首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Effects of the Earth’s Curvature on Gravity and Geoid Calculations   总被引:1,自引:0,他引:1  
While it is obvious that large-scale gravity studies should account for the sphericity of the Earth, each case should be examined. If a geometry model is very large for the 3D-gravity calculation, it cannot be correctly defined in Cartesian coordinates. Because of the Earth’s curvature it is necessary to use spherical coordinates, the importance of which is shown in this paper. The calculation of the gravity for a cylinder reveals, 1 m above the center of the cylinder, a relative difference of 13% between the models with Cartesian and spherical coordinates.  相似文献   

2.
Based on the perturbation method, we present a new method to study the effects of Earth’s laterally inhomogeneous structures on coseismic gravity changes caused by dislocations within a 3-D heterogeneous spherical earth model. We describe this method by six independent dislocations: A vertical strike-slip, two vertical dip-slips perpendicular to each other, and three tensile openings on three perpendicular planes. We derived the calculation formulae for the six independent dislocations. A combination of the six independent dislocations is useful to compute the effects on coseismic gravity changes resulting from an arbitrary seismic source at an arbitrary position.  相似文献   

3.
This paper addresses the questions associated with using the models in regioning the Earth’s gravity field depending on its roughness and type of anomalies. A formalized technique for zoning based on the analysis of the intensity and variability of gravity anomalies is suggested. The suggested technique includes preprocessing the initial gravity anomalies aimed at eliminating the noise component; partitioning the studied region into the elementary segments; calculating the primary characteristics of the complexity and roughness (the intensity and variability of gravity anomalies) for each segment; and, based on these characteristics, classifying each segment into a particular category of complexity. The proposed system of classification of segments relies on the use of three classes of intensity and three classes of variability of gravity anomalies and four categories of complexity of the regions, which are derived from these classes. As a result of applying the technique, the mapped territory is subdivided into the regions that are uniform in terms of their geophysical properties. The developed technique is used for comparing the quality of the different digital models of gravity anomalies, including the Russian RGM model (A.P. Karpinsky Russian Geological Research Institute (VSEGEI)) and the WGM model (Bureau Gravimétrique International (BGI)) in the region of the Mongol–Okhotsk orogenic belt and Sikhote–Alin fold system. The results of the study can be used for zoning of the other geophysical fields and for planning the locations of the new survey networks for increasing the accuracy of the initial data used for compiling the maps.  相似文献   

4.
Izvestiya, Physics of the Solid Earth - Abstract—Empirical comparative study of the modern global models of the Earth’s gravity field (EGF) in the form of geopotential spherical...  相似文献   

5.
6.
Several experiments were undertaken at Kolkata (latitude: 22°34′N, longitude: 88°30′E) on the solar eclipse day of August 1, 2008 to observe the effects of the solar eclipse on Fair Weather Field (FWF) and VLF amplitude and phase. The experimental results presented here show significant deviations of the observed parameters from their normal values, as they are determined by the average of the records obtained on 5 days adjacent to the day of the solar eclipse.  相似文献   

7.
8.
The effect of ionospheric wind on the gravity wave propagation is studied. These waves arise in the ionosphere due to intensification of their sources near the Earth’s surface during enhanced seismic activity. The influence of the wind on these waves is connected with the Ampere’s force that produces the ion-drag force acting on the atmosphere. This results in the occurrence of the discrete wave spectrum the maximum of which increases in proportion to the numbers of the natural scale. Furthermore, these waves are amplified during propagation from the source region in the direction perpendicular to the wind direction. These peculiarities of the gravity waves can be used for monitoring of seismic activity based on the ionosphere sounding.  相似文献   

9.
Active volcanoes are thought to be important contributors to the atmospheric mercury (Hg) budget, and this chemical element is one of the most harmful atmospheric pollutants, owing to its high toxicity and long residence time in ecosystems. There is, however, considerable uncertainty over the magnitude of the global volcanic Hg flux, since the existing data on volcanogenic Hg emissions are sparse and often ambiguous. In an attempt to extend the currently limited dataset on volcanogenic Hg emissions, we summarize the results of Hg flux measurements at seven active open-conduit volcanoes; Stromboli, Asama, Miyakejima, Montserrat, Ambrym, Yasur, and Nyiragongo.. Data from the dome-building Soufriere Hills volcano are also reported. Using our determined mercury to SO2 mass ratios in tandem with the simultaneously-determined SO2 emission rates, we estimate that the 7 volcanoes have Hg emission rates ranging from 0.2 to 18 t yr-1 (corresponding to a total Hg flux of ~41 t·yr-1). Based on our dataset and previous work, we propose that a Hg/SO2 plume ratio ~10-5 is best-representative of gas emissions from quiescent degassing volcanoes. Using this ratio, we infer a global volcanic Hg flux from persistent degassing of ~95 t·yr-1 .  相似文献   

10.
The theory of plasma density redistribution and polar wind acceleration acceleration under the affect on the magnetosphere of the ponderomotive forces induced by the ultra-low frequency electromagnetic waves is presented. Our attention is focused mainly on the important question about the necessity of experimental verification of fairly certain theoretical predictions. It is pointed out that experimental validation is not only necessary for the development of the theory but also for replenishing the knowledge about the structure and dynamics of the near-Earth space. An original method for indirect verification is presented. The idea of this method is based on the dependence of the foreshock locations on the orientation of the field lines of the interplanetary magnetic field (IMF) in front of the magnetosphere relative to the plane of the geomagnetic equator.  相似文献   

11.
The development of studies on estimating the accuracy of the Earth’s modern global gravity models in terms of the spherical harmonics of the geopotential in the problematic regions of the world is discussed. The comparative analysis of the results of reconstructing quasi-geoid heights and gravity anomalies from the different models is carried out for two polar regions selected within a radius of 1000 km from the North and South poles. The analysis covers nine recently developed models, including six high-resolution models and three lower order models, including the Russian GAOP2012 model. It is shown that the modern models determine the quasi-geoid heights and gravity anomalies in the polar regions with errors of 5 to 10 to a few dozen cm and from 3 to 5 to a few dozen mGal, respectively, depending on the resolution. The accuracy of the models in the Arctic is several times higher than in the Antarctic. This is associated with the peculiarities of gravity anomalies in every particular region and with the fact that the polar part of the Antarctic has been comparatively less explored by the gravity methods than the polar Arctic.  相似文献   

12.
The Earth masses reside in a near-hydrostatic equilibrium, while the deviations are, for example, manifested in the geoid, which is nowadays well determined by satellite gravimetry. Recent progress in estimating the density distribution of the Earth allows us to examine individual Earth layers and to directly see how the sum approaches the observed anomalous gravitational field. This study evaluates contributions from the crust and the upper mantle taken from the LITHO1.0 model and quantifies the gravitational spectra of the density structure to the depth of 435 km. This is done without isostatic adjustments to see what can be revealed with models like LITHO1.0 alone. At the resolution of 290 km (spherical harmonic degree 70), the crustal contribution starts to dominate over the upper mantle and at about 150 km (degree 130) the upper mantle contribution is nearly negligible. At the spatial resolution \(<150\,\hbox {km},\) the spectra behavior is driven by the crust, the mantle lid and the asthenosphere. The LITHO1.0 model was furthermore referenced by adding deeper Earth layers from ak135, and the gravity signal of the merged model was then compared with the observed satellite-only model GOCO05s. The largest differences are found over the tectonothermal cold and old (such as cratonic), and over warm and young areas (such as oceanic ridges). The misfit encountered comes from the mantle lid where a velocity–density relation helped to reduce the RMS error by 40%. Global residuals are also provided in terms of the gravitational gradients as they provide better spatial localization than gravity, and there is strong observational support from ESA’s satellite gradiometry mission GOCE down to the spatial resolution of 80–90 km.  相似文献   

13.
14.
The seismic catalogues of 1967?C2008 for the Bishkek geodynamical test site are analyzed for the purpose of studying the response of seismic activity to the electromagnetic sounding of the Earth??s crust during two series of field experiments with high-power controlled sources. The first series of the experiments, which were carried out in 1982?C1990, utilized the pulses provided by a magnetohydrodynamic (MHD) generator. The sounding signals in the second series of the experiments (2000?C2005) were generated by the capacitor-thyristor source ERGU 600-2. In these experiments, temporal variations of the set of statistical parameters characterizing the seismicity, which are typically used in the studies of the background and transient modes of seismicity, were investigated in a selected spatial domain within 150 km from the current electrodes. In terms of time, the analysis was conducted on two levels of detail. The study on a temporal scale of a few years was focused on the variations that preceded, accompanied, and followed the series of the experiments, while the day-scale analysis considered variations that were observed within 10 days after each sounding event. The day-scale analysis yields the following results. The slope of the frequency-magnitude diagram of the earthquakes (b value) during the sounding events is substantially larger than its background value. The slope of the graph gradually becomes gentler within about a day and a half after termination of sounding. The seismic activity slightly enhances during the interval of sounding and abates after its termination to a minimum, which corresponds to the interval of decreasing b value. This character of variations in seismicity differs from the scenario previously established for other transitional seismic regimes. The analysis on a temporal scale of a few years revealed variations in the studied parameters of the seismicity, some of which fall in both sounding intervals of 1983?C1990 and 2000?C2005. However, these variations are not unique; their character and durations suggest their being associated with the processes of preparation and after effects of the strong earthquakes that occurred in the vicinity of the sounding dipole.  相似文献   

15.
Geomagnetism and Aeronomy - The results of analysis of variations in the total solar irradiance in the 17–24th solar activity cycles and their relation to the climate global warming are...  相似文献   

16.
This article considers the process of entry of cosmic substance into the Earth’s atmosphere and the further evolution of the formed extraterrestrial aerosol. It is shown that meteorite-derived aerosol generated in the atmosphere may affect the Earth’s climate in two ways: (a) particles of meteoric haze may serve as condensation nuclei in the troposphere and stratosphere; (b) charged meteor particles residing in the mesosphere may markedly change (by a few percent) the total atmospheric resistance and, thereby, affect the global current circuit. Changes in the global electric circuit, in turn, may influence cloud formation processes. The obtained results argue for the fact that the meteoric dust in the Earth’s atmosphere is potentially one of the important climate-forming agents. It is shown that the amount of interstellar dust in the Earth’s atmosphere is too small to have a considerable affect on atmospheric processes.  相似文献   

17.
Relations to study the influence of geophysical processes on the temporally varying rotation of the Earth are considered. Liouville’s equations of rotational motion are derived for a two-component Earth model (consisting of a solid mantle and a fluid core) and suitably simplified for calculations of the influence of mass redistributions on the Earth’s rotational behaviour. Excitation functions, or effective angular momentum functions, describing the influence of mass redistributions on the equations of rotational motion are derived, and their calculation is elucidated by some examples. Relations between temporally varying second degree Stokes coefficients of the gravity field and excitation functions are discussed. Different solutions of the equations of rotational motion are described. The identification of exciting geophysical processes by the kinematics of the inverse calculated excitation function is portrayed.  相似文献   

18.
19.
Extraterrestrial forcing of natural environmental processes by gravitational interaction between the Sun, the Moon, and the Earth is considered. Based on the instrumental data, the main periodical components and cycles are identified in the time variations of some geophysical fields at the boundary between the Earth’s crust and the atmosphere. Correlation analysis shows that the lunar-solar tides are the key factor responsible for diurnal and quasi-biweekly variations in the ground electric field, radon emanation, water level in wells, and microseismic vibrations. The tidal influence on the various-scale movements of the blocks of the Earth’s crust is analyzed. In the context of the vertical, lateral, and rotational motion of crustal blocks, which is very important for the platforms, a new, precession-like type of displacements is revealed. These movements develop as a result of the nonsynchronous tidal responses of the block and the adjacent interblock gaps or tectonic structures whose strength and strain properties are different in different directions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号