首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is pointed out that, when calculating the continuous absorption coefficient in a stellar atmosphere, it is advantageous to use the coefficient per particle of the most abundant element instead of the usual coefficient per gram of matter. The sources of continuous opacity considered are 1) absorption by H-, HI, H2-, H 2+, HeI, HeII, CI, CII, CIII, NI, NII, OI, OII, NaI, MgI, MgII, AlI, AlII, SiI, SiII, ClI, KI, CaII; and 2) Rayleigh scattering by HI, HeI, CI, NI, OI, H2, and 3) Thomson scattering of free electrons. The calculations are illustrated by the results for a solar-type photosphere.  相似文献   

2.
T.E. Cravens  A.E.S. Green 《Icarus》1978,33(3):612-623
The intensities of radiation from the inner comas of comets which are composed primarily of water and carbon monoxide have been calculated. Only “airglow” emissions initiated by the absorption of extreme ultraviolet radiation have been considered. The photoionizations of H2O, CO, CO2, and N2 are the most important emission sources, although photoelectron excitation is also considered. Among the emission features for which intensities were calculated are H2O+ (A?2A1?X?2B1), CO+ (first negative), CO (fourth positive), CO (Cameron), CO2+ (B?2?u?X?2IIg), N2 (Vegard-Kaplan), N2+ (first negative), and OI (1304 Å). In the inner coma (collision region) these airglow mechanisms are shown to be possible competitors with the usually assumed resonance scattering and flourescence excitation mechanisms which are appropriate for the outer coma and tail.  相似文献   

3.
The photodissociation of water vapour in the mesosphere depends on the absorption of solar radiation in the region (175–200 nm) of the O2 Schumann-Runge band system and also at H-Lyman alpha. The photodissociation products are OH + H, OH + H, O + 2H and H2 + O at Lyman alpha; the percentages for these four channels are 70, 8, 12 and 10%, respectively, but OH + H is the only channel between 175 and 200 nm. Such proportions lead to a production of H atoms corresponding to practically the total photodissociation of H2O, while the production of H2 molecules is only 10% of the H2O photodissociation by Lyman alpha.The photodissociation frequency (s?1) at Lyman alpha can be expressed by a simple formula
JLyαH2O=4.5 ×10?61+0.2F10.7?65100exp[?4.4 ×10?19 N0.917]
where F10.7 cm is the solar radioflux at 10.7 cm and N the total number of O2 molecules (cm?2), and when the following conventional value is accepted for the Lyman alpha solar irradiance at the top of the Earth's atmosphere (Δλ = 3.5 A?) qLyα,∞ = 3 × 1011 photons cm?2 s1?.The photodissociation frequency for the Schumann-Runge band region is also given for mesospheric conditions by a simple formula
JSRB(H2O) = JSRB,∞(H2O) exp [?10?7N0.35]
where JSRB,∞(H2O) = 1.2 × 10?6 and 1.4 × 10?6 s?1 for quiet and active sun conditions, respectively.The precision of both formulae is good, with an uncertainty less than 10%, but their accuracy depends on the accuracy of observational and experimental parameters such as the absolute solar irradiances, the variable transmittance of O2 and the H2O effective absorption cross sections. The various uncertainties are discussed. As an example, the absolute values deduced from the above formulae could be decreased by about 25-20% if the possible minimum values of the solar irradiances were used.  相似文献   

4.
The Stokes parameters of resonance radiation scattered by a Na atom with the angular momentum F aligned by directed unpolarized radiation in a magnetic field H ~ 10?5?10?1 Oe are presented. An influence of the orientation of the magnetic field on these parameters are studied; the intensity ratio I(D2)I(D1) changes within ±5%, and the polarization degree P(D2) within ±25%. Measurements of I(D2)I(D1) and P(D2), if the geometry of scattering is known, may give information on the direction of the magnetic field in the sodium atmospheres of comets, as well as Io's sodium cloud or man-made cosmic clouds.  相似文献   

5.
P. Drossart  T. Encrenaz 《Icarus》1982,52(3):483-491
The abundance of H2O is derived from the 1900- to 2100-cm?1 region of the Voyager 1 IRIS spectra. Scale variations of about a factor of 2 are seen in the water abundance between the North and South Equatorial Belts. Averaged over the full disk, the mixing ratio is H2OH2=(4.0±1.0) × 10?6, if H2O is uniformly mixed in the atmospheric region having temperatures of 230 to 270°K; this result implies a solar depletion by a factor of 100 in this region. In the belts, the best agreement is obtained for a H2O/H2 mixing ratio of 4.0 × 10?6 in the NEB and 7.2 × 10?6 in the SEB, assuming a constant mixing ratio.  相似文献   

6.
The cross-section for dissociative photoionization of hydrogen by 584 Å radiation has been measured, yielding a value of 5 × 10?20 cm2. The process can be explained as a transition from the X1 Σg+ ground state to a continuum level of the X2 Σg+ ionized state of H2 The branching ratio for proton (H+) vs molecular ion (H2+) production at this energy is 8 × 10?3. This process is quite likely an important source of protons in the Jovian ionosphere near altitudes where peak ionization rates are found.  相似文献   

7.
A mechanism has been proposed for uv-accelerated desorption from Fe2+ sites on mineral surfaces that satisfies kinetic constraints determined in the laboratory by Huguenin. The process is an integral step of the photochemical weathering mechanism for producing dust on Mars, and it now appears that it may play primary roles in stabilizing CO2 against dissociation by sunlight and in controlling the oxidation state of the atmosphere. We propose that adsorption occurs at octahedrally coordinated Fe2+ surface sites to form seven-coordinate transition-state complexes. These complexes acquire 16–18 kcal mole?1 of ligand field stabilization energy. During illumination (λ ≤ 0.35 μm), electrons are photoemitted from the surfaced Fe2+, temporarily oxidizing them to Fe3+. Fe3+ has no ligand field stabilization energy, and the complexes lose 16–18 kcal mole?1 of stabilization energy. This is a large fraction of the 19- to 28-kcal mole?1 activation energy for dissociating the complexes, and desorption should proceed spontaneously. The gases that were observed to undergo adsorption-photodesorption include O2, CO2, CO, H2O, N2, and Ar. Photodesorption can drive several catalytic reactions, one of which is the oxidation of CO to CO2. The rate of this reaction should be limited by the supply of CO and O2 to the surface to ~2 × 1012 cm?2 sec?1 (column photodissociation rate of CO2). By including this surface reaction in models of Martian atmospheric CO2 chemistry, CO2 can be stabilized against photodissociation with eddy diffusion coefficients of only 3 × 105?1 × 107 cm2 sec?1 below 40 km, raising to ~ 109 cm2 sec?1 at 140 km. Odd hydrogen is not needed to catalyze the oxidation of CO below 40 km, and odd hydrogen mixing ratios need only to be fH ? 10?10 to depress ozone concentrations below the observed upper limit in equatorial regions. Another catalytic reaction that should be driven by photodesorption on Mars is 20H?(ads)H2O + 12O2(g) + 2e?crystal. This is an important source of atmospheric O2, amounting to 7 × 1013?2 × 1017 O2 molecules cm?2 yr?1, and it could have a significant effect on atmospheric oxidation state.  相似文献   

8.
VLF-emissions with subharmonic cyclotron frequency from magnetospheric electrons have been detected by the S3-A satellite (Explorer 45) whose orbit is close to the magnetic equatorial plane where the wave-particle interaction is most efficient. These emissions are observed during the main phase of a geomagnetic storm in the nightside of the magnetosphere outside of the plasmasphere around L = 3–5. The emissions consist essentially of two frequency regimes, one below the equatorial electron gyro-frequency, ?H0, and the other above ?H0. The emissions below ?H0 are whistler mode and there is a sharp band of “missing emissions” along ?= ?H02. The emissions above ?H0 are electrostatic mode and the frequency ranges up to 3?H02. It is concluded that these emissions are generated by the enhanced relativity low energy (1–5 keV) ring current electrons, penetrating into the nightside magnetosphere during the main phase of a magneto storm. Although the high energy (50–350 keV) electrons showed remarkable changes of pitch angle distribution, their associations with VLF-emissions are not so significant as those of low energy electrons.  相似文献   

9.
Darrell F. Strobel 《Icarus》1974,21(4):466-470
Detailed photochemical models are constructed for two model atmospheres: (1) 100% CH4 and (2) 50% H2, 50% CH4. Both models predict large column densities of C2H2 and C2H6 (~1 cm atm) for eddy mixing rates ~105 cm2 sec?, which are comparable to rates appropriate for Jupiter. These column densities vary inversely with the eddy diffusion coefficient. The models confirm the interpretation by Danielson et al. (1973) of the 12μ feature in the spectra of Gillet et al. (1973) as emission by C2H6 in a thermal inversion region. The C2H6C2H2 mixing ratio is sensitive to the net escape rate of H atoms from the exobase.  相似文献   

10.
R.D. Cess  S.C. Chen 《Icarus》1975,26(4):444-450
Ethane and acetylene, both of which possess more efficient emission bands than methane, have been incorporated into a thermal structure model for the atmosphere of Jupiter. Choosing for illustrative purposes the mixing ratios [C2H6][H2] = 10?5 and [C2H2][H2] = 5 × 10?7, it is found that these hydrocarbon gases lower the atmospheric temperature within the thermal inversion region by as much as 20 K, subsequently reducing the emission intensity of the 7.7 μm CH4 band below the observed result. It is qualitatively shown, however, that this cooling by C2H6 and C2H2 could be compensated by aerosol heating resulting from a uniformily mixed aerosol which absorbs 15% of the incident solar radiation. Such aerosol heating has been suggested by uv albedo observations.  相似文献   

11.
Recent laboratory measurements of the deactivation rate constants for O(1S) have suggested that the dominant production mechanism for the green line in the nightglow is a two-step process. A similar mechanism involving energy transfer from an excited state of molecular oxygen is considered as a potential source of the OI (5577 Å) emission in the aurora. It is shown that the mechanism, O2 + e → O21 + e O21 + O → O2 + O(1S), is consistent with auroral observations; the intermediate excited state has been tentatively identified as the O2(c1?u) state. For the proposed energy transfer mechanism to be the primary source of the auroral green line, the peak electron impact cross-section for O21 production must be approximately 2 × 10?17 cm2.  相似文献   

12.
We have collected data on 241 galaxies from 13 sources and made a statistical analysis after reduction to a uniform system. We found that the Hubble sequence is one of increasing MHMT and MHLB, these mean values increasing monotonically from .0016 and .024 at E to .084 and .83 at Im, but the dispersion is large.The HI content in barred spiral is greater than that in ordinary spirals, and this is consistent with their statistics of angular momentum and colour.The HI content is related to colour; it is greater in bluer systems. The large dispersion suggests that it also depends on some other factors, but these are smoothed out when averaged over each type, resulting in a linear relation between 〈log(MMMT and 〈(B ? VOT)〉. Unlike the colour-colour diagram, the large dispersion on the log (MHLB) ? (B ? V0T) is not related to peculiar galaxies.  相似文献   

13.
Kenneth Fox 《Icarus》1975,24(4):454-459
The basis for “quasipolar” absorption (QPA) by CH4 is the existence of a small electric dipole moment in its ground state. The integrated intensity αQPA at a temperature of 90K is calculated to be between 4.8 × 10?5 and 1.9 × 10?2 cm?2 atm?1. With an assumed mean pressure of 0.1 atm and a relative abundance of [CH4][H2] = 1, it is estimated that the ratio of quasipolar to pressure-induced absorption (PIA) is 0.05 ? αQPA/αPIA ? 18 for the spectral range from 0 to 300 cm?1. This result suggests that quasipolar absorption may contribute to a weak, CH4-induced greenhouse in the atmosphere of Titan.  相似文献   

14.
15.
Results are given of the calculations of the group delay time propagating τ(ω, φ0) of hydromagnetic whistlers, using outer ionospheric models closely resembling actual conditions. The τ(ω, φ0) dependencies were compared with the experimental data of τexp(ω, φ0) obtained from sonagrams. The sonagrams were recorded in the frequency range ? ? (0.5?2.5) Hz at observation points located at geomagnetic latitudes φ0 = (53?66)° and in the vicinity of the geomagnetic poles. This investigation has led us to new and important conclusions.The wave packets (W.P.) forming hydromagnetic whistlers (H.W.) are mainly generated in the plasma regions at L = 3.5?4.0. This is not consistent with ideas already expressed in the literature that their generation region is L ? 3?10. The overwhelming majority of the τexp values differ considerably from the times at which wave packets would, in theory, propagate along the magnetic field lines corresponding to those of the geomagnetic latitudes φ0 of the observation points. The second important fact is that the W.P. frequency ω is less than ΩH everywhere along its propagation trajectory, including the apogee of the magnetic force line (ΩH is the proton gyrofrequency). Proton flux spectra E ? (30?120) keV, responsible for H.W. generation, were determined. Comparison of the Explorer-45 and OGO-3 measurements published in the literature, with our data, showed that the proton flux density energy responsible for the H.W. excitation Np(MV622) ? (5 × 10?3?10?1) Ha2 where Ha is the magnetic field force in the generation region of these W.P. The electron concentration is Na ? (102?103) cm?3. The values given in the literature are Na ? (10?10?103) cm?3. The e data considered also leads to the conclusion that the generating mechanism of the W.P. studied probably always co-exists with the mechanism of their amplification.  相似文献   

16.
D.Chris Benner  Uwe Fink 《Icarus》1980,42(3):343-353
Laboratory band-model absorption coefficients of CH4 are used to calculate the Uranus spectrum from 5400 to 10,400 Å. A good fit of both strong and weak bands for the Uranus spectrum over the entire wavelength interval is achieved for the first time. Three different atmospheric models are employed: a reflecting layer model, a homogeneous scattering layer model, and a clear atmosphere sandwiched between two scattering layers. The spectrum for the reflecting layer model exhibits serious discrepancies but shows that large amounts of CH4 (5–10 km-am) are necessary to reproduce the Uranus spectrum. Both scattering models give reasonably good fits. The homogeneous model requires a particle scattering albedo (g?wp) ? 0.998 and an abundance per scattering mean free path (a?) ofa?1 km-am. The parameters derived from the sandwich layer model are: forsb the upper scattering layer a continuum single scattering albedo (g?w0) of 0.995 and a scattering optical depth variable with wavelength consistent with Rayleigh scattering; for the clear layer they are a CH4 abundance (a) of 2.2 km-am and an effective pressure (p) ? 0.1 atm; for the lower cloud deck a Lambert reflectivity (L) of 0.9 resulted. A severe depletion of CH4 in the upper scattering layer is required. An enrichment of CH4/H2 over the solar ratio by a factor of 4–14 in the lower atmosphere is, however, indicated.  相似文献   

17.
The paper gives the results of detailed studies of the frequency spectra Ss(?) of the chain of the wave packets Fs(t) of geomagnetic pulsations PC-1 recorded at the Novolazarevskaya station. The bulk of the energy of Fs(t) is concentrated in the vicinity of the central frequencies ?s0 of spectra—the carrier frequencies of the signals. The velocity V0 ≌ 6.103km s?1 of the flux of protons generating these signals correspond to them. The spectra of the signals have oscillations—“satellites” irregularly distributed in frequency. These satellites, as the authors believe, testify to the presence of the individual groups of protons of low concentration whose velocities vary within 103–104 km s?1.Their energy is only of the order of 10?2–10?3 of the energy of the main proton flux. Clearly pronounced maxima on double and triple frequencies ? = 2?s0and 3?s0 are detected. They show that the generation of pulsations PC-1 is accompanied by the generation on the overtones of wave packets called in this paper “two-fold” and “three-fold” pulsations PC-1. Intensive symmetrical satellites of a modulation character have been discovered on frequencies ?±sK. Frequency differences Δ?sK± = ¦?s0 ? ?sK±¦ = (0.011,0.022 and 0.035) Hz correspond to them. The authors believe that the values of Δ?±sK are resonance frequencies of the magnetospheric cavity in which geomagnetic pulsations PC-1 are generated. It is established that the values of Δ?±sK coincide closely with the carrier frequencies of geomagnetic pulsations PC-3 and PC-4 generated in the magnetosphere. This leads to the conclusion that the resonance oscillations of the magnetospheric cavity are their source. Thus, the generation of geomagnetic pulsations of different types and resonance oscillations in the magnetosphere are integrated into a unified process. The importance of the results obtained and the necessity to check further their trustworthiness and universality, using experimental data gathered in different conditions, is stressed.  相似文献   

18.
In this paper we confirm an earlier finding that the reaction
constitutes a major source of OI 6300 Å dayglow. The rate coefficient for this reaction is found to be consistent with an auroral result, namely k1 ≈ 6 × 10?12cm3s?1. We correct an error in an earlier publication and demonstrate that reaction (1) is consistent with the laboratory determined quenching rate for the reaction
where k2 = 2.3 × 10?11cm3s?1. Dissociative recombination of O+2 with electrons is found to be a major daytime source in summer above ~220 km.  相似文献   

19.
Previous studies based on radio scintillation measurements of the atmosphere of Venus have identified two regions of small-scale temperature fluctuations located in the vicinity of 45 and 60 km. A global study of the fluctuations near 60 km, which are consistent with wind-shear-generated turbulence, was conducted using the Pioneer Venus measurements. The structure constants of refractive index fluctuations cn2 and temperature fluctuations cT2 increase poleward, peak near 70° latitude, and decrease over the pole; cn2 varies from 2 × 10?15 to 1.5 × 10?14m23 and cT2 from 4 × 10?3 to 7 × 10?2°K2m?23. These results indicate greater turbulent activity at the higher latitudes. In the region near 45 km the refractive index fluctuations and the corresponding temperature fluctuations are substantially lower. Based on the analysis of one representative occultation measurement, cn2 = 2 × 10?16m?23and cT2 = 7.3 × 10?4°K2m?23 in the 45-km region. The fluctuations in this region also appear to be consistent with wind-shear-generated turbulence. The turbulence level is considerably weaker than that at 60 km; the energy dissipation rate ε is 4.9 × 10?5m2sec?3 and the small-scale eddy diffusion coefficient K is 2 × 103 cm2 sec?1.  相似文献   

20.
New characteristics of VLF chorus in the outer magnetosphere are reported. The study is based on more than 400 hours of broadband (0.3–12.5 kHz) data collected by the Stanford University/Stanford Research Institute VLF experiment on OGO 3 during 1966–1967. Bandlimited emissions constitute the dominant form of whistler-mode radiation in the region 4? L? 10. Magnetospheric chorus occurs mainly from 0300 to 1500 LT, at higher L at noon than at dawn, and moves to lower L during geomagnetic disturbance, in accord with ground observations of VLF chorus. Occurrence is moderate near the equator, lower near 15°, and maximum at high latitudes (far down the field lines). The centre frequency ? of the chorus band varies as L?3> and at low latitudes is closely related to the electron gyrofrequency on the dipole field line through the satellite. Based on the measured local gyrofrequency ?H, the normalized frequency distribution of chorus observed within 10° of the dipole equator shows two peaks, at ??H ? 0.53 and ??H ? 0.34. This bimodal distribution is a persistent statistical feature of near equatorial chorus, independent of L, LT and Kp. However there is considerable variability in individual events, with chorus often observed above, below, and between these statistical peaks; in particular, it is not unusual for single emissions to cross ??H = 0.50. When two bands are simultaneously present individual emission elements only rarely show one-to-one correlation between bands. For low Kp the median bandwidth of the upper band, gap and lower band are all ~16% of their centre frequencies, independent of L; for higher Kp the bandwidth of the lower band increases. Bandwidth also increases with latitude beyond ~10°. Starting frequencies of narrowband emissions range throughout the band. The majority of the emissions rise in frequency at a rate between 0.2 and 2.0 kHz/sec; this rate increases with Kp and decreases with L. Falling tones are rarely observed at dipole latitudes <2.5°. The observations are interpreted in terms of whistler-mode propagation theory and a gyroresonant feedback interaction model. An exact expression is derived for the critical frequency, ??H ? 0.5, at which the curvature of the refractive index surface vanishes at zero wave normal angle. Near this frequency rays with initial wave normal angles between 0° and ?20° are focused along the initial field line for thousands of km, enhancing the phase-bunching of incoming gyroresonant electrons. The upper peak in the bimodal normalized frequency distribution is attributed to this enhancement near the critical frequency, at latitudes of ~5°. Slightly below the critical frequency interference between modes with different ray velocities may contribute to the dip in the bimodal distribution. The lower peak may reflect a corresponding peak in the resonant electron distribution, or guiding in field-aligned density irregularities. The observations are consistent with gyroresonant generation of emissions near the equator, followed by spreading of the radiation over a range of L shells farther down the field lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号