首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Physical model tests were conducted to validate numerical models of moored-buoy systems. Three buoy types (sphere, spar and discus) were tested for intrinsic properties, three-dimensional impulse response and three-dimensional dynamic response to two-dimensional regular and random wave excitation. Buoy kinematics were measured using advanced video imaging techniques. Other data collected included upper and lower mooring line tension and mooring line inclination. Physical model development, test and measurement procedures and data collected are discussed.  相似文献   

2.
The vertical response of spar buoys to waves is examined. The response is the product of a rather complex wave forcing function and the resonant response of the buoy. With compound spar buoys (that is, consisting of more than one section of different diameters) the forcing function has a zero at a frequency which is usually close to the resonant frequency, but which can be arranged to be somewhat higher with beneficial effects on the response. Only the effects of pressure and inertia are considered, since this paper is mainly concerned to clarify some specific general principles and it is difficult to include the effects of drag, which are complex.  相似文献   

3.
The three-dimensional coupled behavior during the interaction of buoys with their mooring systems is numerically analyzed. A time-domain model was developed to predict the response of a tethered buoy subject to hydrodynamic loadings. External loadings include hydrodynamic forces, tethers tensions, wind loadings and weight. System nonlinearities include large rotational and translational motions, and non-conservative fluid loadings. The mooring problem is formulated as a combined nonlinear initial-value and two-point-boundary-value problem which is directly integrated both in time and space. Buoy equations of motion are derived using small Eulerian angles. Coupling between rotational and translational degrees of freedom is included and coupling between the buoy and cable is effected by adopting the buoy equations of motion as boundary conditions at one end for the mooring problem. Numerical examples are provided to validate the formulation and solution technique; predicted responses of three types of buoy (sphere, spar, and disc) are compared with experimental results.  相似文献   

4.
A three-dimensional coupled analysis of the interaction of a floating buoy and its mooring is studied. External loads include hydrodynamic forces, tether tensions, wind loads and system weight and buoyancy. Nonlinearities include large rotational and translational motions and non-conservative fluid loads. The mooring problem is formulated as a nonlinear two-point-boundary-value-problem. At each instant in time, the mooring problem is solved by direct integration using a successive iterative algorithm to satisfy boundary conditions. Buoy kinetic and kinematic equations are derived assuming large angles represented by Euler parameters. Coupling between the buoy and the mooring is enforced by matching the velocities of the tether and buoy at the attachment point. A predictor-corrector coupling algorithm is used with multiple sizes of time steps used to provide stability for the separate mooring and buoy models. Numerical results are compared to experimental responses of three types of buoys (sphere, spar and disc) subject to both regular and irregular waves.  相似文献   

5.
A floating breakwater produces less environmental impact, but is easily destroyed by large waves. In this paper, the spar buoy floating breakwater is introduced with a study on the wave reflection and transmission characteristics and mooring line tension induced by the waves. Mei (The Applied Dynamics of Ocean Surface Waves, Wiley, New York (1983) 740 p) proposed a theoretical solution for the reflection and transmission coefficients as the wave propagates through a one-layer slotted barrier. For a multiple-layer fence system, the analytical solution is proposed linearly. The results show that the theoretical computations agree well with the experimental trends. For a multiple-layer fence system, the transmission coefficients become maximal as the layer spacing to wavelength ratio moves to 1/2. Conversely, the coefficients become minimal, as the ratio moves to 0.3. To estimate the maximum tension of the mooring line, both numerical calculations and laboratory experiments were executed. The numerical calculation results were similar to the experimental results.  相似文献   

6.
We made and set a spar buoy in September 1975 at Tsuyazaki for the purpose of developing the buoy system to acquire the oceanographical data. Motions of the buoy were also measured in terms of three components of acceleration, roll, and pitch. The buoy was removed from the site in May 1978.A method of eliminating influence of the buoy motion on the measured wave data was invented and examined by using the field data. It was found that the influence of the buoy motion on the wave data was so small that the amount of correcting the motion was negligible. In addition wave data obtained at the buoy were compared with those obtained at the fixed type platform, which was built in 1974 to get the reference data of wind, waves and currents. The agreement was found to be good. The performance of the buoy was as good as intended. Thus, it was shown that the buoy so far developed could be used as the platform for oceanographic research such as measuring wind and waves with higher precision.  相似文献   

7.
以三锚系浮标系统为研究对象,基于AQWA与OrcaFlex软件开展了三锚系大型浮标系统运动响应特性数值模拟研究。对直径10 m的浮标结构在波浪荷载下的水动力特性进行研究,校核了浮标的初稳性和大倾角稳性特征,计算分析了浮标的附加质量、辐射阻尼、运动响应幅值算子RAO等水动力参数,阐明了不同风、浪、流工况下三锚系浮标与辅助浮筒的运动响应特性,揭示了浮标三锚链导缆孔处锚泊张力随入射角度、波高和周期等的变化规律。研究结果表明:该浮标稳性和随波性能较好。与无浮筒三锚系浮标相比,带辅助浮筒的三锚系浮标系统的运动响应和锚泊张力减小,随着波高和周期增大,三锚系浮标系泊锚链的极端张力值逐渐增大,尤其是在极端海况下,迎浪向锚链极端张力急剧增大。  相似文献   

8.
In storm conditions, nonlinear wave loads on monopile offshore wind turbines can induce resonant ringing-type responses. Efficient, validated methods which capture such events in irregular waves in intermediate or shallow water depth conditions are needed for design. Dedicated experiments and numerical studies were performed toward this goal. The extensive experimental campaign at 1:48 scale was carried out for Statoil related to the development of the Dudgeon wind farm, and included both a rigid model and a flexible, pitching-type, single degree-of-freedom model. Twenty 3-hour duration realizations for 4 sea states and 2 water depths were tested for each model. A high level of repeatability in ringing events was observed. Uncertainties in the experimental results were critically examined. The stochastic variation in the 3-hour maximum bending moment at the sea bed was significantly larger than the random variation in repetition tests, and highlighted the need for a good statistical basis in design. Numerical simulations using a beam element model with a modified Morison wave load model and second order wave kinematics gave reasonable prediction of the ringing response of the flexible model, and of the measured excitation forces on the rigid model in the absence of slamming. The numerical model was also used to investigate the sensitivity of the responses with respect to damping and natural period. A simple single degree-of-freedom model was shown to behave similarly to a fully flexible model when considering changes in natural frequency and damping.  相似文献   

9.
10.
A series of regular and irregular wave experiments are conducted to study the reflective and transmitting performances of quarter circular breakwater (QCB) in comparison with those of semi-circular breakwater (SCB). Based on regular wave tests, the reflection and transmission characteristics of QCB are analyzed and a few influencing factors are investigated. Then, the wave energy dissipation as wave passing over the breakwater is discussed based on the hydraulic coefficients of QCB and SCB. In irregular wave experiments, the reflection coefficients of QCB and their spectrums are studied. Finally, the comparisons between the experimental results and numerical simulations for QCB under regular and irregular wave conditions are presented.  相似文献   

11.
Real sea conditions are characterized by multidirectional sea waves. However, the prediction of hull load responses in oblique waves is a difficult problem due to numeral divergence. This paper focuses on the investigation of numerical and experimental methods of load responses of ultra-large vessels in oblique regular waves. A three dimensional nonlinear hydroelastic method is proposed. In order to numerically solve the divergence problem of time-domain motion equations in oblique waves, a proportional, integral and derivative (PID) autopilot model is applied. A tank model measurement methodology is used to conduct experiments for hydroelastic responses of a large container ship in oblique regular waves. To implement the tests, a segmented ship model and oblique wave testing system are designed and assembled. Then a series of tests corresponding to various wave headings are carried out to investigate the vibrational characteristics of the model. Finally, time-domain numerical simulations of the ship are carried out. The numerical analysis results by the presented method show good agreement with experimental results.  相似文献   

12.
The seakeeping characteristics of a Small Waterplane Area Twin Hull (SWATH) vehicle equipped with fixed stabilizing fins was investigated by experimental and numerical methods The calculation methods range from viscous CFD simulation based on an unsteady RANS approach to Boundary Element Method (BEM) based on Three Dimensional Translating-pulsating Source Green Function (3DTP). Responses of ship motions in head regular waves and nonlinear effects on motion responses with increasing wave amplitude were analyzed. Numerical simulations have been validated by comparisons with experimental tests. The results indicate that the heave and pitch transfer functions depict two peaks with the increase of wave length. Comparisons amongst experimental data and different numerical calculations illustrate that the RANS method predicts ship motions with higher accuracy and allows the detection of nonlinear effects. The heave and pitch transfer functions see a downward trend with the increasing wave amplitude in the resonant zone at low speed.  相似文献   

13.
Report on a computer analysis of wave response of a spar buoy that has been operated successfully in the Mediterranean over the past ten years, to find out how the presence of a large horizontal plate at the bottom affects its wave response. The calculations show that the addition of a damping plate decreases have response for short waves but increases the response for very long waves.  相似文献   

14.
The present research aims at clarifying the effects of freak wave on the motion and dynamic responses of a semisubmersible. To reveal the effects of mooring stiffness, two mooring systems were employed in the model tests and time-domain simulations. The 6-DOF motion responses and mooring tensions have been measured and the 3-DOF motions of fairleads were calculated as well. From the time series, trajectories and statistics information, the interactions between the freak wave and the semisubmersible have been demonstrated and the effects of mooring stiffness have been identified. The shortage of numerical simulations based on 3D potential flow theory is presented. Results show that the freak wave is likely to cause large horizontal motions for soft mooring system and to result in extremely large mooring tensions for tight mooring system. Therefore, the freak wave is a real threat for the marine structure, which needs to be carefully considered at design stage.  相似文献   

15.
16.
Spar technology has been applied to the deep-sea oil and gas exploitation for several years.From the first generation of classic spar,the spar platform has developed into the second generation of truss spar and the latest cell spar.Owing to its favorable adaptability to wide range of water depth and benign motion performances,spar has aroused quite a lot of interests from oil companies,universities and research institutes.In the present paper,a new cell-truss spar concept,put forward by the State Key Laboratory of Ocean Engineering(SKLOE)at Shanghai Jiao Tong University,is studied both numerically and experimentally.The numerical simulation was conducted by means of nonlinear time-domain fully coupled analysis,and its results were compared to the experimental data.Whereafter,detailed analysis was carried out to obtain the global performances of the new spar concept.Proposals for the improvement of numerical calculation and experimental technique were tabled meanwhile.  相似文献   

17.
To plan for proper mitigation measures, one should have an advanced knowledge of the phenomenon of tsunami propagation from the deep ocean to coastal waters. There are a few methods to predict tsunamis in the ocean waters; one method is the effective use of data buoy measurements. Although data buoys have been used along the Indian waters there has been a tremendous growth in the number of buoy deployment recently. Under the National Data Buoy Programme (NDBP) of India, the 2.2 m diameter discus data buoys were deployed along the east and west coasts of India for measuring meteorological and ocean parameters. It would be advantageous if these buoys could be efficiently used to measure rare events such as tsunamis. Understanding the dynamic behavior of the buoy is of prime importance if a tsunami warning system is to be successful. This may be accomplished through experimental or numerical studies. A comprehensive experimental study has been conducted to understand the dynamic behavior of a wave rider buoy exposed to a variety of waves. It is common that tsunami waves are represented in terms of shallow water waves, namely solitary and cnoidal waves. Hence, in the present study, the discus type data buoy is scale modeled and tested under the action of solitary and cnoidal waves in the laboratory. The time histories of wave elevations, as well as heave and pitch motions of the buoy model, were analyzed through a spectral approach as well as through wavelet transformations. The wavelet approach gives more detailed insight into the spectral characteristics of the buoy motion in the time scale. The harmonic analyses were performed for the cnoidal wave elevations and subsequent motion characteristics that give an insight into the energy variations. The details of the model, instrumentation, testing conditions and the results are presented in this paper.  相似文献   

18.
Performance of wave-energy devices of the oscillating water column (OWC) type is greatly enhanced when a resonant condition with the forcing waves is maintained. The natural frequency of such systems can in general be tuned to resonate with a given wave forcing frequency. In this paper we address the tuning of an OWC sea-water pump to polychromatic waves. We report results of wave tank experiments, which were conducted with a scale model of the pump. Also, a numerical solution for the pump equations, which were proven in previous work to successfully describe its behavior when driven by monochromatic waves, is tested with various polychromatic wave spectra. Results of the numerical model forced by the wave trains measured in the wave tank experiments are used to develop a tuning criterion for the sea-water pump.  相似文献   

19.
采用Longuet-Higgins形式的方向分布函数作为已知谱,用模拟数据检验了作者是所提出的估计方法EEV合理性,并与扩展最大似然方法(EMLM)及Lygre等(1986)的最在熵方法(MEM)作了比较,在验证和比较中,使用纵摇-横摇浮标,星形阵形和CERC阵列作为复合阵列,计算表明,EEV优于EMLM和EME。最后将EEV和EMLM两种方法应用于仪器阵列的外海观测数据,得到了比较合理的海浪方向  相似文献   

20.
A direct-drive wave energy conversion system based on a three-phase permanent magnet tubular linear generator (PMTLG) and a heaving buoy is proposed to convert wave energy into electrical energy. Sufficient experimental methods are adopted to compare the computer simulations, the validity of which is verified by the experiment results from a wave tank laboratory. In the experiment, the motion curves of heaving buoy are with small fluctuations, mainly caused by the PMTLG's detent force. For the reduction of these small fluctuations and a maximum operational efficiency of the direct-drive wave energy conversion system, the PMTLG's detent force minimization technique and the heaving buoy optimization will be discussed. It is discovered that the operational efficiency of the direct-drive wave energy conversion system increases dramatically after optimization. The experiment and optimization results will provide useful reference for the future research on ocean wave energy conversion system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号