首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Soil hydrophobic effects on infiltration and catchment runoff   总被引:1,自引:0,他引:1  
After dry summers or drought, eucalypt forest soils at two sites in southeastern Australia developed hydrophobic or non-wetting surface characteristics that reduced infiltration, measured using a sprinkling infiltrometer. At one site the development of hydrophobic conditions caused the rainfall to runoff conversion efficiency of a forested catchment to increase from 5 per cent to 15 per cent. Under non-hydrophobic conditions at this site, grassland always generated more runoff than forest. However, one major rainfall-runoff was recorded at a time of highly hydrophobic forest soil conditions and this storm generated greater runoff on the forested catchment than the grassland catchment. At the second site forest soils have naturally highly conductive surface layers because of a dense network of macropores and pathways for preferential flow. Hydrophobic conditions produced by drought caused soil water movement to be confined to only a few of the larger macropores exposed to surface ponded water. Even so, infiltration rates remained relatively high so that the impacts of hydrophobic soils were not translated into increased catchment runoff as at the first site.  相似文献   

2.
The extent to which forests, relative to shorter vegetation, mitigate flood peak discharges remains controversial and relatively poorly researched, with only a few significant field studies. Considering the effect purely of change of vegetation cover, peak flow magnitude comparisons for paired catchments have suggested that forests do not mitigate large floods, whereas flood frequency comparisons have shown that forests mitigate frequencies over all magnitudes of flood. This study investigates the apparent inconsistency using field-based evidence from four contrasting field programmes at scales of 0.34–3.1 km2. Repeated patterns are identified that provide strong evidence of real effects with physical explanations. Magnitude and frequency comparisons are both relevant to the impact of forests on peak discharges but address different questions. Both can show a convergence of response between forested and grassland/logged states at the highest recorded flows but the associated return periods may be quite variable and are subject to estimation uncertainty. For low to moderate events, the forested catchments have a lower peak magnitude for a given frequency than the grassland/logged catchments. Depending on antecedent soil saturation, a given storm may nevertheless generate peak discharges of the same magnitude for both catchment states but these peaks will have different return periods. The effect purely of change in vegetation cover may be modified by additional forestry interventions, such as road networks and drainage ditches which, by effectively increasing the drainage density, may increase peak flows for all event magnitudes. For all the sites, forest cover substantially reduces annual runoff.  相似文献   

3.
Our aim was to quantify the effects of forest plantation and management (clear cut or 30% partial harvest) in relation to pasture, on catchment discharge in southeast Rio Grande do Sul state, Brazil. A paired‐catchment approach was implemented in two regions (Eldorado do Sul and São Gabriel municipalities) where discharge was measured for 4 years at three catchments in each region, two of which were predominantly eucalypt plantation (mainly Eucalyptus saligna, rotation of approximately 7–9 years) with native forest and grass in streamside zones. The third catchment was covered with grazed pasture. Weather, soils, canopy interception, groundwater level, tree growth, and leaf area index were also measured. The 3‐PG process‐based forest productivity model was adapted to predict spatial daily plantation and pasture water balance including precipitation interception, soil evaporation, transpiration, soil moisture, drainage, discharge, and monthly plantation growth. The TOPMODEL framework was used to simulate water pools and fluxes in the catchments. Discharge was higher under pasture than pre‐harvesting plantation and increased for 1–2 years after complete plantation harvest; this change was less pronounced in the catchments under partial harvest. The ratio of discharge to precipitation before harvesting varied from 7% to 13% in the eucalypt catchments and 28% to 29% under pasture. The ratio increases to 23–24% after total harvest, and to 17% after partial harvesting. The ratio under pasture also increases during this period (to 32–44%) owing to increased precipitation. The baseflow, in relation to total discharge, varied from 28% to 62% under Eucalyptus and from 38% to 43% in the pasture catchments. Hence, eucalypt plantations in these regions can be expected to influence discharge regimes when compared with pasture land use, and modelling suggests that partial harvesting would moderate the magnitude of discharge variation compared with a full catchment plantation harvesting. The model efficiency coefficient (Nash–Sutcliffe model efficiency coefficient) varied from 0.665 to 0.799 for the total period of the study. Simulation of alternative harvesting scenarios suggested that at least 20% of the catchment planted area must be harvested to increase discharge. This model could be a useful practical tool in various plantation forestry contexts around the world. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Forest management practices often result in significant changes to hydrologic and geomorphic responses at or near the earth's surface. A well‐known, but not fully tested, hypothesis in hillslope hydrology[sol ]geomorphology is that a near‐surface permeability contrast, caused by the surface compaction associated with forest roads, can result in diverted subsurface flow paths that produce increased up‐slope pore pressures and slope failure. The forest road focused on in this study is located in a steep forested, zero‐order catchment within the H. J. Andrews Experimental Forest (Oregon). A three‐phase modelling effort was employed to test the aforementioned hypothesis: (i) two‐dimensional (vertical slice), steady‐state, heterogeneous, saturated subsurface flow simulations at the watershed scale for establishing the boundary conditions for the catchment‐scale boundary‐value problem in (ii); (ii) two‐dimensional (vertical slice), transient, heterogeneous, variably saturated subsurface flow simulations at the catchment scale for estimating near‐surface hydrologic response and pore pressure distributions; and (iii) slope stability analyses, using the infinite slope approach, driven by the pore pressure distributions simulated in (ii), for assessing the impact of the forest road. Both observed and hypothetical rainfall events are used to drive the catchment‐scale simulations. The results reported here support the hypothesis that a forest road can have an effect on slope stability. The permeability contrast associated with the forest road in this study led to a simulated altering of slope‐parallel subsurface flow with increased pore pressures up‐slope of the road and, for a large rainfall event, a slope failure prediction. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Water yield issues in the jarrah forest of south-western Australia   总被引:2,自引:0,他引:2  
The jarrah forest of south-western Australia produces little streamflow from moderate rainfall. Water yield from water supply catchments for Perth, Western Australia, are low, averaging 71 mm (7% of annual rainfall). The low water yields are attributed to the large soil water storage available for continuous use by the forest vegetation. A number of water yield studies in south-western Australia have examined the impact on water yield of land use practices including clearing for agricultural development, forest harvesting and regeneration, forest thinning and bauxite mining. A permanent reduction in forest cover by clearing for agriculture led to permanent increases of water yield of approximately 28% of annual rainfall in a high rainfall catchment. Thinning of a high rainfall catchment led to an increase in water yield of 20% of annual rainfall. However, it is not clear for how long the increased water yield will persist. Forest harvesting and regeneration have led to water yield increases of 16% of annual rainfall. The subsequent recovery of vegetation cover has led to water yields returning to pre-disturbance levels after an estimated 12–15 years. Bauxite mining of a high rainfall catchment led to a water yield increase of 8% of annual rainfall, followed by a return to pre-disturbance water yield after 12 years. The magnitude of specific streamflow generation mechanisms in small catchments subject to forest disturbance vary considerably, typically in a number of distinct stages. The presence of a permanent groundwater discharge area was shown to be instrumental in determining the magnitude of the streamflow response after forest disturbance. The long-term prognosis for water yield from areas subject to forest thinning, harvesting and regeneration, and bauxite mining are uncertain, owing to the complex interrelationship between vegetation cover, tree height and age, and catchment evapotranspiration. Management of the forest for water yield needs to acknowledge this complexity and evaluate forest management strategies both at the large catchment scale and at long time-scales. The extensive network of small catchment experiments, regional studies, process studies and catchment modelling at both the small and large scale, which are carried out in the jarrah forest, are all considered as integral components of the research to develop these management strategies to optimise water yield from the jarrah forest, without forfeiting other forest values.  相似文献   

6.
Our work analyses the intra‐annual variability of the volume of water stored in 15 forested headwater catchments from south‐central Chile, aiming at understanding how forest management, hydrology, and climate influence the dynamic components of catchment storage. Thus, we address the following questions: (a) How does the annual water storage vary in catchments located in diverse hydroclimatic conditions and subject to variable forest management? (b) Which natural (i.e., hydrologic regime and physiographic setting) and anthropogenic factors explain the variance in water storage? Results show that the annual catchment storage increases at the beginning of each hydrological year in direct response to increases in rainfall. The maximum water storage ranges from 666 to 1,272 mm in these catchments. The catchments with Pinus or Eucalyptus spp. cover store less water than the catchments with mixed forest species cover. Forest cover (biomass volume, plantation density, and percentage of plantation and age) has the primary control on dynamic storage in all catchments. These results indicate that forest management may alter the catchment water storage.  相似文献   

7.
Summer flows in experimental catchments with different forest covers, Chile   总被引:7,自引:0,他引:7  
Runoff and peak flows in four experimental catchments with different land uses are analyzed for summer periods. The catchments have a rainy temperate climate with annual precipitations between 2000 and 2500 mm, 70% of which is concentrated in the winter period between May and August. The final harvest of the forest plantation in one of these catchments generated increases in summer runoff. Also, differences between the maximum instantaneous discharge and the flow at the beginning of the storm then almost duplicated those registered in rainfall events of similar magnitude when the catchment was fully forested. Runoff analysis in this catchment is difficult because the two post-harvesting summer periods are much wetter than the two pre-harvesting ones but a double mass analysis shows the effect of harvesting clearly. In a paired catchment study, low cover in one of the two neighbour catchments explains higher direct runoff and base flows although lower maximum instantaneous specific discharge occurred in the less vegetated but larger catchment. Low vegetation cover explains increases in summer flows, although the size, topography, rainfall conditions, road density, extent of affected area and runoff generation processes play an important role in the hydrological effects of different land uses.  相似文献   

8.
ABSTRACT

The water balance dynamics and runoff components of a tropical forested catchment (46?km2) on the southwestern Pacific coast of Nicaragua were studied combining hydrometry, geological characterization and hydrochemical and isotopic tracers (three-component hydrograph separation). The climatic water balance was estimated for 2010/11, 2011/12 and 2012/13 with net values of 811?mm year-1, 782?mm year-1 and –447?mm year-1, respectively. Runoff components were studied at different spatial and temporal scales, demonstrating that different sources and temporal contributions are controlled by dominant landscape elements and antecedent rainfall. In forested sub-catchments, permeable soils, stratigraphy and steep slopes favour subsurface stormflow generation contributing 50% and 53% to total discharge. At catchment scale, landscape elements such as smooth slopes, wide valleys, deeper soils and water table allow groundwater recharge during rainfall events. Groundwater dominates the hydrograph (50% of total discharge) under dry prior conditions. However, low soil infiltration capacity generates a larger surface runoff component (42%) under wet prior conditions which dominates total discharge. Our results show that forested areas are important to reduce surface runoff and thus soil degradation, which is relevant for the design of water management plans.
Editor D. Koutsoyiannis Associate editor D. Gerten  相似文献   

9.
Runoff and erosion processes can increase after wildfire and post-fire salvage logging, but little is known about the specific effects of soil compaction and surface cover after post-fire salvage logging activities on these processes. We carried out rainfall simulations after a high-severity wildfire and post-fire salvage logging to assess the effect of compaction (uncompacted or compacted by skid traffic during post-fire salvage logging) and surface cover (bare or covered with logging slash). Runoff after 71 mm of rainfall across two 30-min simulations was similar for the bare plots regardless of the compaction status (mean 33 mm). In comparison, runoff in the slash-covered plots averaged only 22 mm. Rainsplash in the downslope direction averaged 30 g for the bare plots across compaction levels and decreased significantly by 70% on the slash-covered plots. Sediment yield totalled 460 and 818 g m−2 for the uncompacted and compacted bare plots, respectively, and slash significantly reduced these amounts by an average rate of 71%. Our results showed that soil erosion was still high two years after the high severity burning and the effect of soil compaction nearly doubled soil erosion via nonsignificant increases in runoff and sediment concentration. Antecedent soil moisture (dry or wet) was the dominant factor controlling runoff, while surface cover was the dominant factor for rainsplash and sediment yield. Saturated hydraulic conductivity and interrill erodibility calculated from these rainfall simulations confirmed previous laboratory research and will support hydrologic and erosion modelling efforts related to wildfire and post-fire salvage logging. Covering the soil with slash mitigated runoff and significantly reduced soil erosion, demonstrating the potential of this practise to reduce sediment yield and soil degradation from burned and logged areas.  相似文献   

10.
There has been a great deal of research interest regarding changes in flow path/runoff source with increases in catchment area. However, there have been very few quantitative studies taking subscale variability and convergence of flow path/runoff source into account, especially in relation to headwater catchments. This study was performed to elucidate how the contributions and discharge rates of subsurface water (water in the soil layer) and groundwater (water in fractured bedrock) aggregate and change with catchment area increase, and to elucidate whether the spatial variability of the discharge rate of groundwater determines the spatial variability of stream discharge or groundwater contribution. The study area was a 5‐km2 forested headwater catchment in Japan. We measured stream discharge at 113 points and water chemistry at 159 points under base flow conditions. End‐member mixing analysis was used to separate stream water into subsurface water and groundwater. The contributions of both subsurface water and groundwater had large variability below 1 km2. The contribution of subsurface water decreased markedly, while that of groundwater increased markedly, with increases in catchment area. The specific discharge of subsurface water showed a large degree of variability and decreased with catchment area below 0.1 km2, becoming almost constant above 0.1 km2. The specific discharge of groundwater showed large variability below 1 km2 and increased with catchment area. These results indicated that the variabilities of stream discharge and groundwater contribution corresponded well with the variability of the discharge rate of groundwater. However, below 0.1 km2, it was necessary to consider variations in the discharge rates of both subsurface water and groundwater. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
This article describes an investigation on runoff generation at different scales in the forested catchment of the Sperbelgraben in the Emmental region (Swiss Prealps) where studies in the field of forest hydrology have a history of 100 years. It focuses on the analysis of soil profiles and the subsequent sprinkling experiments above them (1 m2), as well as on surface runoff measurements on larger plots (50 to 110 m2). In the Sperbelgraben investigation area, two very distinct runoff reactions could be observed. On the one hand, very high production of saturation overland flow was registered on wet areas of gleyic soils, with runoff coefficients between 0·39 and 0·94 for profile irrigation. On the other hand, almost no surface runoff was measured on Cambisols, with the exception at some sites of a hydrophobic reaction detected at the beginning of storms after dry periods (coefficients for profile irrigation: 0·01–0·16). This pattern was observed during 1 m2 soil plot irrigation and on surface runoff plots. Apart from a less distinctive signal of the water‐repellent litter layer on the larger surface runoff plots, the dominant hydrological processes at the two scales are the same. The determined runoff reaction at the two scales corresponds well with information from a forest site type map describing soil and vegetation characteristics and used as a substitute for a soil map in this study. Theoretical considerations describing forest influence on flood discharge are discussed and evaluated to be in good agreement with observations. These findings are a sound foundation for application in hydrological catchment modelling. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
The relative contribution of forest roads to total catchment exports of suspended sediment, phosphorus, and nitrogen was estimated for a 13 451 ha forested catchment in southeastern Australia. Instrumentation was installed for 1 year to quantify total in‐stream exports of suspended sediment, phosphorus, and nitrogen. In addition, a total of 101 road–stream crossings were mapped and characterized in detail within the catchment to identify the properties of the road section where the road network and the stream network intersect. Sediment and nutrient generation rates from different forest road types within the catchment were quantified using permanent instrumentation and rainfall simulation. Sediment and nutrient generation rates, mapped stream crossing information, traffic data and annual rainfall data were used to estimate annual loads of sediment, phosphorus, and nitrogen from each stream crossing in the catchment. The annual sum of these loads was compared with the measured total catchment exports to estimate the proportional contribution of loads from roads within the catchment. The results indicated that 3·15 ha of near‐stream unsealed road surface with an average slope of 8·4% delivered an estimated 50 t of the 1142 t of total suspended sediment exported from the catchment, or about 4·4% of the total sediment load from the forest. Stream discharge over this period was 69 573 Ml. The unsealed road network delivered an estimated maximum of 22 kg of the 1244 kg of total phosphorus from the catchment, or less than 1·8% of the total load from the forest. The average sediment and phosphorous load per crossing was estimated at 0·5 t (standard deviation 1·0 t) and 0·22 kg (standard deviation 0·30 kg) respectively. The lower proportional contribution of total phosphorus resulted from a low ratio of total phosphorus to total suspended sediment for the road‐derived sediment. The unsealed road network delivered approximately 33 kg of the 20 163 kg of total nitrogen, about 0·16% of the total load of nitrogen from the forest. The data indicate that, in this catchment, improvement of stream crossings would yield only small benefits in terms of net catchment exports of total suspended sediment and total phosphorus, and no benefit in terms of total nitrogen. These results are for a catchment with minimal road‐related mass movement, and extrapolation of these findings to the broader forested estate requires further research. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Landslides in forested landscapes have far-reaching implications, beyond that of just destroying the forest itself, sometimes initiating large-scale sediment disasters. Although vegetation increases slope stability through its root network, it is hard to evaluate its contribution to slope stability over a wide area. In this study, the relationship between tree height and landslide characteristics in the Ikawa catchment, central Japan, was investigated to develop a method for evaluating the effects of forest cover on slope stability over a regional extent. Catchment-wide tree height was obtained using airborne LiDAR point cloud data and used in conjunction with the root depth profile, measured for trees of various height by digging trenches. Root tensile strength per unit area of soil was calculated from individual root diameters and empirical power law equations on the relationship between root diameter and root tensile force in order to better understand the effect that tree height has on slope stability. Landslide density in the Ikawa catchment shows that landslides occur more frequently in forests with shorter trees, with occurrence decreasing as tree height increases. This is likely due to the stabilizing features of larger trees having a greater network of roots, which is supported by the general increase in total root area and the deeper penetration of root biomass into the soil as the height of trees surveyed increases. Landslide density was not solely affected by tree height, but also by slope gradient and plane curvature. Decreasing landslide occurrence and landslide area as tree height increases suggests that slope stability increases with tree height, while the random distribution of results when comparing landslide depth to tree height suggests that while tree height has an impact on relative slope stability, the landslide failure depth is independent of tree height, and thus controlled by other factors. © 2020 John Wiley & Sons, Ltd.  相似文献   

14.
Distributed erosion models, which simulate the physical processes of water flow and soil erosion, are effective for predicting soil erosion in forested catchments. Although subsurface flow through multiple pathways is dominant for runoff generation in forested headwater catchments, the process-based erosion model, Geo-spatial interface for Water Erosion Prediction Project(Geo WEPP), does not have an adequate subsurface component for the simulation of hillslope water flow. In the current study, t...  相似文献   

15.
H.K. McMillan 《水文研究》2012,26(18):2838-2844
This paper uses soil moisture data from 17 recording sensors within the 50 km2 Mahurangi catchment in New Zealand to determine how measured variability in soil moisture affects simulations of drainage in a typical lumped conceptual model. The data show that variability smoothes the simulated field capacity threshold such that a proportion of the catchment contributes to drainage even when mean soil moisture content is well below field capacity. Spatial variability in soil moisture controls by extension the catchment drainage behaviour: the resulting smoothed shape of the catchment‐scale drainage function is demonstrated and is also determined theoretically under simplifying assumptions. The smoothing effect increases the total simulated discharge by 130%. The analysis explains previous findings that different drainage equations are required at point scale versus catchment scale in the Mahurangi. The spatial variability and hence the emergent drainage behaviour are found to vary with season, suggesting that time‐varying parameters would be warranted to simulate drainage. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Land‐use/cover change (LUCC), and more specifically deforestation and multidecadal agriculture, is one of the various controlling factors of water fluxes at the hillslope or catchment scale. We investigated the impact of LUCC on water pathways and stream stormflow generation processes in a subtropical region in southern Brazil. We monitored, sampled and analysed stream water, pore water, subsurface water, and rainwater for dissolved silicon concentration (DSi) and 18O/16O (δ18O) signature to identify contributing sources to the streamflow under forest and under agriculture. Both forested and agricultural catchments were highly responsive to rainfall events in terms of discharge and shallow groundwater level. DSi versus δ18O scatter plots indicated that for both land‐use types, two run‐off components contributed to the stream discharge. The presence of a dense macropore network, combined with the presence of a compact and impeding B‐horizon, led to rapid subsurface flow in the forested catchment. In the agricultural catchment, the rapid response to rainfall was mostly due to surface run‐off. A 2‐component isotopic hydrograph separation indicated a larger contribution of rainfall water to run‐off during rainfall event in the agricultural catchments. We attributed this higher contribution to a decrease in topsoil hydraulic conductivity associated with agricultural practices. The chemical signature of the old water component in the forested catchment was very similar to that of the shallow groundwater and the pore soil water: It is therefore likely that the shallow groundwater was the main source of old water. This is not the case in the agricultural catchments where the old water component had a much higher DSi concentration than the shallow groundwater and the soil pore water. As the agricultural catchments were larger, this may to some extent simply be a scale effect. However, the higher water yields under agriculture and the high DSi concentration observed in the old water under agriculture suggest a significant contribution of deep groundwater to catchment run‐off under agriculture, suggesting that LUCC may have significant effects on weathering rates and patterns.  相似文献   

17.
Elevated wildfire activity in many regions in recent decades has increased concerns about the short- and long-term effects on water quantity, quality, and aquatic ecosystem health. Often, loss of canopy interception and transpiration, along with changes in soil structural properties, leads to elevated total annual water yields, peak flows, and low flows. Post-fire land management treatments are often used to promote forest regeneration and mitigate effects to terrestrial and aquatic ecosystems. However, few studies have investigated the longer-term effects of either wildfire or post-fire land management on catchment hydrology. Our objectives were to quantify and compare the short- and longer-term effects of both wildfire and post-fire forest management treatments on annual discharge, peak flows, low flows, and evapotranspiration (AET). We analyzed ten years of pre-fire data, along with post-fire data from 1 to 7 and 35 to 41 years after wildfire burned three experimental catchments in the Entiat Experimental Forest (EEF) in the Pacific Northwest, USA. After the fire, two of the catchments were salvage logged, aerially seeded, and fertilized, while the third catchment remained as a burned reference. We observed increases in annual discharge (150–202%), peak flows (234–283%), and low flows (42–81%), along with decreases in AET (34–45%), across all three study catchments in the first seven year period after the EEF wildfire. Comparatively, annual discharge, peak flows, lows flows, and AET had returned to pre-fire levels 35–41 years after the EEF fire in the two salvage logged and seeded catchments. Surprisingly, in the catchment that was burned but not actively managed, the annual discharge and runoff ratios remained elevated, while AET remained lower, during the period 35–41 years after the EEF fire. We posit that differences in long-term hydrologic recovery across catchments were driven by delayed vegetation recovery in the unmanaged catchment. Our study demonstrates that post-fire land management decisions have the potential to produce meaningful differences in the long-term recovery of catchment-scale ecohydrologic processes and streamflow.  相似文献   

18.
Abstract

A modelling experiment is used to examine different land-use scenarios ranging from extreme deforestation (31% forest cover) to pristine (95% forest cover) conditions and related Payment for Ecosystem Services (PES) schemes to assess whether a change in streamflow dynamics, discharge extremes and mean annual water balance of a 73.4-km2 tropical headwater catchment in Costa Rica could be detected. A semi-distributed, conceptual rainfall–runoff model was adapted to conceptualize the empirically-based, dominant hydrological processes of the study area and was multi-criteria calibrated using different objective functions and empirical constraints on model simulations in a Monte Carlo framework to account for parameter uncertainty. The results suggest that land-use change had relatively little effect on the overall mean annual water yield (<3%). However, streamflow dynamics proved to be sensitive in terms of frequency, timing and magnitude of discharge extremes. For low flows and peak discharges of return periods greater than one year, land use had a minor influence on the runoff response. Below these thresholds (<1-year return period), forest cover potentially decreased runoff peaks and low flows by as much as 10%, and non-forest cover increased runoff peaks and low flows by up to 15%. The study demonstrated the potential for using hydrological modelling to help identify the impact of protection and reforestation efforts on ecosystem services.

Editor Z.W. Kundzewicz

Citation Birkel, C., Soulsby, C., and Tetzlaff, D., 2012. Modelling the impacts of land-cover change on streamflow dynamics of a tropical rainforest headwater catchment. Hydrological Sciences Journal, 57 (8), 1543–1561.  相似文献   

19.
Xing Fang  John W. Pomeroy 《水文研究》2016,30(16):2754-2772
A devastating flood struck Southern Alberta in late June 2013, with much of its streamflow generation in the Front Ranges of the Rocky Mountains, west of Calgary. To better understand streamflow generation processes and their sensitivity to initial conditions, a physically based hydrological model was developed using the Cold Regions Hydrological Modelling platform (CRHM) to simulate the flood for the Marmot Creek Research Basin (~9.4 km2). The modular model includes major cold and warm season hydrological processes including snow redistribution, sublimation, melt, runoff over frozen and unfrozen soils, evapotranspiration, subsurface runoff on hillslopes, groundwater recharge and discharge and streamflow routing. Uncalibrated simulations were conducted for eight hydrological years and generally matched streamflow observations well, with a NRMSD of 52%, small model bias (?3%) and a Nash–Sutcliffe efficiency (NSE) of 0.71. The model was then used to diagnose the responses of hydrological processes in 2013 flood from different ecozones in Marmot Creek: alpine, treeline, montane forest and large and small forest clearings to better understand spatial variations in the flood runoff generation mechanisms. To examine the sensitivity to antecedent conditions, ‘virtual’ flood simulations were conducted using a week (17 to 24 June 2013) of flood meteorology imposed on the meteorology of the same period in other years (2005 to 2012), or switched with the meteorology of one week in different months (May to July) of 2013. Sensitivity to changing precipitation and land cover was assessed by varying the precipitation amount during the flood and forest cover and soil storage capacity in forest ecozone. The results show that runoff efficiency increases rapidly with antecedent snowpack and soil moisture storage with the highest runoff response to rainfall from locations in the basin where there are recently melted or actively melting snowpacks and resulting high soil moisture or frozen soils. The impact of forest canopy on flooding is negligible, but flood peak doubles if forest canopy removal is accompanied by 50% reduction in water storage capacity in the basin. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Diurnal variations in streamflow are becoming acknowledged as a way of analysing how changing climatic conditions and land use affects watersheds but also as a way to understand watersheds as a whole. Yet not many studies from uplands below 900 mm mean annual precipitation zone are available from European countries. During the 2012 growing season, a sampling campaign took place in an upland forested micro‐watershed, Czech Republic (65 ha). Tree sap flow, rainfall and temperature were measured continuously, while streamflow at the discharge point and soil moisture were estimated from short‐term measurements. Short precipitation‐free periods lasting several days were identified for evaluation of trends in diurnal dynamics of both sap flow and streamflow. The results demonstrated that during these periods, the main factor altering streamflow was almost exclusively tree sap flow. A decrease in streamflow was observed during the day and an increase at night. The decline in sap flow after sunset was accompanied by a continuous increase in streamflow throughout the night up to its initial maximum in the morning. The amplitude in diurnal variations reached 18%. The observed time lag between the diurnal variations of sap flow and streamflow was approximately 2 h. Relatively low changes in diurnal dynamics of streamflow pointed out a strong regulatory role of the forest in buffering water discharge from the catchment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号