首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
曹文炳  万力  龚斌  曾亦键  王大纯 《地学前缘》2005,12(Z1):101-106
开采孔隙承压含水系统,引起含水层水头下降。通常认为相邻含水层一经出现水头差,便会有通过粘性土层的越流渗透。但在粘性土两侧含水层出现水头差初期,粘性土内部水头降低缓慢,并伴随有释水压密过程。笔者采用多用途饱水粘性土固结和渗透试验装置,对不同岩性的粘性土原状样进行了释水、吸水与越流发展过程之间关系的试验。试验表明,含水层水位升、降变化,首先引起相邻粘性土吸水回弹或释水压密,而后出现粘性土吸水或与释水越流并存阶段,越流的出现,明显滞后于含水层水头变化,当吸水或释水过程结束后,越流渗透达到稳定。越流滞后时间与土的固结程度有关,笔者采用一维固结理论提出了计算越流滞后时间的方法。  相似文献   

2.
开采孔隙承压含水系统,引起含水层水头下降。通常认为相邻含水层一经出现水头差,便会有通过粘性土层的越流渗透。但在粘性土两侧含水层出现水头差初期,粘性土内部水头降低缓慢,并伴随有释水压密过程。本文采用多用途饱水粘性土固结和渗透试验装置,对不同岩性的粘性土原状样进行了释水、吸水与越流发展过程之间关系的试验。试验表明,含水层水位升、降变化,首先引起相邻粘性土吸水回弹或释水压密,而后出现粘性土吸水或与释水越流并存阶段。越流的出现。明显滞后于含水层水头变化,当吸水或释水过程结束后,越流渗透达到稳定。越流滞后时间与土的固结程度有关,笔者采用一维固结理论提出了计算越流滞后时间的方法。  相似文献   

3.
对粘性土孔隙水渗流规律本质的新认识   总被引:17,自引:0,他引:17       下载免费PDF全文
对粘性土中孔隙水运动规律具有若干种不同认识,用传统粘性土结合水运移的理论无法作统一的解释,妨碍了该领域许多理论和实践问题的解决。本文对粘性土孔水渗透规律提出了不同于传统结合水运移理论的新认识,认为粘性土饱水时,存在重力水、毛细水和结合水,水在土中渗透运动是不同的水力梯度条件下3种孔隙水相互转化、综合作用的结果,而参与运动的孔隙水的释出规律,决定了粘性土孔隙水不同的渗透规律。  相似文献   

4.
沈孝宇  初振环 《地球科学》2009,34(5):861-869
论文的前文(饱水粘性土主固结理论) 已从理论上导出粘性土“主固结比(η) ”、“极限主固结量(Sη) ”及其主固结度Uη的计算方法, 它们取决于粘性土的初始含水量和液限(Wt、WL) 而与固结应力p无关.作为前文的续篇, 主要是探求一维主固结过程含水量和时间(t) 的变化关系(Wt=f(t, z)).根据一维固结物理模型及假设条件建立的含水量为因变量的主固结二阶偏微分方程并通过特定的边界条件和初始条件, 利用分离变量法和三角函数正交原理解得主固结过程含水量和时间的关系式, 并获得主固结系数Θ及其时间因数Δ的新表达式, 它们在形式上与太沙基固结方程相似, 但实质内容上不一致, 前者是探索粘性土含水量变化, 后者是超静孔压u的变化, 利用新的一维主固结方程进一步导出主固结量(St), 平均主固结度(Ut) 及主固结剩余量(ΔS) 等新一组表达式, 利用工程实际数据分别计算表明新的主固结系数Θ所含的相关物理量除含水量外, 其他的物理量如渗透系数(K), 超静孔压水头高度(h1), 粘性土比重(Gs) 等都不具实质的影响.   相似文献   

5.
谈云志  胡新江  喻波  张华  付伟 《岩土力学》2013,34(11):3077-3084
针对传统仪器无法考虑岩土工程中温度和荷载等因素综合作用的缺陷,研制了一套多功能土-水特征曲线试验仪。以粉土为研究对象,开展了不同固结应力作用下粉土的土-水特征曲线试验,并测量其增减湿过程中土体的体积胀缩量,以便修正体积变化对其体积含水率的计算误差。结果表明,粉土在减湿过程中,土体的体积发生明显的收缩。其收缩量与固结应力水平有关,固结应力越小,则减湿引起的体缩量越大。但土体在增湿过程中的体积则基本保持不变。固结应力对粉土 土-水特征曲线的进气值、增减湿速率影响较大,固结压力越大,其进气值越大、减湿速率也越大。最后,为揭示固结应力对土的持水性能的影响机制,开展了不同固结应力作用下土体的细观试验。结果表明,固结应力主要改变了土体团粒间的大孔隙,而对黏土颗粒之间的孔隙影响较小。土体的持水性能与土体的孔隙大小和分布模式密切相关,大孔隙主要影响土体的进气值,而其孔隙分布模式则控制其增减湿湿速率。  相似文献   

6.
饱和粘性土渗透性的研究现状及其发展方向   总被引:3,自引:0,他引:3  
土体的渗透性,同强度和变形特性一起,是土力学中几个主要力学性质,岩土工程的各个领域都与土的渗透性密切相关。影响饱和粘性土渗透性的因素是很复杂的,主要有粘粒含量,矿物成分,溶液性质,孔隙大小、形状、连通性。由于以下原因使饱和粘性土的渗流规律出现偏离达西定律的现象:①粘粒表面结合水的异常性质;②渗透水流的机械作用;③实验误差。在建立渗透模型时,由于无法考虑所有影响因素,故不可避免地要采用一些假设。本文针对以往研究中存在的问题,结合实测资料,将土体中的孔隙和孔隙水这两个重要影响因素当作一个有机联系的整体,根据土体中孔隙、孔隙水的类型、作用及其相互关系,合理地解释了不同压密状态土体的渗透规律,指出了对饱和粘性土体渗透性研究的发展方向。  相似文献   

7.
低渗透性介质孔隙水渗流规律   总被引:1,自引:0,他引:1  
针对以往对低渗透介质中的孔隙水的渗流规律研究存在的问题,利用微渗流-固结联合试验、三轴渗透固结试验、压汞试验等方法,对低渗透性介质-粘性土中的孔隙水的渗流规律进行了较系统的研究,对孔隙水运移规律的实质、极限水力梯度存在与否、达西定律的适用范围及在实际应用中注意的问题等方面进行探讨,并提出新的见解.  相似文献   

8.
天然沉积饱和黏土渗透系数试验研究与预测模型   总被引:1,自引:0,他引:1  
刘维正  石名磊  缪林昌 《岩土力学》2013,34(9):2501-2507
为研究天然沉积土的物理特性、结构状态与应力水平对其渗透特性的影响,采用固结渗透联合试验,对太湖湖沼相粉质黏土原状样与具有不同前期固结压力的重塑样的渗透系数变化规律进行了测定。原状样和重塑样的渗透系数均随固结压力的增大呈非线性减小,且两者的孔隙比与渗透系数的变化模式相一致;而前期固结压力仅影响渗透系数大小。试验结果表明:土体渗透系数随孔隙比的变化规律不受土结构性(颗粒间胶结作用)和应力历史的影响;对于同一土体,渗透系数大小主要由孔隙比决定,进而对试验和相关文献中不同土体渗透系数在压缩过程中变化规律进行了分析,建立了线性的lg(1+e)-lgkv渗透模型,并考虑了液限的影响,对渗透指数 的经验关系进行了修正,修正后的 计算结果更接近于实测值。研究结果对准确分析原位地基实际受荷过程中非线性固结性状具有重要意义。  相似文献   

9.
一、引言所谓固结现象是指这一种状况,即粘土地基的下沉是在加载后伴随着相当长的时间延滞而产生的,固结速率就是反映下沉的时间延滞。在高压缩性的饱和粘性土的条件下,土的固结速率同时取决于渗透固结和土骨架蠕变。所谓渗透固结,是指饱和粘土在某个载苘作用下,水从土孔隙中挤出的过程,也就是孔隙水压力消散、有效应力增加的过程,当孔隙水压力完全消散时,渗透固结引起的下沉收敛为某一定值,渗透固结速率完全决定于土的透水性和排水距离。  相似文献   

10.
往返荷载下粘性土的强度及取值标准试验研究   总被引:5,自引:1,他引:5  
通过对粘性土进行一系列动三轴试验,测定并分析了动荷载作用下为粘性土的动剪应力,轴向应变及超孔隙水压力随时间的变化规律,分析了破坏时不同固结比的粘性土对静,动剪强度和孔隙水压力影响规律,得出了粘性土的动剪强度随固结比变化的关系式,并对粘性土的动剪强度判别方法的标准进行探讨,得出了有益的结果。  相似文献   

11.
饱和土体再固结变形特性若干问题研究   总被引:2,自引:0,他引:2  
白冰 《岩土力学》2003,24(5):691-695
重点考察了冲击能大小、周围压力、土性对再固结变形规律的影响,对一种砂粘混合体土料制备的扰动土样进行了试验研究。这对于了解强夯冲击荷载作用下,不同土类地基的性状及其加固效果有重要意义。此外,还研究了饱和粘性土的扰动固结问题、临界孔隙水压力问题,并对不同排水条件下土体的次固结变形问题进行了讨论。  相似文献   

12.
渗透系数(K)是一个重要的水文地质参数。近年来,随着科学的发展,对地面沉降、越流补给等问题的研究逐步深入,人们越来越感到了解原状粘性土渗透系数的重要性。以往求解越流系数(B=K/M),一般采用抽水试验方法,但误差往往较大。近两年来,我系“渗透固结实验室”采用了张人权、曹文炳等讨论设计的渗透固结仪,通过试验,能够较好地测定原状粘性土的渗透系数。我们利用这种仪器已为河北地质九队、山西水文一队等测试了一些原状粘性土的渗透系数,一般亚矿土、亚粘土渗透系数在10~(-6)~10~(-7)(cm/sec)之间,粘土可达10~(-9)(cm/sec)。  相似文献   

13.
温度对粘性土介质力学特性的影响   总被引:12,自引:1,他引:11  
白冰  赵成刚 《岩土力学》2003,24(4):533-537
分析了温度效应对粘性土介质若干基本力学特性的影响。对粘性土的热固结问题、温度对粘性土介质渗透特性的影响、粘性土中的热传导规律及热阻抗特性、土-水体系在温度效应下的作用机理、温度作用下粘性土的本构规律等进行了深入研究。特别就温度诱致的孔隙水压力的变化机理及不同性质土类粘性土体积变化的可逆性问题进行了探讨。  相似文献   

14.
K0固结饱和土柱孔扩张问题弹塑性分析   总被引:2,自引:0,他引:2  
采用K0固结各向异性土体本构模型,将柱孔扩张后周围土体分为弹性区和塑性区,根据柱孔扩张理论和边界条件,推导出K0固结状态下饱和天然土体柱孔扩张问题弹塑性区的应力、塑性区半径以及超孔隙水压力的理论解答。同时,通过算例与修正剑桥模型解答进行对比分析,结果表明,土的不同初始固结状态对柱孔扩张后孔周围的应力和超孔隙水压力产生很大影响,采用考虑K0固结诱发各向异性土体本构模型所得到的应力和超孔隙水压力解答大于修正剑桥模型的解答,但塑性区影响半径却明显小于后者。  相似文献   

15.
基坑土体侧向卸荷真三轴试验研究   总被引:15,自引:4,他引:11  
对武汉地区具有代表性的粉质粘土,用基坑开挖过程中坑周土体的应力路径在真三轴上进行模拟试验,得到平面应变条件下固结不排水卸荷试验结果,将其整理成应力-应变关系曲线、孔隙水压力-竖向应变关系曲线、中主应力系数-竖向应变关系曲线和卸荷试验应力路径图。试验结果表明,竖向( )压力不变,侧向( )卸荷时,其应力-应变关系随固结压力的增加,由应变硬化型向应变软化型转化;固结压力较低时,表现为剪胀,固结压力较高时,表现为先剪缩,后剪胀;当中主应力( )始终大于但接近于侧向压力( ),按所定义的中主应力系数bd值较稳定;有效应力路径随固结压力增大产生偏转。这些结论为进一步研究粘性土中主应力的作用奠定了基础。  相似文献   

16.
本文介绍了对以饱和粘性土为介质的模型槽中所进行的孔压静力触探(CPTU)试验,通过对试验数据的分析,得出探头贯入时周围土体的轴向附加应力和径向附加应力的变化及分布,锥尖、侧壁摩阻力以及超孔隙水压力的变化,以及停止贯入后孔压消散过程中探头周围土体的超孔压变化,从这些方面来探讨土中应力场的变化,附加应力的影响范围,临界深度现象以及超孔隙水压力的变化规律。  相似文献   

17.
分级真空预压法加固吹填土过程中孔隙分布特征   总被引:1,自引:0,他引:1  
针对实际工程中吹填土自重固结时间过长和真空预压加固过程中排水管容易淤堵、固结、速度减慢的问题,提出了分级真空预压即逐级施加真空荷载的加固方案,进行了室内模拟试验。试验结果表明:吹填土在固结过程中含水率逐渐减小,易溶盐含量逐渐减小,土体强度逐渐增大,吹填土的物理化学性质得到改善,土体固结效果较均匀;同时对吹填土固结过程中取样进行压汞试验,利用分形理论划分了吹填土孔隙分布区间。探讨了固结过程中孔隙分布特征的变化规律:随着固结压力的增加,吹填土中超大孔隙和大孔隙先被压缩成中孔隙,中孔隙再被压缩成小孔隙;孔径分布由大孔隙集中分布(占50%以上)向中孔隙(占35%以上)和小孔隙(占35%以上)发展。  相似文献   

18.
为了研究变形对非饱和黄土土-水特征和滞后效应的影响,通过先构建恒定吸力条件下土体含水率与孔隙比的关系,再引入吸力的影响,建立了一个能够考虑变形的三维土-水特征曲面模型,模型能够很好地描述不同初始孔隙比黄土吸脱湿过程中含水率随孔隙比和吸力的变化规律。为了证实所提出模型的可靠性,对压实黄土进行一系列吸脱湿过程的土-水特征试验。试验结果表明,恒定吸力条件下土体含水率与孔隙比成线性关系,验证了模型的理论假设。另外由模型可以确定恒定孔隙比状态的土-水特征,将其与试验结果对比发现,脱湿路径由吸力引起的变形对土-水特征影响较大,会使特征参数减小,并抑制滞后效应。  相似文献   

19.
研究粘性土释水和渗透特性的多用途渗透固结试验装置   总被引:2,自引:0,他引:2  
(一) 目前,国内外对由松散沉积物组成的孔隙承压含水系统进行水资源评价时,愈来愈重视承压含水系统中粘性土层释水和渗透特性的研究。达不仅是因为粘性土层的释水和渗透特性直接关系到孔隙承压含水系统中水资源的资源属性和垂直流入量的评价问题,而且还涉及到孔隙介质的供水机制、开采过程中水资源时空变化,以及由于粘性土释水压密引起的地面沉  相似文献   

20.
非饱和土的固结研究对道路工程、软土地基处理工程等具有十分重要的意义。基于Fredlund和Hasan提出的非饱和土一维固结理论,给出了土体内孔隙水压力和孔隙气压力变化的控制方程,并给出了单层非饱和土的初始条件与一类随时间变化的混合非齐次边界条件,构成了非饱和土一维固结的定解问题。通过非齐次边界条件齐次化和特征函数展开法,得到了土体内孔隙水压力和孔隙气压力消散的精确时域解析解。最后,通过对比验证了解析方法的正确性,并分析了边界条件指数变化对非饱和土体内孔隙水压力和孔隙气压力的消散以及土体沉降的影响。结果表明,边界处孔压或孔压梯度随时间的指数变化对非饱和土固结过程有明显影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号