首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the mingled mafic/felsic Halfmoon Pluton at The Neck, Stewart Island (part of the Median Batholith of New Zealand) some hornblende gabbros and diorites retain magmatic structures, whereas others show evidence of major changes in grain and inclusion shapes, and still others are amphibolite‐facies granofelses with few or no igneous relicts. These mafic to intermediate magmas crystallized in felsic magma relatively quickly, with the result that most deformation occurred at subsolidus conditions. It is suggested that mafic‐intermediate rocks with predominantly igneous microstructures spent less time in the magmatic system. The metamorphism of the mafic rocks appears to be ‘autometamorphic’, in the sense that elevated temperatures were maintained by magmatic heat during subsolidus cooling. Elevated temperatures were maintained because of repeated sheet injection and subconcordant dyke injection of hot basaltic and composite mafic‐felsic magmas, into a dominantly transtensional, km‐scale, outboard‐migrating, magmatic shear zone that operated semi‐continuously for between c. 140 and c. 130 Ma. Complete cooling occurred only when the system evolved to transpressional and the locus of magmatism migrated inboard (southward) between c. 130 and c. 120 Ma, associated with solid‐state mylonitic deformation. Intermingled granitic rocks escaped metamorphism, because they remained magmatic to lower temperatures, and experienced shorter and lower‐temperature subsolidus cooling intervals. However, the felsic rocks underwent relatively high‐temperature solid‐state deformation, as indicated by myrmekite replacing K‐feldspar and chess‐board subgrain patterns in quartz; locally they developed felsic mylonites. The felsic rocks were deformed in the solid state because of their high proportion of relatively weak minerals (quartz and biotite), whereas the mafic rocks mostly escaped subsolidus deformation, except in local high‐strain zones of hornblende‐plagioclase schist, because of their high proportion of relatively strong minerals (hornblende and plagioclase). We suggest that such contrasting microstructural features are diagnostic of long‐lived syntectonic magma transfer zones, and contrast with the more typical complex, batholith‐scale magma chambers of magmatic arcs.  相似文献   

2.
R.C. Price  R.C. Wallace 《Lithos》1976,9(4):319-329
Rare gabbroic inclusions within a lherzolite-nodule bearing, fractionated, alkalic lava are of two types: olivine-two pyroxene-spinel-metagabbro and amphibole-two pryoxene-spinel-metagabbro. The metagabbros represent cumulates which have crystallized from alkalic basalt magma at high temperature. Metamorphic aggregates and coronas consisting of clinopyroxene-orthopyroxene and spinel with or without amphibole are attributed to complex subsolidus reactions between olivine and plagioclase; olivine, clinopyroxene and plagioclase; olivine and clinopyroxene; olivine, clinopyroxene, plagioclase and ilmenite in response to decreasing temperature as the rocks cooled at pressures of around 11 Kb (35–40 km) and temperatures in the range 1000–1150°C. The lower crust and upper mantle below East Otago must contain bodies of fractionated alkalic basalt showing granulitic mineralogy.  相似文献   

3.
Brian Robins 《Lithos》1975,8(1):15-27
Peridotitic inclusions were emplaced in synorogenic basic and ultrabasic dykes during the later evolutionary stages of the Seiland petrographic province. Tectonite and cumulate types are recognized. The former show penetrative textural evidence of a series of pre-incorporation mineral assemblages due to partial equilibration of the source along a decreasing P-T gradient. Unmixing of aluminous pyroxenes and reaction with spinel resulted in the appearance of minor plagioclase, which later was replaced by hydrous minerals. The metamorphic fabric eliminates an accumulative relationship with the transporting magma. The rare cumulate-type nodules, however, retain evidence of poikilitic textures and primary plagioclase; orthopyroxene and spinel are due to subsolidus reaction of olivine and plagioclase.A high-temperature alpine peridotite rising diapirically through the upper mantle is postulated to be the parent of the tectonite-type nodules. This intrusion may be the source of the synorogenic magmatism and positive gravity anomaly of the Seiland province.  相似文献   

4.
Petrographic analysis is a useful, but underused tool to aid in distinguishing between subsolidus and anatetic-related textures in migmatites. This study focuses on assessing the relative contributions of these two processes in the development of migmatitic orthogneiss textures in the Velay Massif, French Massif Central. The results of this study show that subsolidus processes are more important in the development of migmatitic textures in the orthogneiss than anatectic leucosome development. Four textural stages are identified from the mylonitic non-anatectic orthogneiss, annealed, migmatitic orthogneiss to diatexite. The monomineralic K-feldspar and plagioclase–muscovite banding was transformed with increasing temperature to polymineralic plagioclase–quartz–muscovite and K-feldspar–quartz–muscovite layers by the wetting of feldspar boundaries during heterogeneous nucleation of quartz from a fluid phase at high surface energy triple points. A further increase of temperature led to the growth of K-feldspar probably related to production of small amounts of melt in plagioclase rich aggregates, controlled by muscovite abundance. Solid state annealing processes in conjunction with incipient anatexis resulted in the formation of apparent granitic-like textures in plagioclase dominated aggregates. By contrast, in K-feldspar dominated aggregates exclusively subsolidus processes prevail, leading to the development of coarse grained leucosome. With the onset of biotite dehydration melting the plagioclase-dominated aggregates are destroyed by the melt whereas the K-feldspar aggregates may be preserved.  相似文献   

5.
The Horoman peridotite complex, Hokkaido, Japan is divided into Lower and Upper zones on the basis of contrasting geological features. The complex recorded a consecutive decompression history in chemical zoning of pyroxenes and plagioclase in plagioclase lherzolite, which is interpreted to have been derived from garnet lherzolite by subsolidus decompression reactions. In the Lower Zone, and earlier decompression history is clearly preserved in large pyroxene porphyroclasts, which show marked M-shaped Al zoning characterized by low Al concentration at the core (Al=0.12/6 oxygens), gradual increase toward the marginal region, and rapid decrease toward the rim. The Ca content in the core is nearly constant (Ca=0.03/6 oxygens) with slight increase toward the margin followed by abrupt decrease toward the rim. The Al and Ca contents in the core of orthopyroxene in plagioclase lherzolite from the Upper Zone (Al=0.22, Ca=0.055/6 oxygens) are much higher than those for the Lower Zone, and the Al content typically decreases monotonously from the core to the rim with several exceptions that show poorly developed M-shaped zoning profiles. The earliest P-T conditions, inferable from the core compositions of pyroxenes are 900–950°C and 20 kbar for the Lower Zone and 1100–1150°C and 20 kbar for the Upper Zone. The increase of Al from the core to the margin is inferred to have resulted from nearly adiabatic decompression from these conditions into spinel peridotite facies. The complex experienced further decompression from the spinel stability field into the plagioclase stability field, which is inferred from plagioclase zoning in fine-grained aggregates composed mostly of plagioclase, chromite spinel, and olivine with minor pyroxenes. The Na-Ca ratio of each plagioclase grain decreases from the core to the rim, suggesting continuous decompression reaction producing olivine and plagioclase from pyroxenes and spinel. The sharp increase in Ca content toward the rim indicates that fairly rapid cooling associated with decompression is necessary to form and preserve the marked zoning. The sharp decrease in Al and Ca contents toward the rim of orthopyroxene was also formed during this final ascent of the complex. The systematic changes of the mineralogic and petrographic features that are gradational between the Lower and Upper zones suggest that the Horoman complex retains a temperature variation from the upper mantle. The Upper Zone is interpreted to have followed a higher temperature decompression path than the Lower Zone and probably represents a relatively hotter portion of a mantle diapir ascending from a depth greater than 60 km in the upper mantle.  相似文献   

6.
L. Gaggero  L. Cortesogno 《Lithos》1997,40(2-4):105-131
The 117.38 m of gabbroic core drilled during the Ocean Drilling Program (ODP) Leg 153 at Sites 921 to 924 in the Mid-Atlantic Ridge (MAR) between 23 °N and the Kane Fracture Zone, exhibits a remarkable primary compositional heterogeneity, such as magmatic layering, intrusive contacts and late magmatic veining, which express a succession of magmatic events. Textural indicators suggest that the cooling of the crystal mush occurred in a dynamic environment, with infiltration of progressively evolved liquids. Magmatic features include random shape fabric and magmatic lamination; the subsequent deformational overprint occurred in subsolidus conditions. The ductile deformation, generally concentrated in discrete domains of the gabbro, is associated with continuous re-equilibration of the metamorphic assemblages of (1) olivine + clinopyroxene + orthopyroxene + plagioclase + ilmenite + Ti-magnetite, (2) olivine + clinopyroxene + plagioclase + ilmenite + Ti-magnetite + red hornblende. At lower temperatures brittle deformation prevails and subsequent fractures control the development of metamorphic assemblages: (3) clinopyroxene + plagioclase + red brown hornblende + Ti-magnetite + magnetite (?) + ilmenite, (4) plagioclase + brown hornblende + Ti-magnetite + magnetite + hematite + titanite ± Ti-oxide, (5) plagioclase + green hornblende + magnetite + titanite, (6) plagioclase + actinolite + chlorite + titanite + magnetite, (7) albite + actinolite + chlorite + prehnite ± epidote ± titanite and (8) albite + prehnite + chlorite ± smectite. Assemblages 1 to 8 express increasing water/rock ratios and decreasing degrees of recrystallization.

During the ductile phase, red hornblende is stable and its abundance increases with deformation intensity, possibly as an effect of the introduction of hydrous fluids. During the brittle phase, water diffusion controls the development of the fracture-filling mineral assemblages and re-equilibration of the adjacent rock; temperatures decrease further, as demonstrated by mineral zoning and incompletely re-equilibrated assemblages. The lowest temperatures correspond to the development of hydrothermal assemblages.

Compared with oceanic gabbros from fast-spreading transform environments, high-temperature ductile phases (granulite and amphibolite) are well developed, whereas brittle phases are widespread, as microcracks, prevalent on fracturing associated with discrete veins.  相似文献   


7.
Rare dunite and 2-pyroxene gabbro xenoliths occur in banded trachyte at Puu Waawaa on Hualalai Volcano, Hawaii. Mineral compositions suggest that these xenoliths formed as cumulates of tholeiitic basalt at shallow depth in a subcaldera magma reservoir. Subsequently, the minerals in the xenoliths underwent subsolidus reequilibration that particularly affected chromite compositions by decreasing their Mg numbers. In addition, olivine lost CaO and plagioclase lost MgO and Fe2O3 during subsolidus reequilibration. The xenoliths also reacted with the host trachyte to form secondary mica, amphibole, and orthopyroxene, and to further modify the compositions of some olivine, clinopyroxene, and spinel grains. The reaction products indicate that the host trachyte melt was hydrous. Clinopyroxene in one dunite sample and olivine in most dunite samples have undergone partial melting, apparently in response to addition of water to the xenolith. These xenoliths do not contain CO2 fluid inclusions, so common in xenoliths from other localities on Hualalai, which suggests that CO2 was introduced from alkalic basalt magma between the time CO2-inclusion-free xenoliths erupted at 106±6 ka and the time CO2-inclusion-rich xenoliths erupted within the last 15 ka.  相似文献   

8.
Rock textures commonly preserve a record of the near-surface crystallization history of volcanic rocks. Under conditions of simple cooling without convection or mixing, textures will reflect sample cooling rate, the temperature at which crystallization was initiated, and the distribution of mineral phase precipitation across the crystallization interval. Compilation of plagioclase size and number density data on natural (dike, sill and lava lake) and experimental samples suggests that (1) growth and nucleation rates of plagioclase in natural basaltic samples are a predictable function of cooling rate, and (2) the observed crystallization rate dependence on cooling rate is similar to that observed in experiments initiated at subliquidus temperatures. Comparison of natural and experimental samples thus suggests that most basalts crystallize under conditions of heterogeneous nucleation, with the number density of preexisting nucleii partially controlling textural responses to cooling rate changes. Time scales of crystallization and cooling in magmatic systems are intimately linked through a balance between heat removal from the system and heat evolved through crystallization. Evaluation of textural data in the context of recent numerical models of crystallization in simple (one- and two-component systems) provides new insight into regularities in the crystallization behavior of basaltic magmas. For example, the rate of change in crystal size (and number density, as dictated by mass balance) has been used as a measure of the relative importance of time scales of crystallization and cooling in numerical models of crystallizing systems. In natural samples, plagioclase size scales with the length scale of cooling such that a logarithmic plot of grain size as a function of normalized distance across the dike has a slope that appears approximately independent of dike width (solidification time). Comparison with available textural data for other phenocryst phases suggests that the same may be true for pyroxene and magnetite crystallization, with each phase having a characteristic slope probably controlled by the thermodynamic properties of the crystallizing phase. Measured crystal size distributions are unimodal and show maximum frequencies in the smaller size classes; distributions broaden and the grain size at peak frequency increases with increasing crystallization times (decreasing cooling rates). In contrast, partially crystallized Makaopuhi lava lake samples have crystal size distributions that decrease exponentially with increasing crystal size. Measured size distributions in dikes can be explained by late stage modification of Makaopuhi-type distributions through loss of small crystals, possibly the consequence of growth without nucleation. Finally, this compilation of the textural response of basaltic magmas to changes in cooling rate suggests that empirical calibrations of crystallization rate dependence on cooling rate from natural samples provide a reasonable model for plagioclase crystallization in near-surface basaltic systems. Predicted growth rates will be slow and relatively constant (10-10–10-11 cm/s) for crystallization times expected in most shallow volcanic systems (<1000 years).  相似文献   

9.
The rate of CaAl-NaSi interdiffusion in plagioclase feldspar was determined under 1 atm anhydrous conditions over the temperature range 1400° to 1000°C in calcic plagioclase (An80?81) by homogenizing coherent exsolution lamellae. The dependence of the average interdiffusion coefficient on temperature is given by the expression: D? = 10.99 (cm2/sec) exp(?123.4(kcal/mol)/RT), (T in °K). This value is for diffusion perpendicular to the (03 1?) interface of the lamellae. CaAl-NaSi interdiffusion is 4 to 5 orders of magnitude slower than oxygen diffusion in the temperature range 1400° to 1200°C and possibly 10 orders of magnitude slower at subsolidus temperatures.The large differences in diffusion rates explain the apparent contradiction posed by the plagioclases of large layered intrusions (e.g., the Skaergaard), which retain delicate Ca, Na compositional zoning profiles on the micron scale, but have undergone complete oxygen isotopic exchange with heated meteoric groundwater from the surrounding wall rocks. CaAl-NaSi diffusion is slow, the closure temperature is high (within the solidus-liquidus interval), and Ca-Na zoning is preserved. Oxygen diffusion is faster, the closure temperature is lower (350°-400°C) and the feldspars exchange oxygen with the low-temperature hydrothermal fluids.The complex micron-scale oscillatory zones in plagioclase can also be used as cooling rate speedometers for volcanic and plutonic plagioclase. Cooling histories typical of large mafic intrusions (e.g. the Stillwater) are slow, begin at high initial temperatures (1200°C) and result in homogenization of oscillatory zones on the scale of 10 microns. The oscillatory zones found in the plagioclase of granodioritic plutons are preserved because cooling is initiated at a lower temperature (1000°C) limiting diffusion to submicron length scales despite the slow cooling rate of the intrusion.  相似文献   

10.
The experimentally determined equilibrium curves for the subsolidus olivineplagioclase reaction fall into two groups: those with positive slopes (dP/dT) that suggest reaction during cooling, and those with zero slopes that imply reaction by increase of pressure. Corona structures were developed in the mafic cumulates of northern Norway at different times during Caledonian almandine amphibolite facies metamorphism, as individual intrusions cooled from solidus temperatures. Unless pressure increases coincided fortuitously with subsolidus cooling, these relationships suggest that the positive-slope models are most analogous to natural systems.  相似文献   

11.
Evidence is presented for the primary high pressure crystallization of the Ewarara, Kalka and Gosse Pile layered intrusions which form part of the Giles Complex in central Australia. These pressures are estimated at 10 to 12 kb. The high pressure characteristics include subsolidus reactions between olivine and plagioclase, orthopyroxene and plagioclase, and orthopyroxene and spinel; spinel and rutile exsolution in both ortho- and clino-pyroxene; spinel exsolution in plagioclase; high Al2O3 and Cr2O3 contents of both ortho- and clinopyroxene; high AlVI in clinopyroxene; dominance of orthopyroxene as an early crystallizing phase; high distribution coefficients for co-existing pyroxene pairs; and thin chilled margins. Such phenomena are rare in documented layered basic intrusions.  相似文献   

12.
ULIANOV  A.; KALT  A. 《Journal of Petrology》2006,47(5):901-927
Basanites of the Chyulu Hills (Kenya Rift) contain mafic Mg–Aland Ca–Al granulite xenoliths. Their protoliths are interpretedas troctolitic cumulates; however, the original mineral assemblageswere almost completely transformed by subsolidus reactions.Mg–Al granulites contain the minerals spinel, sapphirine,sillimanite, plagioclase, corundum, clinopyroxene, orthopyroxeneand garnet, whereas Ca–Al granulites are characterizedby hibonite, spinel, sapphirine, mullite, sillimanite, plagioclase,quartz, clinopyroxene, corundum, and garnet. In the Mg–Algranulites, the first generation of orthopyroxene and some spinelmay be of igneous origin. In the Ca–Al granulites, hibonite(and possibly some spinel) are the earliest, possibly igneous,minerals in the crystallization sequence. Most pyroxene, spineland corundum in Mg–Al and Ca–Al granulites formedby subsolidus reactions. The qualitative PT path derivedfrom metamorphic reactions corresponds to subsolidus cooling,probably accompanied, or followed by, compression. Final equilibrationwas achieved at T 600–740°C and P <8 kbar, inthe stability field of sillimanite. The early coexistence ofcorundum and pyroxenes (± spinel), as well as the associationof sillimanite and sapphirine with clinopyroxene and the presenceof hibonite, makes both types of granulite rare. The Ca–Alhibonite-bearing granulites are unique. Both types enlarge thespectrum of known Ca–Al–Mg-rich granulites worldwide. KEY WORDS: granulite xenoliths; corundum; sapphirine; hibonite; Kenya Rift  相似文献   

13.
Clinopyroxene and orthopyroxene megacrysts with lamellar intergrowths of pyroxenes and garnet rarely survive in pyroxenite layers from the exposed spinel-lherzolite massifs because of the emplacement history into the crust. Such features are remarkably preserved in some thick bands (up to 1 m) from the Freychinède ultramafic body (Ariège, French Pyrenees). These bands display a symmetrical zoning from the edges to the centre due to the concurrent decrease of orthopyroxene/clinopyroxene and spinel/garnet modal ratios. Textural and chemical data suggest that the present pyroxenite parageneses resulted from subsolidus recrystallization of magmatic assemblages composed of Al-rich orthopyroxene and clinopyroxene with minor spinel. These primary assemblages were changed by subsolidus recrystallization connected with an isobaric cooling at upper-mantle depth (45–50 km) from solidus temperature (1250°C) down to steady equilibrium temperature (950° C). The primary Al-rich ortho-and clinopyroxenes behaved differently on cooling. In a first stage, orthopyroxene exsolved concomitant Al-rich clinopyroxene and garnet, whereas clinopyroxene exsolved only Al-rich orthopyroxene. The garnet exsolution in clinopyroxene host is delayed to lower temperatures. This multistage process could account for the contrasting shapes of diffusion gradients adjacent to exsolved garnet, which tend to be flat in host-orthopyroxene and steep in host-clinopyroxene. An independent thermal modelling, together with available Al-diffusion data in clinopyroxene, allows us to define a fast magmatic cooling followed by a two-stage subsolidus cooling (35° C/year-6 from 1250° C to 1050° C and 9° C/year-6 to 900° C). This matches the contrasted exsolution sequences observed in the pyroxene megacrysts.  相似文献   

14.
Summary Corona textures between olivine and plagioclase or orthopyroxene and plagioclase are present in Hercynian gabbroic rocks from the Calabrian Sila Massif. They have been studied through optical and SEM investigations together with EDS and WDS analyses. Textural features indicate the existence of two extreme corona types formed during late magmatic stages or during subsolidus cooling. Magmatic coronas are characterized by an inner orthopyroxene layer and an outer orange-brown amphibole layer that might be in optical continuity with orthopyroxene and amphibole poikilites respectively. Subsolidus coronas consist of an inner layer of colourless amphibole and an outer layer of amphibole ± spinel. They sometimes form a collar also around plagioclase enclosed in olivine. A large spectrum in the composition of corona amphiboles from Ti-bearing pargasite to Mg-hornblende was observed. The variation in Ti content of amphibole was interpreted as a consequence of the different conditions of crystallization from late magmatic to subsolidus with temperatures ranging from 880°C to 580°C. The significant gahnite component in spinel possibly indicates that subsolidus reactions occurred in an open system. The pressure of formation constrained by the mineral assemblage of metamorphic basement rocks and by the neighbouring diorites has been estimated at 4 kbar.
Spätmagmatische und Subsolidus-Koronatexturen in gabbroiden Gesteinen des Sila Massives (Kalabrien, Italien)
Zusammenfassung In herzynischen gabbroiden Gesteinen des Sila Massives in Kalabrien treten Korona-texturen zwischen Olivin und Plagioklas oder Orthopyroxen und Plagioklas auf. Diese wurden mittels optischer Methoden und SEM in Verbindung mit EDS und WDS Analytik untersucht. Textureile Kriterien belegen die Existenz zweier verschiedenartiger Koronatypen die während deospätmagmatischen Stadiums oderwährend der Abkühlung lung im Subsolidus Bereich gebildet wurden. Die magmatischen Koronatexturen sind durch eine innere Othopyrozenschicht und eine äußere orange-braune Ampkibolschicht gekennzeichnet, die in optischer Kontinuatät Orthopyroxen bzw. Amphibihol-poikilitn steht. Subsolidus-Koronas bestehen aus einer inneren Lage eines farblosen Amphiboles und einer äußeren Schicht von Amphibol ± Spinell. Bisweilen umgeben sie ringförmig in Olivin eingeschlossenen Plagioklos. Die Amphibolzusammensetzung in diesen Koronas variiert stark von Ti-führendem Pargasit bis Mg-Hornblende. Die Streubreite dumTi-Gehaltes der Amphibole wird durch unterschiedliche Kristallisations-bedingungen während des spätmagmatischen bis Subsolidusstadiums (880°C bis 550°C) interpretiert. Die signifikante (Gahnitkomponente des Spinells weist auf Subsolidusreaktionen in einem offenen System hin. Der Bildungsdruck, ablegeit aus der Mineral-vergesellschaftung der metamorphen Basementgetsteine und der benachbarten Diorite, wird mit 4kb abgeschätzt.


With 3 Figures  相似文献   

15.
《Lithos》1987,20(3):247-260
A detailed electron microprobe study has been made of magnetite grains from magnetitite layer 1 of the upper zone of the Bushveld Complex, in order to establish if there is any evidence for postcumulus processes having affected magnetite compositions. Representative composition profiles obtained from detailed step traverses are presented for touching magnetite grains and where magnetite is in contact with either ilmenite or plagioclase.Magnetite grains in all textural settings are compositionally heterogeneous. Touching magnetite grains display systematic compositional zonations: the rims of grains show a marked decrease in Al and Mg towards the grain boundary; the cores are characterised by a distinctive peak and trough pattern for these elements. These variations can be related to the positions of exsolved phases. Exsolutions in the cores are either pleonaste or an Fe3+ bearing AlMg spinel, whereas those at the grain boundaries are generally more Al-rich and include corundum. Similar exsolution related compositional variations for Mg and Al were found in magnetites in contact with ilmenite and plagioclase.A model has been developed which illustrates the possible sequence of postcumulus events during the interval between accumulation of the magnetite and the cessation of subsolidus reactions. The essential feature of the model is the delicate interplay between depletion of the host magnetite by corundum, pleonaste and the Fe3+ bearing AlMg spinel exsolutions, and diffusion of Al and Mg into the depleted areas from the surrounding magnetite.Data for Cr contents in magnetites show that although this particular trace element is apparently resistant to redistribution by exsolution processes, it is affected by subsolidus re-equilibration between magnetite and ilmenite, or magnetite and intercumulus liquid.  相似文献   

16.
Occurrence of a syenite body near Mannapra, Trichur district, Kerala, is reported. The syenite, emplaced within charnockitic country rocks along the Idamalayar faultlineament, is exposed over an area of 8 km2. The rock, classified as quartz alkali feldspar syenite based on Q-A-P proportions, has alkali feldspar as the dominant mineral constituent which shows variation in perthitic texture from crypto- to micro- and patch-perthites. Both ortho- and clino-pyroxenes are present, with the former showing blebs of plagioclase suggesting Al-unmixing. Clinopyroxene shows subsolidus reequilibration with greenish pleochroic grain margins and local conversion to alkali amphibole. The petrochemical characters indicate that the syenite crystallized from a partial melt which equilibrated from K-rich, Rb-depleted source in the upper mantle, in response to crustal distension and mantle degassing prior to the rifting of the continent. Reaction between early formed minerals and the late peralkaline liquid towards the residual phase resulted in subsolidus reequilibration textures. The syenite is envisaged to be yet another example of the manifestation of anorogenic magmatism in this part of the Indian shield.  相似文献   

17.
Petrogenesis of Franciscan pillow basalts from the Franciscan Complex of western Marin County California entails both dynamic crystallization of tholeiitic magma and subsequent low-temperature metamorphism. Brittle deformation during tectonic emplacement of pillow basalts into a chert greywacke terrain is manifested by the shearing of interpillow matrix and polishing of pillow rims, but the igneous textures within pillows are well preserved.The cooling history of pillow basalts can be understood through analysis of morphologic variations of primary olivine and plagioclase from rim to core of the pillow. Crystal sizes and plagioclase dendrite spacings are consisted with a cooling rate which generally decreases inward. Some pillows show a marked asymmetry in plagioclase and olivine morphology suggesting lower cooling rates caused by asymmetric cooling of the pillows. Olivine morphologies, primarily hopper and chain forms, are consistent with cooling rates of 2–10 °C/h for pillow cores and 50–75 °C/h for pillow rims.Low temperature hydrothermal alteration has produced secondary minerals indicative of zeolite facies conditions. Pillow matrix is either chloritic or zeolitic (in part laumontized). Pillow rims display incomplete replacement of calcic palagonite by pumpellyite (Fe2O3=9–21 wt%), prehnite (Fe2O3=5–7 wt%), sphene and quartz. Metamorphism of pillow interiors, manifested by: (1) veins of quartz, pumpellyite, calcite, or harmotome (BaO=15 wt%); (2) amygdules containing analcime, chlorite or quartz; and (3) replacement of olivine by pumpellyite or smectite/illite, of plagioclase by albite (An3)+sericite, and of glassy groundmass by fine-grained chlorite. Primary augite (Wo339En13Fs48) was not altered. The described paragenesis may be attributed to oceanfloor and/or Franciscan-type metamorphism.  相似文献   

18.
This study documents the petrography and whole-rock major and trace element geochemistry of 38 samples mainly from a drill core through the entire Fedorivka layered intrusion (Korosten Pluton), as well as mineral compositions (microprobe analyses and separated mineral fraction analyses of plagioclase, ilmenite, magnetite and apatite) of 10 samples. The Fedorivka layered intrusion can be divided into 4 lithostratigraphic units: a Lower Zone (LZ, 72 m thick), a Main Zone (MZ, 160 m thick), and an Upper Border Zone, itself subdivided into 2 sub-zones (UBZ2, 40 m thick; UBZ1, 50 m thick). Igneous lamination defines the cumulate texture, but primary cumulus minerals have been affected by trapped liquid crystallization and subsolidus recrystallization. The dominant cumulus assemblage in MZ and UBZ2 is andesine (An39–42), iron-rich olivine (Fo32–42), augite (En29–35Fs24–29Wo42–44), ilmenite (Hem1–6), Ti-magnetite (Usp52–78), and apatite. The data reveal a continuous evolution from the floor of the intrusion (LZ) to the top of MZ, due to fractional crystallization, and an inverse evolution in UBZ, resulting from crystallization downwards from the roof. The whole-rock Fe/Mg ratio and incompatible element contents (e.g. Rb, Nb, Zr, REE) increase in the fractionating magma, whereas compatible elements (e.g. V, Cr) steadily decrease. The intercumulus melt remained trapped in the UBZ cumulates due to rapid cooling and lack of compaction, and cumulus mineral compositions re-equilibrated (e.g. olivine, Fe–Ti oxides). In LZ, the intercumulus melt was able to partially or totally escape. The major element composition of the MZ cumulates can be approximated by a mixing (linear) relationship between a plagioclase pole and a mafic pole, the latter being made up of all mafic minerals in (nearly) constant relative proportions. By analogy with the ferrobasaltic/jotunitic liquid line of descent, defined in Rogaland, S. Norway, and its conjugated cumulates occurring in the Transition Zone of the Bjerkreim-Sokndal intrusion (Rogaland, a monzonitic (57% SiO2) melt is inferred to be in equilibrium with the MZ cumulates. The conjugated cumulate composition falls (within error) on the locus of cotectic compositions fixed by the 2-pole linear relationship. Ulvöspinel is the only Ti phase in some magnetites that have been protected from oxidation. QUIlF equilibria in these samples show that magnetite and olivine in MZ have retained their liquidus compositions during subsolidus cooling. This permits calculation of liquidus fO2 conditions, which vary during fractionation from ΔFMQ = 0.7 to − 1.4 log units. Low fO2 values are also evidenced by the late appearance of cumulus magnetite (Fo42) and the high V3+-content of the melt, reflected in the high V-content of the first liquidus magnetite (up to 1.85% V).  相似文献   

19.
J.S. Myers  R.G. Platt 《Lithos》1977,10(1):59-72
Variations of mineral chemistry are described in a layered sheet of partly metamorphosed anorthosite, leucogabbro, gabbro and peridotite. The rocks appear to represent part of two major cycles of crystal deposition in which the anorthite content of plagioclases decreases upwards from An98?94 to An90?75 and hornblendes show upward iron enrichment. The composition of corona minerals formed by subsolidus reaction between plagioclase and olivine in gabbro, suggests that these coronas formed under pressures of between 6 and 9 kb and at a temperature of about 800°C during a late magmatic or early metamorphic stage.  相似文献   

20.
Granulite xenoliths within alkali olivine basalts of the Pali-Aike volcanic field, southern Chile, contain the mineral assemblage orthopyroxene + clinopyroxene + plagioclase + olivine + green spinel. These granulites are thought to be accidental inclusions of the lower crust incorporated in the mantle-derived basalt during its rise to the surface. Symplectic intergrowths of pyroxene and spinel developed between olivine and plagioclase imply that the reaction olivine+plagioclase = Al-orthopyroxene + Al-clinopyroxene + spinel (1) occurred during subsolidus cooling and recrystallization of a gabbroic protolith of the granulites.Examination of fluid inclusions in the granulites indicates the ubiquitous presence of an essentially pure CO2 fluid phase. Inclusions of three different parageneses have been recognized: Type I inclusions occur along exsolution lamellae in clinopyroxene and are thought to represent precipitation of structurally-bound C or CO2 during cooling of the gabbro. These are considered the most primary inclusions present. Type II inclusions occur as evenly distributed clusters not associated with any fractures. These inclusions probably represent entrapment of a free fluid phase during recrystallization of the host grains. IIa inclusions are found in granoblastic grains and have densities of 0.68–0.88 g/cm3. Higher density (=0.90–1.02 g/cm3) IIb inclusions occur only in symplectite phases. Secondary Type III CO2+glass inclusions with =0.47–0.78 g/cm3 occur along healed fractures where basalt has penetrated the xenoliths. Type III inclusions appear related to exsolution of CO2 from the host basalt during its ascent to the surface. These data suggest that CO2 is an important constituent of the lower crust under conditions of granulite facies metamorphism, indicated by Type I and II fluid inclusions, and of the mantle, as indicated by Type III inclusions.Correlation of fluid inclusion densities with P-T conditions calculated from both two-pyroxene geothermometry and reation (1) indicate emplacement of a gabbroic pluton at 1,200–1,300° C, 4–6 kb; cooling was accompanied by a slight increase in pressure due to crustal thickening, and symplectite formation occurred at 850±35° C, 5–7 kb. Capture of the xenoliths by the basalt resulted in heating of the granulites, and CO2 from the basalt was continuously entrapped by the xenoliths over the range 1,000–1,200° C, 4–6 kb. Examination of fluid inclusions of different generations can thus be used in conjunction with other petrologic data to place tight constraints on the specific P-T path followed by the granulite suite, in addition to indicating the nature of the fluid phase present at depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号