首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The current benchmark approach for mathematical modelling of floodplain hydrologic regime consists of dynamically coupling one‐dimensional (1D) and two‐dimensional (2D) models for flow routing along the main channel and the floodplain, respectively. For large‐scale sites, floodplain inundation may spread over hundreds of square kilometres and may last for many months and even influence seasonal floods in following years. This paper aims at evaluating the effect of vertical water balance representation on modelling a large‐scale floodplain. The Pantanal wetland (140 000 km2; Brazil) is simulated using a 1D/2D coupled model approach, which also considers the representation of vertical water processes over the floodplain. Four scenarios are simulated: Baseline (the reference scenario), NoVertBal (in which the vertical water balance over floodplain is turned off) and ETp+1 and ETp?1 scenarios, characterized by artificially increasing or decreasing daily potential evapotranspiration (ETp) by 1 mm, respectively. The results showed that the effect of the vertical water processes scenarios on channel flow is directly dependent on the lateral exchange of water between the channel and floodplain in the upstream river reach. This influence is stronger when there is a gain of water from the floodplain to the channel. The inclusion of these vertical water processes into floodplain modelling was essential to represent the process of wetting and drying, this effect being more relevant for areas not directly connected to main channels, which is a characteristic of the Pantanal region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
We compare two approaches to modelling floodplain inundation: a raster‐based approach, which uses a relatively simple process representation, with channel flows being resolved separately from the floodplain using either a kinematic or diffusive wave approximation, and a finite‐element hydraulic model aiming to solve the full two‐dimensional shallow‐water equations. A flood event on a short (c. 4 km) reach of the upper River Thames in the UK is simulated, the models being validated against inundation extent as determined from satellite synthetic aperture radar (SAR) imagery. The unconstrained friction parameters are found through a calibration procedure, where a measure of fit between predicted and observed shorelines is maximized. The raster and finite‐element models offer similar levels of performance, both classifying approximately 84% of the model domain correctly, compared with 65% for a simple planar prediction of water surface elevation. Further discrimination between models is not possible given the errors in the validation data. The simple raster‐based model is shown to have considerable advantages in terms of producing a straightforward calibration process, and being robust with respect to channel specification. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
The Pantanal wetland is one of the least explored regions of South America. It is characterized by an outstanding flora and fauna adapted to a seasonal flood pulse controlled by a dry and a wet season within each year. The resulting inundation covers in average an area of approximately 150 000 km2 and is seen as the most important driver for ecological integrity. Evaporation from the large floodplain is supposed to influence the climate of the whole continent. The regional groundwater is connected to the surface water and plays an important role for the characteristic flooding regime by regulating the wetland's water table. The water balance assessment of the wetland and the internal water exchange between surface and groundwater is therefore of high relevance for the conservation of the Pantanal biodiversity. Despite of its importance, water balance studies including groundwater–surface water interactions based on field data are rarely undertaken. This is mainly due to the remoteness and difficulty in accessing this area, which results in lack of data. In our study, we developed a new tracer‐based model to simulate the spatio–temporal surface and subsurface fluxes for a range of water bodies. The model was able to simulate these fluxes considering a dynamic simulation of inflow and outflow using a newly collected 2‐year dataset of water levels, stable water isotopes and chloride collected from several water bodies in the northern Pantanal region. Quantitative differences between water bodies according to their location in the floodplain were determined by the flooding regime and connectivity as well as site‐specific characteristics, such as hydraulic conductivity and water depth. Our model simulated water balance fluxes with a Nash–Sutcliffe efficiency of 0.61, whereas it simulated stable water isotopic compositions better than chloride. We present the first study based on field data for the Pantanal, which is able to quantify water balances fluxes. Because their representation in global climate and land cover products is insufficient, our simulation results are valuable for validating large‐scale models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
D. Yu  S. N. Lane 《水文研究》2011,25(1):36-53
Numerical modelling of flood inundation over large and complex floodplains often requires mesh resolutions coarser than the structural features (e.g. buildings) that are known to influence the inundation process. Recent research has shown that this mismatch is not well represented by conventional roughness treatments, but that finer‐scale features can be represented through porosity‐based subgrid‐scale treatments. This paper develops this work by testing the interactions between feature representation, subgrid‐scale resolution and mesh resolution. It uses as the basis for this testing a 2D diffusion‐based flood inundation model which is applied to a 2004 flood event in a topologically complex upland floodplain in northern England. This study formulated simulations with different grid mesh resolution and subgrid mesh ratio. The sensitivity of the model to mesh resolution and roughness specification was investigated. Model validation and verification suggest that the subgrid treatment with higher subgrid mesh ratio can give much improved predictions of flood propagation, in particular, in terms of the predicted water depth. This study also highlighted the limitation of using at‐a‐point in time inundation extent for validation of flood models of this type. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
6.
ABSTRACT

Flood risk management strongly relies on inundation models for river basin zoning in flood-prone and risk-free areas. Floodplain zoning is significantly affected by the diverse and concurrent uncertainties that characterize the modelling chain used for producing inundation maps. In order to quantify the relative impact of the uncertainties linked to a lumped hydrological (rainfall–runoff) model and a FLO-2D hydraulic model, a Monte Carlo procedure is proposed in this work. The hydrological uncertainty is associated with the design rainfall estimation method, while the hydraulic model uncertainty is associated with roughness parameterization. This uncertainty analysis is tested on the case study of the Marta coastal catchment in Italy, by comparing the different frequency, extent and depth of inundation simulations associated with varying rainfall forcing and/or hydraulic model roughness realizations. The results suggest a significant predominance of the hydrological uncertainty with respect to the hydraulic one on the overall uncertainty associated with the simulated inundation maps.  相似文献   

7.
River discharges vary strongly through time and space, and quantifying this variability is fundamental to understanding and modelling river processes. The river basin is increasingly being used as the unit for natural resource planning and management; to facilitate this, basin‐scale models of material supply and transport are being developed. For many basin‐scale planning activities, detailed rainfall‐runoff modelling is neither necessary nor tractable, and models that capture spatial patterns of material supply and transport averaged over decades are sufficient. Nevertheless, the data to describe the spatial variability of river discharge across large basins for use in such models are often limited, and hence models to predict river discharge at the basin scale are required. We describe models for predicting mean annual flow and a non‐dimensional measure of daily flow variability for every river reach within a drainage network. The models use sparse river gauging data, modelled grid surfaces of mean annual rainfall and mean annual potential evapotranspiration, and a network accumulation algorithm. We demonstrate the parameterization and application of the models using data for the Murrumbidgee basin, in southeast Australia, and describe the use of these predictions in modelling sediment transport through the river network. The regionalizations described contain less uncertainty, and are more sensitive to observed spatial variations in runoff, than regionalizations based on catchment area and rainfall alone. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Hydrological and hydrochemical processes in the critical zone of karst environments are controlled by the fracture‐conduit network. Modelling hydrological and hydrochemical dynamics in such heterogeneous hydrogeological settings remains a research challenge. In this study, water and solute transport in the dual flow system of the karst critical zone were investigated in a 73.5‐km2 catchment in southwest China. We developed a dual reservoir conceptual run‐off model combined with an autoregressive and moving average model with algorithms to assess dissolution rates in the “fast flow” and “slow flow” systems. This model was applied to 3 catchments with typical karst critical zone architectures, to show how flow exchange between fracture and conduit networks changes in relation to catchment storage dynamics. The flux of bidirectional water and solute exchange between the fissure and conduit system increases from the headwaters to the outfall due to the large area of the developed conduits and low hydraulic gradient in the lower catchment. Rainfall amounts have a significant influence on partitioning the relative proportions of flow and solutes derived from different sources reaching the underground outlet. The effect of rainfall on catchment function is modulated by the structure of the karst critical zone (e.g., epikarst and sinkholes). Thin epikarst and well‐developed sinkholes in the headwaters divert more surface water (younger water) into the underground channel network, leading to a higher fraction of rainfall recharge into the fast flow system and total outflow. Also, the contribution of carbonate weathering to mass export is also higher in the headwaters due to the infiltration of younger water with low solute concentrations through sinkholes.  相似文献   

9.
A key aspect of large river basins partially neglected in large‐scale hydrological models is river hydrodynamics. Large‐scale hydrologic models normally simulate river hydrodynamics using simplified models that do not represent aspects such as backwater effects and flood inundation, key factors for some of the largest rivers of the world, such as the Amazon. In a previous paper, we have described a large‐scale hydrodynamic approach resultant from an improvement of the MGB‐IPH hydrological model. It uses full Saint Venant equations, a simple storage model for flood inundation and GIS‐based algorithms to extract model parameters from digital elevation models. In the present paper, we evaluate this model in the Solimões River basin. Discharge results were validated using 18 stream gauges showing that the model is accurate. It represents the large delay and attenuation of flood waves in the Solimões basin, while simplified models, represented here by Muskingum Cunge, provide hydrographs are wrongly noisy and in advance. Validation against 35 stream gauges shows that the model is able to simulate observed water levels with accuracy, representing their amplitude of variation and timing. The model performs better in large rivers, and errors concentrate in small rivers possibly due to uncertainty in river geometry. The validation of flood extent results using remote sensing estimates also shows that the model accuracy is comparable to other flood inundation modelling studies. Results show that (i) river‐floodplain water exchange and storage, and (ii) backwater effects play an important role for the Amazon River basin hydrodynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
V. Tayefi  S. N. Lane  R. J. Hardy  D. Yu 《水文研究》2007,21(23):3190-3202
A much understudied aspect of flood inundation is examined, i.e. upland environments with topographically complex floodplains. Although the presence of high‐resolution topographic data (e.g. lidar) has improved the quality of river flood inundation predictions, the optimum dimensionality of hydraulic models for this purpose has yet to be fully evaluated for situations of both topographic and topological (i.e. the connectivity of floodplain features) complexity. In this paper, we present the comparison of three treatments of upland flood inundation using: (a) a one‐dimensional (1D) model (HEC‐RAS v. 3·1·2) with the domain defined as series of extended cross‐sections; (b) the same 1D model, but with the floodplain defined by a series of storage cells, hydraulically connected to the main river channel and other storage cells on the floodplain according to floodplain topological characteristics; (c) a two‐dimensional (2D) diffusion wave treatment, again with explicit representation of floodplain structural features. The necessary topographic and topological data were derived using lidar and Ordnance Survey Landline data. The three models were tested on a 6 km upland reach of the River Wharfe, UK. The models were assessed by comparison with measured inundation extent. The results showed that both the extended cross‐section and the storage cell 1D modes were conceptually problematic. They also resulted in poorer model predictions, requiring incorrect parameterization of the main river to floodplain flux in order to approach anything like the level of agreement observed when the 2D diffusion wave treatment was assessed. We conclude that a coupled 1D–2D treatment is likely to provide the best modelling approach, with currently available technology, for complex floodplain configurations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Meteorological observations at high elevations in mountainous regions are often lacking. One opportunity to fill this data gap is through the use of downscaled output from weather reanalysis models. In this study, we tested the accuracy of downscaled output from the North American Regional Reanalysis (NARR) against high‐elevation surface observations at four ridgetop locations in the southern Coast Mountains of British Columbia, Canada. NARR model output was downscaled to the surface observation locations through three‐dimensional interpolation for air temperature, vapour pressure and wind speed and two‐dimensional interpolation for radiation variables. Accuracy was tested at both the 3‐hourly and daily time scales. Air temperature displayed a high level of agreement, especially at the daily scale, with root mean square error (RMSE) values ranging from 0.98 to 1.21 °C across all sites. Vapour pressure downscaling accuracy was also quite high (RMSE of 0.06 to 0.11 hPa) but displayed some site specific bias. Although NARR overestimated wind speed, there were moderate to strong linear relations (r2 from 0.38 to 0.84 for daily means), suggesting that the NARR output could be used as an index and bias‐corrected. NARR output reproduced the seasonal cycle for incoming short‐wave radiation, with Nash–Sutcliffe model efficiencies ranging from 0.78 to 0.87, but accuracy suffered on days with cloud cover, resulting in a positive bias and RMSE ranged from 42 to 46 Wm? 2. Although fewer data were available, incoming long‐wave radiation from NARR had an RMSE of 19 Wm? 2 and outperformed common methods for estimating incoming long‐wave radiation. NARR air temperature showed potential to assist in hydrologic analysis and modelling during an atmospheric river storm event, which are characterized by warm and wet air masses with atypical vertical temperature gradients. The incorporation of a synthetic NARR air temperature station to better represent the higher freezing levels resulted in increased predicted peak flows, which better match the observed run‐off during the event. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Joy Sanyal 《水文科学杂志》2017,62(9):1483-1498
Levees are not usually built to a uniform height due to the varying priority of protecting urban and agricultural lands and they are often maintained in segments. Ad hoc alteration of the heights of these segments may aggravate flood conditions. Alterations lead to complex feedback loops in velocity and depth of water that are difficult to predict. A large number of possible configurations of the levee segments renders a deterministic modelling approach ineffective. The current analysis, based on a two-dimensional hydrodynamic model involving 1000 Monte Carlo realizations of randomly varying levee heights in segments, presents a methodology of dealing with the effect of uncertainty in levee heights on the inundation pattern in a probabilistic framework. Spatially distributed model outcomes include the likelihood of inundation, range and standard deviation of flood depths and maximum speed of water. The results indicate the necessity of adopting a probabilistic approach for robust flood hazard assessment when dealing with levee segments with uncertain heights.

EDITOR M.C. Acreman; ASSOCIATE EDITOR H. Kreibich  相似文献   

13.
Water pollution from diffuse sources is a problem of increasing concern. Efforts to control diffuse pollution have been confined mainly to agricultural land and forests. Little attention has been paid to sources of diffuse pollution from urban areas. A diffuse nitrate modelling tool (DNMT) has been developed for modelling the fate of nitrate in urban areas. This tool works at the catchment scale and has a modular structure that consists of three components: the hydrological module, the nitrogen cycle module and the nitrate transport module. The hydrological model describes the possible flow pathways. The nitrogen cycle model accounts for the mass balance of nitrate and calculates the amount of nitrate for potential loss. The nitrate transport module simulates the movement of nitrate within and from the soil to the receiving water. This paper demonstrates the development of the tool and its application in the White Cart Water catchment. This implementation of the tool shows that it has a good capability for simulating the fate of nitrate in urban catchments. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
This study first explores the role of spatial heterogeneity, in both the saturated hydraulic conductivity Ks and rainfall intensity r, on the integrated hydrological response of a natural slope. On this basis, a mathematical model for estimating the expected areal‐average infiltration is then formulated. Both Ks and r are considered as random variables with assessed probability density functions. The model relies upon a semi‐analytical component, which describes the directly infiltrated rainfall, and an empirical component, which accounts further for the infiltration of surface water running downslope into pervious soils (the run‐on effect). Monte Carlo simulations over a clay loam soil and a sandy loam soil were performed for constructing the ensemble averages of field‐scale infiltration used for model validation. The model produced very accurate estimates of the expected field‐scale infiltration rate, as well as of the outflow generated by significant rainfall events. Furthermore, the two model components were found to interact appropriately for different weights of the two infiltration mechanisms involved. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Backflow, the temporary reversal of discharge at the outlet of a lake, is an important mechanism controlling flow and transport in many connected river–lake systems. This study used statistical methods to examine long‐term variations and primary causal factors of backflow from the Yangtze River to a laterally connected, large floodplain lake (Poyang Lake, China). Additionally, the effects of backflow on the lake hydrology were explored using a physically based hydrodynamic model and a particle‐tracking model. Although backflow into Poyang Lake occurs frequently, with an average of 16 backflow events per year, and varies greatly in magnitude between years, statistical analysis indicates that both the frequency and magnitude of backflow reduced significantly during 2001–2010 relative to the previous period of 1960–2000. The ratio of Poyang Lake catchment inflows to Yangtze River discharge can be used as an indication of the daily occurrence of backflow, which is most likely to occur during periods when this ratio is lower than 5%. Statistical analysis also indicates that the Yangtze River discharge is the main controlling factor of backflow during July to October, rather than catchment inflows to the lake. Hydrodynamic modelling reveals that, in general, backflow disturbs the normal northward water flow direction in Poyang Lake and transports mass ~20 km southward into the lake. The effects of backflow on flow direction, water velocities and water levels propagate to virtually its upstream extremity. The current study represents a first attempt to explore backflow and causal factors for a highly dynamic floodplain lake system. An improved understanding of Poyang Lake backflow is critical for guiding future strategies to manage the lake, its water quality and ecosystem value, given proposals to modify the lake–river connectivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Overflow‐driven lateral connectivity significantly influences the spatial distribution and diversity of floodplain habitats and biota. Proper understanding of lateral connectivity in floodplain and backwater channels is therefore critical for assessment of river quality and for targeting management or restoration actions. In this study, we present a methodological framework for spatial and temporal assessments of overflow‐driven lateral connectivity at two spatial scales: bypass reach and backwater channel. Firstly, we compute the relative elevations, as well as overflow discharge, duration, and frequency using a simple, raster‐based method that uses a LiDAR digital elevation model (DEM), rating curves, and streamflow time series. Subsequently, we analyse the accuracy of this approach with respect to the accuracy of a DEM and evaluate its further applications. Altogether, four 10‐km‐long bypass reaches and 11 backwater channels are analysed, located along the Rhône River corridor in France. The results proved the precision of the method to be affected by the LiDAR DEM accuracy, which was on average more precise in a typically homogeneous floodplain setting rather than for backwater channel plugs with pronounced topographic complexity and usually riparian forest canopy. Amongst the four studied reaches, Brégnier Cordon proved to have the greatest flooding dynamics, followed by Belley and Chautagne. The hydrological connectivity pattern of Pierre Bénite differed significantly. Three longitudinal patterns of hydrological connectivity of backwater channels displayed stepwise advancement of the water. The presented results can be used to assess ecological potential of floodplain habitats and their historic and prospective evolution through time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A cell‐based long‐term hydrological model (CELTHYM) that can be integrated with a geographical information system (GIS) was developed to predict continuous stream flow from small agricultural watersheds. The CELTHYM uses a cell‐by‐cell soil moisture balance approach. For surface runoff estimation, the curve number technique considering soil moisture on a daily basis was used, and release rate was used to estimate baseflow. Evapotranspiration was computed using the FAO modified Penman equation that considered land‐use‐based crop coefficients, soil moisture and the influence of topography on radiation. A rice paddy field water budget model was also adapted for the specific application of the model to East Asia. Model sensitivity analysis was conducted to obtain operational information about the model calibration parameters. The CELTHYM was calibrated and verified with measured runoff data from the WS#1 and WS#3 watersheds of the Seoul National University, Department of Agricultural Engineering, in Hwaseong County, Kyounggi Province, South Korea. The WS#1 watershed is comprised of about 35·4% rice paddy fields and 42·3% forest, whereas the WS#3 watershed is about 85·0% forest and 11·5% rice paddy fields. The CELTHYM was calibrated for the parameter release rate, K, and soil moisture storage coefficient, STC, and results were compared with the measured runoff data for 1986. The validation results for WS#1 considering all daily stream flow were poor with R2, E2 and RMSE having values of 0·40, ?6·63 and 9·69 (mm), respectively, but validation results for days without rainfall were statistically significant (R2 = 0·66). Results for WS#3 showed good agreement with observed data for all days, and R2, E2 and RMSE were 0·92, 0·91 and 2·23 (mm), respectively, suggesting potential for CELTHYM application to other watersheds. The direct runoff and water balance components for watershed WS#1 with significant areas of paddy fields did not perform well, suggesting that additional study of these components is needed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
The performances of a finite volume model (SFV) and finite element model (TELEMAC‐2D) in reproducing inundation on a 16 km reach of the river Severn, United Kingdom, are compared. Predicted inundation extents are compared with 4 airborne synthetic aperture radar images of a major flood event in November 2000, and these are used to calibrate 2 values of Manning's n for the channel and floodplain. The four images are shown to have different capacities to constrain roughness parameters, with the image acquired at low flow rate doing better in determining these parameters than the image acquired at approximately peak flow. This is assigned to the valley filling nature of the flood and the associated insensitivity of flood extent to changes in water level. The level of skill demonstrated by the models, when compared with inundation derived using a horizontal water free surface, also increases as flow rate drops. The two models show markedly different behaviours to the calibration process, with TELEMAC showing less sensitivity and lower optimum values for Manning's n than SFV. When the models are used in predictive mode, calibrated against one image and predicting another, SFV performs better than TELEMAC. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
20.
This paper suggests a multi‐criteria protocol for appropriately evaluating the predictions of hydrologic models during calibration and evaluation stages. The protocol includes different statistical, analytical and visual criteria such as analysis of peak and low flows, cumulative volumes, extreme value statistics, performance statistics, etc. Furthermore, the protocol assesses the physical consistency of model predictions by filtering the total observed hydrograph into different flow‐components (baseflow, interflow and overland flow) and using these filtered data in the calibration and evaluation processes. Based on the distributed modelling of a medium size catchment, it is shown that application of the suggested protocol, and in particular the use of the filtered flow‐components in model calibration, enhances the physical consistency of model predictions, adding considerable value to the calibration process. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号