首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, by comparing experimental data on bow shock with MHD-relationships on a flat shock discontinuity, allowing for the presence behind the front of turbulent electrostatic oscillations and of an ion beam, an analysis is made of the nature of the “overshoot” of magnetic field (density) behind the front of a collisionless shock wave. It is shown that the large value of plasma compression in the overshoot region (n2ovn1) ~ 6, in excess of the maximum allowable value of density jump (n2n1)|max = (γ + 1γ ? 1)|γ = 53 = 4 at a Mach numberM → ∞, is attributable to the presence in the “overshoot” of a high level of lowerhybrid electrostatic oscillations with an energy density W ? nT.  相似文献   

2.
S.V. Gavrilov  V.N. Zharkov 《Icarus》1977,32(4):443-449
We calculate the Love numbers kn for n = 2 to 10, and determine the “gravitational noise” from tides. The new values k2 for Jupiter, Saturn, and Uranus yield new estimates for the planetary dissipation functions: QJ ? 2.5 × 104, QS ? 1.4 × 104, QU ? 5 × 103.  相似文献   

3.
VLF-emissions with subharmonic cyclotron frequency from magnetospheric electrons have been detected by the S3-A satellite (Explorer 45) whose orbit is close to the magnetic equatorial plane where the wave-particle interaction is most efficient. These emissions are observed during the main phase of a geomagnetic storm in the nightside of the magnetosphere outside of the plasmasphere around L = 3–5. The emissions consist essentially of two frequency regimes, one below the equatorial electron gyro-frequency, ?H0, and the other above ?H0. The emissions below ?H0 are whistler mode and there is a sharp band of “missing emissions” along ?= ?H02. The emissions above ?H0 are electrostatic mode and the frequency ranges up to 3?H02. It is concluded that these emissions are generated by the enhanced relativity low energy (1–5 keV) ring current electrons, penetrating into the nightside magnetosphere during the main phase of a magneto storm. Although the high energy (50–350 keV) electrons showed remarkable changes of pitch angle distribution, their associations with VLF-emissions are not so significant as those of low energy electrons.  相似文献   

4.
Measurements of dayglow radiance of O2(1Δg) and OH(7,2) bands are reported. Ground based photometers were used to monitor zenith radiance of 1270 and 694 nm emissions during the total solar eclipse of 16 February 1980. Altitude distribution of 1270 nm intensity was derived from ground based observations. A set of altitude distributions of O2(1Δg) were thus obtained throughout the eclipse. These altitude distributions were converted into ozone distributions using the rate equations for formation and loss of ozone and O2(1Δg) molecules. Results indicate an increase in the ozone concentration at mid-eclipse. OH(7,2) emission did not show enhancement during totality. This may mean that there was no increase in OH concentration during the eclipse.  相似文献   

5.
The orbit of the satellite 1967-104B has been analysed as it passed through 29:2 resonance with the Earth's gravitational field between January 1977 and September 1978. From the changes in inclination and eccentricity the following lumped 29th-order geopotential harmonic coefficients were obtained: 109C?290.2 = 4.1 ± 0.8, 109S?290.2 = 10.3 ± 2.4, 109C?291.1 = ? 160 ± 19, 109S?291.1 = 79 ± 10, 109C?29?1.3 = 38 ± 14, 109S?29?1.3 = 19 ± 5. These values have been compared with existing comprehensive geopotential models: the best agreement is with the model of Rapp (1981).  相似文献   

6.
We have collected data on 241 galaxies from 13 sources and made a statistical analysis after reduction to a uniform system. We found that the Hubble sequence is one of increasing MHMT and MHLB, these mean values increasing monotonically from .0016 and .024 at E to .084 and .83 at Im, but the dispersion is large.The HI content in barred spiral is greater than that in ordinary spirals, and this is consistent with their statistics of angular momentum and colour.The HI content is related to colour; it is greater in bluer systems. The large dispersion suggests that it also depends on some other factors, but these are smoothed out when averaged over each type, resulting in a linear relation between 〈log(MMMT and 〈(B ? VOT)〉. Unlike the colour-colour diagram, the large dispersion on the log (MHLB) ? (B ? V0T) is not related to peculiar galaxies.  相似文献   

7.
The influence of aerodynamic drag and the geopotential on the motion of the satellite 1964-52B is considered. A model of the atmosphere is adopted that allows for oblateness, and in which the density behaviour approximates to the observed diurnal variation. A differential equation governing the variation of the eccentricity, e, combining the effects of air drag with those of the Earth's gravitational field is given. This is solved numerically using as initial conditions 310 computed orbits of 1964-52B.The observed values of eccentricity are modified by the removal of perturbations due to luni-solar attraction, solid Earth and ocean tides, solar radiation pressure and low-order long-periodic tesseral harmonic perturbations. The method of removal of these effects is given in some detail. The behaviour of the orbital eccentricity predicted by the numerical solution is compared with the modified observed eccentricity to obtain values of atmospheric parameters at heights between 310 and 430 km. The daytime maximum of air density is found to be at 14.5 hours local time. Analysis of the eccentricity near 15th order resonance with the geopotential yielded values of four lumped geopotential harmonics of order 15, namely: 109C1,015 = ?78.8 ± 7.0, 109S1,015 = ?69.4 ± 5.3, 109C?1,215 = ?41.6 ± 3.5109S?1,215 = ?26.1 ± 8.9, at inclination 98.68°.  相似文献   

8.
We propose a new heating mechanism of faculae. We think that the formation of faculae is a result of the Joule dissipation of the Hall current generated by the interaction of the convection field of granules in an active region and the inter-granular magnetic field. For a region to generate effectively Hall current, its characteristic length must be such that the magnetic Reynolds number is less than 1. The equation of energy balance in the facula region is
16σT3p(Tl ? Tp)nHPsaH? = Qnsmiux22inωi)
.For five observational models of faculae, we calculated the corresponding velocity fields, and the results are in basic agreement with the observed fields. The present mechanism explains the dependence of the facula brightness on the magnetic and velocity fields, the apparent distribution of the faculae on the solar disk and suggest a possible interpretation of the five structures of faculae.  相似文献   

9.
We calculated the perturbations in the energy level of the hydrogen atom in the four states 1S12, 2S12 2P32and 2S12, caused by the background curvature of the Robertson-Walker metric. We found that it is only when the radius of curvature is less than 10?7 cm that an energy level split of the size of the Lamb shift can occur between 2S12and 2P12.  相似文献   

10.
W.W. Mullins 《Icarus》1976,29(1):113-123
The stochastic model of lunar type impact-crater formation which assumes (a) random impacts, (b) circular craters, each obliterating any portions of earlier craters lying within, and (c) a probability Pi(t) that a newly formed crater (primary or secondary) has an area ai is analyzed to develop a method of estimating Pi from the final overlapping pattern. It is found that if each crater is weighted by the fraction of the rim which is visible and which lies in an observation area A, then the expected value of the weighted sum Ωi of craters of area ai is simply proportional to Pi for any degree of coverage under several conditions, including (a) constant Pi for all i, and (b) Pi stepping from a constant early value to zero (for some i's) with otherwise arbitrary bombardment. Furthermore, in the general case, the expected value of the contribution ΔΩi(t0) to Ωi produced during t0 ± Δt/2 is found to be proportional to Pi(t0). Thus measurement of Ωi in the first two cases, or of ΔΩi if crater age data is available in the last case, provides an estimate of the desired Pi. Therefore the Ωi introduce the correct weighting factors that just compensate for the effect of overlap.Expressions for the variances of Ωiand Ω = ΣiΩi are derived from which it is shown that under the above conditions, Ωior ΔΩi/ΔΩ are consistent estimators of Pi. Formal evaluation of the variances is carried out in the special case of constant Pi and no secondary cratering. A criterion for the degree of coverage is given; in particular it is shown that the expectation of σ = Σi aiΩi at saturation is just A.  相似文献   

11.
New ion cyclotron whistlers which have the asymptotic frequency of one half the local proton gyrofrequency, Gp2, and the minimum (or equatorial) proton gyrofrequency, Gpm, along the geomagnetic field line passing through the satellite have been found in the low-latitude topside ionosphere from the spectrum analysis of ISIS VLF electric field data received at Kashima, Japan. Ion cyclotron whistlers with asymptotic frequency of Gpm or Gpm2 are observed only in the region of Bm >B2 or rarely Bm >B4, where B is the local magnetic field and Bm is the mini magnetic field along the geomagnetic field line passing through the satellite.The particles with one half the proton gyrofrequency may be the deuteron or alpha particle. Theoretical spectrograms of the electron whistlers (R-mode) and the ion cyclotron whistlers (L-mode) propagating along the geomagnetic field lines are computed for the appropriate distributions of the electron density and the ionic composition, and compared with the observed spectrograms.The result shows that the ion cyclotron whistler with the asymptotic frequency of Gp2 is the deuteron whistler, and that the ion cyclotron whistlers with the asymptotic frequency of Gpm or Gpm2 are caused by the trans-equatorial propagation of the proton or deuteron whistler from the other hemisphere.  相似文献   

12.
《Planetary and Space Science》1987,35(8):1009-1020
Latitudinal structures of discrete arcs are modelled as a consequence of the quasi-steady magnetosphere-ionosphere coupling involving viscous interaction between sunward and anti-sunward plasma flows in the magnetosphere. The quasi-steady state in the magnetosphere and ionosphere coupling is described by the magnetospheric and ionospheric current conservation and the field-aligned currentpotential relation assuming adiabatic electron motion along field lines. The upward and downward fieldaligned currents are assumed to be stably maintained by vorticity-induced space charges in the region of plasma flow reversal, where divergence of the magnetospheric electric field E is negative and positive, respectively. By introducing the effective conductance Σdc arising from the anomalous viscosity, a specific relation between the dc field-aligned current density J and the magnetospheric electric field E is derived as J=−ΣdcdivE. Sufficiently large potential drops to accelerate auroral electrons are shown to exist along the auroral field lines originating from the flow reversal region with div E < 0. It is shown that the latitudinal structure of a discrete arc is primarily determined by the magnetospheric potential structure and the characteristic width is on the order of 10 km at the ionospheric altitude.  相似文献   

13.
An analysis of Titan's solar phase variation as a function of wavelength together with the continuum geometric albedo makes it possible to set limits on the real part of the refractive index and on the average particle size of the aerosol component of Titan's atmosphere: 1.5 ?nr< 2.0 and 0.20 μm <r?0.35 μm. If nris known r can be determined to within a few percent, and varies inversely with nr. Using this information in a two-layer model of a methane-aerosol atmosphere and comparing the result with Titan's visible and near-infrared methane spectrum leads to the conclusion that the top layer of Titan's atmosphere contains 0.01 km atm of methane and 2.5 extinction optical depths of aerosol, while the data are consistent with a bottom layer containing 2.2 km atm of methane and about 7.5 aerosol optical depths for nr = 1.7, r = 0.25 μm.  相似文献   

14.
Six times of maxima of the ultrashort-period cepheid variable EH Librae were measured in 1980 May to June and in 1981 January, with a three-channel photocounting high-speed photoelectric photometer. These, together with all the photoelectric times of maxima over the past 30 years, are used to re-examine the nature of the change of the period. We found that we can fix the times of maxima by the following formula
Tmax = T0+P0E+12βE2+AsinEP0E0
where T0 = HJD 2433438.6088 and P0 = 0.0884132445 d represent the initial maximum epoch and the pulsation period, β = ?2.8 × 10?8/yr; A = 0.0015 d, P0 = 6251 d = 17.1 yr are the semi-amplitude and the period of the sine curve, and E is the number of periods elapsed since T0, and (E0 = 70700).If we interpret this 17.1 year periodicity as a modulation of the phase of maximum by binary motion, then the semi-amplitude of the orbital radial velocity variation is K = 2πasini/E0 = 0.45 km/s and the mass function is
f(m)=m32sin3i(m1m2)2=(asini)3E20=6 x 10?5M
  相似文献   

15.
R.D. Cess  S.C. Chen 《Icarus》1975,26(4):444-450
Ethane and acetylene, both of which possess more efficient emission bands than methane, have been incorporated into a thermal structure model for the atmosphere of Jupiter. Choosing for illustrative purposes the mixing ratios [C2H6][H2] = 10?5 and [C2H2][H2] = 5 × 10?7, it is found that these hydrocarbon gases lower the atmospheric temperature within the thermal inversion region by as much as 20 K, subsequently reducing the emission intensity of the 7.7 μm CH4 band below the observed result. It is qualitatively shown, however, that this cooling by C2H6 and C2H2 could be compensated by aerosol heating resulting from a uniformily mixed aerosol which absorbs 15% of the incident solar radiation. Such aerosol heating has been suggested by uv albedo observations.  相似文献   

16.
An astrophysical electron acceleration process is described which involves turbulent plasma effects: the acceleration mechanism will operate in ‘collision free’ magnetoactive astrophysical plasmas when ion-acoustic turbulence is generated by an electric field which acts parallel to the ambient magnetic lines of force. The role of ‘anomalous’ (ion-sound) resistivity is crucial in maintaining the parallel electric field. It is shown that, in spite of the turbulence, a small fraction of the electron population can accelerate freely, i.e. runaway, in the high parallel electric potential. The number density n(B) of the runaway electron component is of order n(B)?n2(csU?)2, where n = background electron number density, cs = ion-sound speed and U? = relative drift velocity between the electron and ion populations. The runaway mechanism and the number density n(B) do not depend critically on the details of the non-linear saturation of the ion-sound instability.  相似文献   

17.
The paper gives the results of detailed studies of the frequency spectra Ss(?) of the chain of the wave packets Fs(t) of geomagnetic pulsations PC-1 recorded at the Novolazarevskaya station. The bulk of the energy of Fs(t) is concentrated in the vicinity of the central frequencies ?s0 of spectra—the carrier frequencies of the signals. The velocity V0 ≌ 6.103km s?1 of the flux of protons generating these signals correspond to them. The spectra of the signals have oscillations—“satellites” irregularly distributed in frequency. These satellites, as the authors believe, testify to the presence of the individual groups of protons of low concentration whose velocities vary within 103–104 km s?1.Their energy is only of the order of 10?2–10?3 of the energy of the main proton flux. Clearly pronounced maxima on double and triple frequencies ? = 2?s0and 3?s0 are detected. They show that the generation of pulsations PC-1 is accompanied by the generation on the overtones of wave packets called in this paper “two-fold” and “three-fold” pulsations PC-1. Intensive symmetrical satellites of a modulation character have been discovered on frequencies ?±sK. Frequency differences Δ?sK± = ¦?s0 ? ?sK±¦ = (0.011,0.022 and 0.035) Hz correspond to them. The authors believe that the values of Δ?±sK are resonance frequencies of the magnetospheric cavity in which geomagnetic pulsations PC-1 are generated. It is established that the values of Δ?±sK coincide closely with the carrier frequencies of geomagnetic pulsations PC-3 and PC-4 generated in the magnetosphere. This leads to the conclusion that the resonance oscillations of the magnetospheric cavity are their source. Thus, the generation of geomagnetic pulsations of different types and resonance oscillations in the magnetosphere are integrated into a unified process. The importance of the results obtained and the necessity to check further their trustworthiness and universality, using experimental data gathered in different conditions, is stressed.  相似文献   

18.
Results are given of the calculations of the group delay time propagating τ(ω, φ0) of hydromagnetic whistlers, using outer ionospheric models closely resembling actual conditions. The τ(ω, φ0) dependencies were compared with the experimental data of τexp(ω, φ0) obtained from sonagrams. The sonagrams were recorded in the frequency range ? ? (0.5?2.5) Hz at observation points located at geomagnetic latitudes φ0 = (53?66)° and in the vicinity of the geomagnetic poles. This investigation has led us to new and important conclusions.The wave packets (W.P.) forming hydromagnetic whistlers (H.W.) are mainly generated in the plasma regions at L = 3.5?4.0. This is not consistent with ideas already expressed in the literature that their generation region is L ? 3?10. The overwhelming majority of the τexp values differ considerably from the times at which wave packets would, in theory, propagate along the magnetic field lines corresponding to those of the geomagnetic latitudes φ0 of the observation points. The second important fact is that the W.P. frequency ω is less than ΩH everywhere along its propagation trajectory, including the apogee of the magnetic force line (ΩH is the proton gyrofrequency). Proton flux spectra E ? (30?120) keV, responsible for H.W. generation, were determined. Comparison of the Explorer-45 and OGO-3 measurements published in the literature, with our data, showed that the proton flux density energy responsible for the H.W. excitation Np(MV622) ? (5 × 10?3?10?1) Ha2 where Ha is the magnetic field force in the generation region of these W.P. The electron concentration is Na ? (102?103) cm?3. The values given in the literature are Na ? (10?10?103) cm?3. The e data considered also leads to the conclusion that the generating mechanism of the W.P. studied probably always co-exists with the mechanism of their amplification.  相似文献   

19.
The orbit of TETR-3 (1971-83B), inclination: 33°, passed through resonance with 15th order geopotential terms in February 1972. The resonance caused the orbit inclination to increase by 0.015°. Analysis of 48 sets of mean Kepler elements for this satellite in 1971–1972 (across the resonance) has established the following strong constraint for high degree, 15th order gravitational terms (normalized):
109(C, S)15 = (28.3 ± 3.0, 7.4 ± 3.0) = 0.001(C, S)15,15?0.015(C, S)17,15+0.073(C, S)19,15?0.219(C, S)21,15+0.477(C, S)23,15?0.781(C, S)25,15+1.000(C, S)27,15?0.0963(C, S)29,15+0.622(C, S)31,15?0.119(C, S)33,15?0.290(C, S)35,15+0.403(C, S)37,15?0.223(C, S)39,15?0.058(C, S)41,15+…
This result combined with previous results on high inclination 15th order and other resonant orbits suggests that the coefficients of the gravity field beyond the 15th degree are smaller than Kaula's rule (10?5l2).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号