this model.  相似文献   

2.
Watershed scale hydrological and biogeochemical models rely on the correct spatial‐temporal prediction of processes governing water and contaminant movement. The Soil and Water Assessment Tool (SWAT) model, one of the most commonly used watershed scale models, uses the popular curve number (CN) method to determine the respective amounts of infiltration and surface runoff. Although appropriate for flood forecasting in temperate climates, the CN method has been shown to be less than ideal in many situations (e.g. monsoonal climates and areas dominated by variable source area hydrology). The CN model is based on the assumption that there is a unique relationship between the average moisture content and the CN for all hydrologic response units (HRUs), and that the moisture content distribution is similar for each runoff event, which is not the case in many regions. Presented here is a physically based water balance that was coded in the SWAT model to replace the CN method of runoff generation. To compare this new water balance SWAT (SWAT‐WB) to the original CN‐based SWAT (SWAT‐CN), two watersheds were initialized; one in the headwaters of the Blue Nile in Ethiopia and one in the Catskill Mountains of New York. In the Ethiopian watershed, streamflow predictions were better using SWAT‐WB than SWAT‐CN [Nash–Sutcliffe efficiencies (NSE) of 0·79 and 0·67, respectively]. In the temperate Catskills, SWAT‐WB and SWAT‐CN predictions were approximately equivalent (NSE > 0·70). The spatial distribution of runoff‐generating areas differed greatly between the two models, with SWAT‐WB reflecting the topographical controls imposed on the model. Results show that a water balance provides results equal to or better than the CN, but with a more physically based approach. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
ABSTRACT

Surface runoff generation capacity can be modified by land-use and climate changes. Annual runoff volumes have been evaluated in a small watershed of tropical forest (Brazil), using the Soil and Water Assessment Tool (SWAT) model. Firstly, the accuracy of SWAT in runoff predictions has been assessed by default input parameters and improved by automatic calibration, using 20-year observations. Then, the hydrological response under land uses (cropland, pasture and deforested soil) alternative to tropical forest and climate change scenarios has been simulated. SWAT application has showed that, if forest was replaced by crops or pasture, the watershed’s hydrological response would not significantly be affected. Conversely, a complete deforestation would slightly increase its runoff generation capacity. Under forecasted climate scenarios, the runoff generation capacity of the watershed will tend to decrease and will not be noticeably different among the representative concentration pathways. Pasture and bare soil will give the lowest and highest runoff coefficients, respectively.  相似文献   

4.
Model calibration is important for streamflow simulations using distributed hydrological models, especially in highland and cold areas of northwest China with scarce data. Quantitative analysis of water balance based on the accurate simulation is also essential for reasonably planning and managing water resources in these river basins facing a severe water shortage. In this study, a comprehensive method was proposed to calibrate the Soil and Water Assessment Tool (SWAT) model in the Yingluoxia watershed, upstream area of the Heihe River basin; it was based on multi-temporal, multi-variable and multi-site integrated drainage characteristics. Meanwhile a fresh approach of the parameter transferability and model validation was used by applying the set of calibrated parameters in its tributary to other area of the watershed. The results indicated that the method was effective and feasible; the values of Nash–Sutcliffe Efficiency (NSE) and Coefficient of Determination (r2) were greater than 0.81 and as high as 0.94 and the absolute values of the Percent Bias (PBIAS) were less than 2. Based the output of model the water balance in the Yingluoxia watershed was analyzed, that the mean annual precipitation, evapotranspiration, and discharge of the watershed from 1990 to 2000 were 491.8 mm, 334 mm, and 157.8 mm, respectively. The comprehensive calibration method based on multi-temporal, multi-variable and multi-site integrated drainage characteristics can better portray the hydrological processes of watershed and improve the model simulation; and the output of the model then provide a reliable reference for assessing and managing water resource of the watershed.  相似文献   

5.
在半湿润半干旱地区,下垫面条件复杂,产流机制混合多变,而现有的水文模型由于其固定的结构和模式,无法灵活地模拟不同下垫面特征的洪水过程.本文利用CN-地形指数法将流域划分为超渗主导子流域和蓄满主导子流域.将新安江模型(XAJ)、新安江-Green-Ampt模型(XAJG)和Green-Ampt模型(GA)相结合,在子流域分类的基础上构建空间组合模型(SCMs),并在半湿润的东湾流域和半干旱的志丹流域进行检验.结果表明:东湾流域的参数由水文模型来主导;而志丹流域的参数受主导径流影响很大.在东湾流域,偏蓄满的模型模拟结果优于偏超渗的模型,且SCM2模型(XAJ和XAJG的组合模型)的模拟效果最好(径流深合格率为75%,洪峰合格率75%);而SCM5模型(GA和XAJG的组合模型)在以超渗产流为主的志丹流域模拟最好(径流深合格率53.3%,洪峰合格率53.3%).在半干旱半湿润流域,SCMs模型结构灵活,在地形和土壤数据的驱动下,具有更合理的模型结构和参数,模拟精度较高,适应性较强.  相似文献   

6.
Hydrological models are useful tools for better understanding the hydrological processes and performing the hydrological prediction. However, the reliability of the prediction depends largely on its uncertainty range. This study mainly focuses on estimating model parameter uncertainty and quantifying the simulation uncertainties caused by sole model parameters and the co‐effects of model parameters and model structure in a lumped conceptual water balance model called WASMOD (Water And Snow balance MODeling system). The validity of statistical hypotheses on residuals made in the model formation is tested as well, as it is the base of parameter estimation and simulation uncertainty evaluation. The bootstrap method is employed to examine the parameter uncertainty in the selected model. The Yingluoxia watershed at the upper reaches of the Heihe River basin in north‐west of China is selected as the study area. Results show that all parameters in the model can be regarded as normally distributed based on their marginal distributions and the Kolmogorov–Smirnov test, although they appear slightly skewed for two parameters. Their uncertainty ranges are different from each other. The model residuals are tested to be independent, homoscedastic and normally distributed. Based on such valid hypotheses of model residuals, simulation uncertainties caused by co‐effects of model parameters and model structure can be evaluated effectively. It is found that the 95% and 99% confidence intervals (CIs) of simulated discharge cover 42.7% and 52.4% of the observations when only parameter uncertainty is considered, indicating that parameter uncertainty has a great effect on simulation uncertainty but still cannot be used to explain all the simulation uncertainty in this study. The 95% and 99% CIs become wider, and the percentages of observations falling inside such CIs become larger when co‐effects of parameters and model structure are considered, indicating that simultaneous consideration of both parameters and model structure uncertainties accounts sufficient contribution for model simulation uncertainty. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Integrated river basin models should provide a spatially distributed representation of basin hydrology and transport processes to allow for spatially implementing specific management and conservation measures. To accomplish this, the Soil and Water Assessment Tool (SWAT) was modified by integrating a landscape routing model to simulate water flow across discretized routing units. This paper presents a grid‐based version of the SWAT landscape model that has been developed to enhance the spatial representation of hydrology and transport processes. The modified model uses a new flow separation index that considers topographic features and soil properties to capture channel and landscape flow processes related to specific landscape positions. The resulting model is spatially fully distributed and includes surface, lateral and groundwater fluxes in each grid cell of the watershed. Furthermore, it more closely represents the spatially heterogeneous distributed flow and transport processes in a watershed. The model was calibrated and validated for the Little River Watershed (LRW) near Tifton, Georgia (USA). Water balance simulations as well as the spatial distribution of surface runoff, subsurface flow and evapotranspiration are examined. Model results indicate that groundwater flow is the dominant landscape process in the LRW. Results are promising, and satisfactory output was obtained with the presented grid‐based SWAT landscape model. Nash–Sutcliffe model efficiencies for daily stream flow were 0.59 and 0.63 for calibration and validation periods, and the model reasonably simulates the impact of the landscape position on surface runoff, subsurface flow and evapotranspiration. Additional revision of the model will likely be necessary to adequately represent temporal variations of transport and flow processes in a watershed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Saturation‐excess runoff is the major runoff mechanism in humid well‐vegetated areas where infiltration rates often exceed rainfall intensity. Although the Soil and Water Assessment Tool (SWAT) is one of the most widely used models, it predicts runoff based mainly on soil and land use characteristics, and is implicitly an infiltration‐excess runoff type of model. Previous attempts to incorporate the saturation‐excess runoff mechanism in SWAT fell short due to the inability to distribute water from one hydrological response unit to another. This paper introduces a modified version of SWAT, referred to as SWAT‐Hillslope (SWAT‐HS). This modification improves the simulation of saturation‐excess runoff by redefining hydrological response units based on wetness classes and by introducing a surface aquifer with the ability to route interflow from “drier” to “wetter” wetness classes. Mathematically, the surface aquifer is a nonlinear reservoir that generates rapid subsurface stormflow as the water table in the surface aquifer rises. The SWAT‐HS model was tested in the Town Brook watershed in the upper reaches of the West Branch Delaware River in the Catskill region of New York, USA. SWAT‐HS predicted discharge well with a Nash‐Sutcliffe Efficiency of 0.68 and 0.87 for daily and monthly time steps. Compared to the original SWAT model, SWAT‐HS predicted less surface runoff and groundwater flow and more lateral flow. The saturated areas predicted by SWAT‐HS were concentrated in locations with a high topographic index and were in agreement with field observations. With the incorporation of topographic characteristics and the addition of the surface aquifer, SWAT‐HS improved streamflow simulation and gave a good representation of saturated areas on the dates that measurements were available. SWAT‐HS is expected to improve water quality model predictions where the location of the surface runoff matters.  相似文献   

9.
In hydrological modelling of catchments, wherein streams are groundwater-fed, an accurate representation of groundwater processes and their interaction with surface water is crucial. With this purpose, a coupled model was recently developed linking SWAT (Soil and Water Assessment Tool) with the fully-distributed groundwater model MODFLOW (Modular Groundwater Flow). In this study, SWAT and SWAT-MODFLOW were applied to a Danish groundwater-dominant catchment, simulating groundwater abstraction scenarios and assessing the benefits and drawbacks of SWAT-MODFLOW. Both models demonstrated good performance. However, SWAT-MODFLOW provided more realistic outputs when simulating abstraction: the decrease in streamflow was similar to the volume of water abstracted, while in SWAT the impact was negligible. SWAT also showed impacts on streamflow only when abstractions were taken from the shallow aquifer, not from the deep aquifer. Overall, SWAT-MODFLOW demonstrated wider possibilities for groundwater analysis, providing more insights than SWAT in supporting decision making in relation to environmental assessment.  相似文献   

10.
The present effect of watershed subdivision on simulated water balance components using the thoroughly tested Soil and Water Assessment Tool (SWAT) model has been evaluated for the Nagwan watershed in eastern India. Observed meteorological and hydrological data (daily rainfall, temperature, relative humidity and runoff) for the years 1995 to 1998 were collected and used. The watershed and sub‐watershed boundaries, slope and soil texture maps were generated using a geographical information system. A supervised classification method was used for land‐use/cover classification from satellite imagery of 1996. In order to study the effect of watershed subdivision, the watershed was spatially defined into three decomposition schemes, namely a single watershed, and 12 and 22 sub‐watersheds. The simulation using the SWAT model was done for a period of 4 years (1995 to 1998). Results of the study showed a perfect water balance for the Nagwan watershed under all of the decomposition schemes. Results also revealed that the number and size of sub‐watersheds do not appreciably affect surface runoff. Except for runoff, there was a marked variation in the individual components of the water balance under the three decomposition schemes. Though the runoff component of the water balance showed negligible variation among the three cases, variations were noticed in the other components: evapotranspiration (5 to 48%), percolation (2 to 26%) and soil water content (0·30 to 22%). Thus, based on this study, it is concluded that watershed subdivision has a significant effect on the water balance components. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Representation of agricultural conservation practices with SWAT   总被引:5,自引:0,他引:5  
Results of modelling studies for the evaluation of water quality impacts of agricultural conservation practices depend heavily on the numerical procedure used to represent the practices. Herein, a method for the representation of several agricultural conservation practices with the Soil and Water Assessment Tool (SWAT) is developed and evaluated. The representation procedure entails identifying hydrologic and water quality processes that are affected by practice implementation, selecting SWAT parameters that represent the affected processes, performing a sensitivity analysis to ascertain the sensitivity of model outputs to selected parameters, adjusting the selected parameters based on the function of conservation practices, and verifying the reasonableness of the SWAT results. This representation procedure is demonstrated for a case study of a small agricultural watershed in Indiana in the Midwestern USA. The methods developed in the present work can be applied with other watershed models that employ similar underlying equations to represent hydrologic and water quality processes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Y. R. Liu  J. Sun 《水文科学杂志》2020,65(12):2057-2071
ABSTRACT

In this study, a two-stage fuzzy-stochastic factorial analysis (TFFA) method is developed and applied to the Vakhsh watershed (upper reaches of Aral Sea basin, Central Asia) for daily streamflow simulation. TFFA has advantages in identifying the major parameters that have important individual and interactive effects on model outputs, as well as assessing multiple uncertainties resulting from randomness and vagueness characteristics of model parameters. The results reveal that (a) nine major parameters (from a total of 24) have significant effects on Soil Water Assessment Tool (SWAT) simulation performance for the study watershed; and (b) snowmelt-related parameters (including snowfall temperature, threshold temperature for snowmelt and s nowmelt factor) and runoff curve number (CN2) are most sensitive parameters for the runoff generation. The results also show that the proposed TFFA method can help enhance the hydrological model’s capability for runoff simulation/prediction, particularly for in data-scarce and high-mountainous watersheds.  相似文献   

13.
The evaluation of climate change and its side effects on the hydrological processes of the basin can increasingly help in dealing with the challenges that water resource managers and planners face in future courses. These side effects are investigated using the simulation of hydrological processes with the help of physical rainfall‐runoff model. Hydrological models provide a framework for examining the relationship between climate and water resources. This research aims at the investigation of the effect of climate change on the runoff of Gharesou, which is one of the main branches of the “Karkheh” River in Iran during the periods 2040–2069. To achieve this, the distributed hydrological model Soil and Water Assessment Tool (SWAT) – a model that is sensitive to the changes in land, water, and climate – has been used with the aim of evaluating the impact of climate change on the hydrology of the Gharesou Basin. For this reason, first, the continuous distributed model of rainfall‐runoff SWAT for the period 1971–2000 has been calibrated and validated. Next, with the aim of evaluating the impact of climate change and global warming on the basin hydrology for the period 2040–2069, HadCM3‐AR4 global climate model data under the A2 scenario – from the SRES scenario set‐haves been downscaled. Eventually, the downscaled climate data haves been introduced in the SWAT model, and the future runoff changes have been studied. The results showed that the temperature increases in most of the months, and the precipitation rate exhibits a change in the range of ±30%. Moreover, the produced runoff in this period changes from ?90 to 120% during different months.  相似文献   

14.
Despite the significant role of precipitation in the hydrological cycle, few studies have been conducted to evaluate the impacts of the temporal resolution of rainfall inputs on the performance of SWAT (soil and water assessment tool) models in large-sized river basins. In this study, both daily and hourly rainfall observations at 28 rainfall stations were used as inputs to SWAT for daily streamflow simulation in the Upper Huai River Basin. Study results have demonstrated that the SWAT model with hourly rainfall inputs performed better than the model with daily rainfall inputs in daily streamflow simulation, primarily due to its better capability of simulating peak flows during the flood season. The sub-daily SWAT model estimated that 58 % of streamflow was contributed by baseflow compared to 34 % estimated by the daily model. Using the future daily and 3-h precipitation projections under the RCP (Representative Concentration Pathways) 4.5 scenario as inputs, the sub-daily SWAT model predicted a larger amount of monthly maximum daily flow during the wet years than the daily model. The differences between the daily and sub-daily SWAT model simulation results indicated that temporal rainfall resolution could have much impact on the simulation of hydrological process, streamflow, and consequently pollutant transport by SWAT models. There is an imperative need for more studies to examine the effects of temporal rainfall resolution on the simulation of hydrological and water pollutant transport processes by SWAT in river basins of different environmental conditions.  相似文献   

15.
Model calibration and validation are necessary before applying it for scenario assessment and watershed management.This study presented the methodology of evaluating Soil and Water Assessment Tool(SWAT) and tested the feasibility of SWAT on runoff and sediment load simulation in the Zhifanggou watershed located in hilly-gullied region of China.Daily runoff and sediment event data from 1998-2008 were used in this study;data from 1998-2003 were used for calibration and 2004-2008 for validation.The evaluation statistics for the daily runoff simulation showed that the model results were acceptable,but the model underestimated the runoff for high-flow events.For sediment load simulation,the SWAT performed well in capturing the trend of sediment load,while the model tended to underestimate sediment load during both the calibration and validation periods. The disparity between observed and simulated data most likely resulted from limitations of the existing SCS-CN and MUSLE methods in the model.This study indicated that the modification of SWAT components is needed to take rainfall intensity and its duration into account to enhance the model performance on peak flow and sediment load simulation during heavy rainfall season.  相似文献   

16.
Using a mass balance algorithm, this study develops an extension module that can be embedded in the commonly used Soil and Water Assessment Tool (SWAT). This module makes it possible to assess effects of riparian wetlands on runoff and sediment yields at a watershed scale, which is very important for aquatic ecosystem management but rarely documented in the literature. In addition to delineating boundaries of a watershed and its subwatersheds, the module groups riparian wetlands within a subwatershed into an equivalent wetland for modelling purposes. Further, the module has functions to compute upland drainage area and other parameters (e.g. maximum volume) for the equivalent wetland based on digital elevation model, stream network, land use, soil and wetland distribution GIS datasets. SWAT is used to estimate and route runoff and sediment generated from upland drainage area. The lateral exchange processes between riparian wetlands and their hydraulically connected streams are simulated by the extension module. The developed module is empirically applied to the 53 km2 Upper Canagagigue Creek watershed located in Southern Ontario of Canada. The simulation results indicate that the module can make SWAT more reasonably predict flow and sediment loads at the outlet of the watershed and better represent the hydrologic processes within it. The simulation is sensitive to errors of wetland parameters and channel geometry. The approach of embedding the module into SWAT enables simulation of hydrologic processes in riparian wetlands, evaluation of wetland effects on regulating stream flow and sediment loading and assessment of various wetland restoration scenarios. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Phosphorus (P) loss from agricultural watersheds has long been a critical water quality problem, the control of which has been the focus of considerable research and investment. Preventing P loss depends on accurately representing the hydrological and chemical processes governing P mobilization and transport. The Soil and Water Assessment Tool (SWAT) is a watershed model commonly used to predict run‐off and non‐point source pollution transport. SWAT simulates run‐off employing either the curve number (CN) or the Green and Ampt methods, both assume infiltration‐excess run‐off, although shallow soils underlain by a restricting layer commonly generate saturation‐excess run‐off from variable source areas (VSA). In this study, we compared traditional SWAT with a re‐conceptualized version, SWAT‐VSA, that represents VSA hydrology, in a complex agricultural watershed in east central Pennsylvania. The objectives of this research were to provide further evidence of SWAT‐VSA's integrated and distributed predictive capabilities against measured surface run‐off and stream P loads and to highlight the model's ability to drive sub‐field management of P. Thus, we relied on a detailed field management database to parameterize the models. SWAT and SWAT‐VSA predicted discharge similarly well (daily Nash–Sutcliffe efficiencies of 0.61 and 0.66, respectively), but SWAT‐VSA outperformed SWAT in predicting P export from the watershed. SWAT estimated lower P loss (0.0–0.25 kg ha?1) from agricultural fields than SWAT‐VSA (0.0–1.0+ kg ha?1), which also identified critical source areas – those areas generating large run‐off and P losses at the sub‐field level. These results support the use of SWAT‐VSA in predicting watershed‐scale P losses and identifying critical source areas of P loss in landscapes with VSA hydrology. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Evapotranspiration (ET) is an essential component of the hydrological cycle and plays a critical role in water resource management. However, ET is often overlooked in order to transform rainfall to runoff for better streamflow simulation. Hydrological models are commonly used to estimate areal actual evapotranspiration (AET) after calibration against observed discharge. However, classical approaches are often inadequate to appropriately simulate other hydrologic components. Hence, it is important to introduce natural heterogeneity to enhance hydrological processes and reduce water balance errors. In this study, the effectiveness of introducing a constant crop coefficient (Kc), flux tower‐based Kc, and leaf area index (LAI) to three hydrological models (Three‐Parametric Hydrologic Model [TPHM], Génie Rural à 4 paramètres Journalier [GR4J], and Catchment hydrologic cycle Assessment Tool [CAT]) is assessed for the simulation of daily streamflow and AET in a mountainous mixed forest watershed (8.54 km2) in South Korea. The results show that the streamflow simulations after introduction of Kc and LAI to the original models are quite similar. However, the effectiveness of the AET estimation was significantly enhanced after introduction of the flux tower‐based Kc and LAI. The information criterion computed to compare the models reveals that the flux tower‐based Kc‐simulated AET demonstrated better agreement with the observed AET. The Pearson's correlation coefficients (R2) of the TPHM (8%), GR4J (55%), and CAT (55%) models also showed improvements that were greater than the constant based Kc simulation. Similarly, the limitations of the three models with respect to capturing seasonal variation as well as high and low flows were enhanced after the introduction of the flux tower‐based Kc, which adequately reproduced hydrological processes with minimum water balance errors and bias. A regression analysis revealed the potential of estimating Kc as a linear function of LAI (R2 = 0.84). The results of this study indicate that introduction of Kc and LAI to the conceptual rainfall–runoff models can be considered an effective approach to reduce water balance errors and uncertainties in hydrological models and improve the reliability of climate change studies and water resource management.  相似文献   

19.
This study was conducted under the USDA‐Conservation Effects Assessment Project (CEAP) in the Cheney Lake watershed in south‐central Kansas. The Cheney Lake watershed has been identified as ‘impaired waters’ under Section 303(d) of the Federal Clean Water Act for sediments and total phosphorus. The USDA‐CEAP seeks to quantify environmental benefits of conservation programmes on water quality by monitoring and modelling. Two of the most widely used USDA watershed‐scale models are Annualized AGricultural Non‐Point Source (AnnAGNPS) and Soil and Water Assessment Tool (SWAT). The objectives of this study were to compare hydrology, sediment, and total phosphorus simulation results from AnnAGNPS and SWAT in separate calibration and validation watersheds. Models were calibrated in Red Rock Creek watershed and validated in Goose Creek watershed, both sub‐watersheds of the Cheney Lake watershed. Forty‐five months (January 1997 to September 2000) of monthly measured flow and water quality data were used to evaluate the two models. Both models generally provided from fair to very good correlation and model efficiency for simulating surface runoff and sediment yield during calibration and validation (correlation coefficient; R2, from 0·50 to 0·89, Nash Sutcliffe efficiency index, E, from 0·47 to 0·73, root mean square error, RMSE, from 0·25 to 0·45 m3 s?1 for flow, from 158 to 312 Mg for sediment yield). Total phosphorus predictions from calibration and validation of SWAT indicated good correlation and model efficiency (R2 from 0·60 to 0·70, E from 0·63 to 0·68) while total phosphorus predictions from validation of AnnAGNPS were from unsatisfactory to very good (R2 from 0·60 to 0·77, E from ? 2·38 to 0·32). The root mean square error–observations standard deviation ratio (RSR) was estimated as excellent (from 0·08 to 0·25) for the all model simulated parameters during the calibration and validation study. The percentage bias (PBIAS) of the model simulated parameters varied from unsatisfactory to excellent (from 128 to 3). This study determined SWAT to be the most appropriate model for this watershed based on calibration and validation results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
《水文科学杂志》2013,58(6):953-970
Abstract

The 5000 km2 topographically closed Estancia basin in central New Mexico has been the focus of several palaeoclimatic studies based on changes in the level of late Pleistocene Lake Estancia. A large, unknown volume of surface runoff and groundwater from adjacent mountains contributed to the hydrological balance during highstands and lowstands. The US Department of Agriculture hydrological model SWAT (Soil and Water Assessment Tool) and the US Geological Survey groundwater flow model MODFLOW, with the LAK2 package, were used in this study to estimate runoff and water balance under present climate. A Geographic Information Systems (GIS) interface was used for SWAT, digitized data were applied for soils and vegetation, and limited streamflow data were used to obtain an approximate calibration for the model. Simulated streamflow is generally within 30% of observed values, and simulated runoff for the entire basin is about 8% of the annual inflow volume needed to support lowstands of the former Lake Estancia. Results from the combined models suggest application to other palaeoclimate investigations in semiarid lake basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号