首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anisotropic instability of Alfven waves in the solar atmosphere is considered. This mechanism is shown to lead to the generation of not only Alfven but also kinetic Alfven waves, which is very important in investigating the heating and acceleration of particles in the chromospheric and coronal plasma. A criterion for the development of instability has been found. The conditions under which this instability can arise and the atmospheric regions in which its development is most probable are analyzed. It is shown that this generation mechanism of kinetic Alfven waves is fairly efficient and can play a significant role in some processes in the solar atmosphere.  相似文献   

2.
We investigate the effect of Alfven waves on the profile of the g = 0 lines FeI 5691.505 and FeI 5434.534. We find nonnegligible oscillation and distortion of the profile and vastly different lines. We calculate the theoretical profiles of these two lines under the action of Alfven waves, compare them with observations and hence verify preliminarily that sunspots are cooled by the propagation of Alfven waves.  相似文献   

3.
The mechanism of spatial resonance of Alfven waves for heating a collisionless plasma is studied in the presence of a twisted magnetic field. In addition to modifying the equilibrium condition for a cylindrical plasma, the azimuthal component of the magnetic field gives extra contribution to the energy deposition rate of the Alfven waves. This new term clearly brings out the effects associated with the finite lifetime of the Alfven waves. The theoretical system considered here conforms to the solar coronal regions.  相似文献   

4.
We consider the heating of the solar plages to be due to the Alfven waves having ponderomotive force. Assuming a certain field configuration, we derived the formula for the turbulence heating of plages by Alfven waves. Our calculated plage temperature distribution is in agreement with the observed distribution.  相似文献   

5.
We aim to numerically study evolution of Alfv′en waves that accompany short-lasting swirl events in a solar magnetic flux-tube that can be a simple model of a magnetic pore or a sunspot. With the use of the FLASH code we numerically solve three-dimensional ideal magnetohydrodynamic equations to simulate twists which are implemented at the top of the photosphere in magnetic field lines of the flux-tube. Our numerical results exhibit swirl events and Alfv′en waves with associated clockwise and counterclockwise rotation of magnetic lines, with the largest values of vorticity at the bottom of the chromosphere, and a certain amount of energy flux.  相似文献   

6.
The method of Orthogonal Function Series Expansion (OFSE) is generalized and applied to the study of the evolution of the coupling of nondissipative torsional Alfven wave and fast wave in coronal loops. Using this method, the intrinsic angular frequency of the overall wave mode can be described mathematically and that of the Alfven waves along the magnetic lines in the coronal loop during the coupling of the Alfven and fast waves can be analyzed both theoretically and numerically. Also with this method, the relation between the coupling driven term and the Alfven wave resonance may be analyzed. Results of computation reveal the place of appearance of coupling resonance as well as the characteristics of the amplitudes of the Alfven and fast waves. As found by the calculations, if the footpoint driven angular frequency is not equal to the intrinsic angular frequency of the overall wave mode of the coronal loop and when a δ section appears at the place of coupled resonance, the radial gradient of the fast wave's amplitude is quite large. Sometimes it approximates to a discontinuity, and this is extremely favorable for the dissipation of the fast wave. If the footpoint driven angular frequency is equal to the intrinsic angular frequency of the overall wave mode and when a δ section occurs in the Alfven wave amplitude, abundant small-scale structures appear in the radial direction. Then the location of resonance approximately becomes a discontinuity, very favorable to the dissipation of the Alfven wave.  相似文献   

7.
The equation of small oscillations of ULF waves in the Earth’s magnetosphere is derived accounting for a fast magnetosonic wave. The spectrum of discrete Alfven modes near the Alfven frequency minimum is studied on the basis of this equation.  相似文献   

8.
The continuous reflection of Alfven waves in the coronae of the Sun and stars is considered. Based on the WKB approximation, the solution to the linear wave equation in the case of a stratified isothermal atmosphere has been obtained. A critical analysis of results obtained by Ferraro and Plumpton (1958) and Hollweg (1972), as well as the relations in the Elsasser variables has been carried out. It has been shown that Alfven disturbances do not undergo a continuous reflection within the accepted model and are transformed into intermediate-type modes that possess the properties of vibrations and travelling waves. The problem of the turbulization of corona plasma is discussed. The origin of the Alfven waves that propagate toward the Sun is related to the development of parametric instability.  相似文献   

9.
本文根据波与介质相互作用的一套全MHD方程组,计算了无碰撞阿尔文波波能密度W和波能耗散项E_m,在太阳过渡区和内冕大气中随高度的分布。 计算结果表明:对于温度、密度偏低的大气,在过渡区底部几十甚至几百公里范围内,无碰撞阿尔文波的耗散引起的对大气的加热可超过热传导的贡献。从而说明这种阿尔文波的加热似乎是引起温度、密度偏低的大气(例如冕洞大气)在过渡区中温度陡升的重要原因。  相似文献   

10.
We look at time-dependent normal mode solutions to the Alfven wave equation in a uniform magnetic field, between planar ionospheres. In particular, the effect of sharp gradients in ionospheric conductivity on the spatial and temporal structure of the waves is considered. We show that the electric field of the wave must always be perpendicular to any conductivity discontinuities present, and that this is achieved by the generation of circularly polarized Alfven waves at the discontinuity. The results are applied to an ionospheric strip of high conductivity; this being relevant to Pi2s.  相似文献   

11.
The influences of the shock thickness and Alfven waves on the particle acceleration by diffusive shock waves are numerically studied through solving one-dimensional diffusive equation including the second-order Fermi effect. It is shown that the spectral index of the energetic particles strongly depends on the shock thickness. For example, the spectral index increases from 2.1 to 3.7 in the low energy range of 3—10 MeV and from 2.5 to 5.0 in the high energy range of 20—60 MeV as the thickness increases. The spectral index decreases from 4.3 to 3.1 as the particle injection energy increases. The spectral index decreases from 4.0 to 1.8 at the quasi-steady stage with the enhancement of the compression ratio from 2 to 4. The results indicate that under the influence of Alfven waves, the energetic particle spectrum at lower energy becomes flat and the spectral index decreases from 2.5 to 0.6 in the low energy range of 3—10 MeV and from 11.6 to 5.0 in the high energy range of 20—60 MeV. At the same time, the turning point energy reaches 19.6 MeV. The spectral index decreases from 5.8 to 2.9 as the energy density of Alfven waves increases. All these results are basically consistent with the theoretical models, as well as the observations of typical energetic particle events.  相似文献   

12.
The stability of kinetic Alfven waves is discussed for a partially ionized plasma with a flux of ionizing electrons which balance the plasma particle losses. Accidental electromagnetic perturbations are shown to be unstable due to the energy change of ionizing electrons.  相似文献   

13.
Kinetic Alfven waves (KAWs) driven by the diamagnetic drift instability that is excited by the density inhomogeneity in low-β plasmas, such as plasmas in the auroral region, are investigated by adopting the particle aspect analysis and loss-cone distribution function. The results obtained in this paper indicate that the propagation and evolution of kinetic Alfven waves decrease and the kinetic Alfven wave excitation becomes not easier with increasing loss-cone index J. But the spatial scales of the perpendicular perturbation driving kinetic Alfven waves have a decreasing tendency with the larger values of J, which perhaps is in relation with the decreasing width of loss-cone. A single hump appears in the plots of the growth rate of the instability when J=2. But the hump cannot emerge when J=0 or J=1. The density inhomogeneity of ions plays an important role in driving KAWs and it cannot be ignored. KAWs can be easier driven and KAWs can propagate and evolve faster with the increasing level of density inhomogeneity. However, the range of the perpendicular wave number of the wave instability decreases, namely, the longer the scale of perpendicular disturbance the easier the excitation of KAW. As the density inhomogeneity increases, the tendency of numerical solutions of the dispersion relation is similar to that obtained by the kinetic theory and Maxwellian distribution function (Duan and Li, 2004). But the profiles of the plots of numerical solutions are different. This means that the velocity distribution function of particles is important for KAW driven in magnetoplasmas, especially in the active regions of the magnetosphere, such as auroral region, and plasma sheet boundary.  相似文献   

14.
从细磁通量管运动方程组导出了特征速度、特征线及其相容关系。这些结果是用特征线法研究细磁通量管运动的基础,也是正确提出定解问题的依据。表征细磁通量管横向波传播的特征速度与管内流动的AlfvenMach数有关。当管内流速超过kelvin-Helmholtz不稳定性临界值时,不存在横向波模式。  相似文献   

15.
In this paper, we have investigated linear and nonlinear propagation of kinetic Alfven waves in which the electrons have been assumed to follow generalized (\(r,q\)) distribution. We have shown that (\(r,q\)) distribution gives us most of the distributions observed in space plasmas. We have varied the flatness parameter \(r\) and the tail parameter \(q\) to explore the linear and nonlinear propagation characteristics of kinetic Alfven waves. We have also discussed the limiting cases. It has been shown that our results agree well with Fast and Freja observations of the nonlinear kinetic Alfven waves. An important feature of our study is the formation of rarefactive solitary structures. It has been shown that this result cannot be obtained with Maxwellian distribution and that it agrees well with the observations of Fast and Freja satellites.  相似文献   

16.
An Alfven Wave Reflection (AWR) model is proposed that provides closure for strong field-aligned currents (FACs) driven by the magnetopause reconnection in the magnetospheres of planets having no significant ionospheric and surface electrical conductance. The model is based on properties of the Alfven waves, generated at high altitudes and reflected from the low-conductivity surface of the planet. When magnetospheric convection is very slow, the incident and reflected Alfven waves propagate along approximately the same path. In this case, the net field-aligned currents will be small. However, as the convection speed increases, the reflected wave is displaced relatively to the incident wave so that the incident and reflected waves no longer compensate each other. In this case, the net field-aligned current may be large despite the lack of significant ionospheric and surface conductivity. Our estimate shows that for typical solar wind conditions at Mercury, the magnitude of Region 1-type FACs in Mercury’s magnetosphere may reach hundreds of kilo-Amperes. This AWR model of field-aligned currents may provide a solution to the long-standing problem of the closure of FACs in the Mercury’s magnetosphere.  相似文献   

17.
A theoretical study is made on the generation mechanism of electrostatic Bernstein mode wave in the presence of electromagnetic Kinetic Alfven wave turbulence in magnetized inhomogeneous plasma on the basis of plasma-maser interaction. It is shown that a test high-frequency electrostatic Bernstein mode wave is unstable in the presence of low-frequency Kinetic Alfven wave turbulence. Because of the universal existence of the Kinetic Alfven waves in large-scale plasmas, the result has potential importance in space and astrophysical radiation process. The growth rate of the test high-frequency Bernstein mode wave is obtained with the involvement of spatial density gradient parameter. A comparative study on the role of density gradient in the generation of Bernstein mode on the basis of plasma-maser effect is presented.  相似文献   

18.
Coronal heating by nanoflares is presented by using observational, analytical, numerical simulation and statistical results. Numerical simulations show the formation of numerous current sheets if the magnetic field is sheared and bipoles have unequal pole strengths. This fact supports the generation of nanoflares and heating by them. The occurrence frequency of transients such as flares, nano/microflares, on the Sun exhibits a power-law distribution with exponent α varying between 1.4 and 3.3. For nanoflares heating α must be greater than 2. It is likely that the nanoflare heating can be reproduced by dissipating Alfven waves. Only observations from future space missions such as Solar-B, to be launched in 2006, can shed further light on whether Alfven waves or nanoflares, heat the solar corona.  相似文献   

19.
《Planetary and Space Science》1999,47(8-9):1111-1118
Particle aspect analysis is extended for kinetic Alfven waves in an inhomogeneous magnetoplasma in the presence of a general loss-cone distribution function. The effect of finite Larmor radius is incorporated in the finite temperature anisotropic plasma. Expressions for the field-aligned current, perpendicular current (to B), dispersion relation, particle energy and growth rate are derived and effects of steepness of loss-cone distribution and plasma density inhomogeneity are discussed. The treatment of the kinetic Alfven wave instability is based on the assumption that the plasma consists of resonant and non-resonant particles. It is assumed that resonant particles support the oscillatory nature of the wave. The excitation of the wave is treated by the wave particle energy exchange method. The applicability of the investigation is discussed for auroral acceleration phenomena. © 1999 Elsevier Science Ltd. All rights reserved.  相似文献   

20.
扼要地介绍了色球和日冕加热问题的研究历史。随着空间太阳观测技术的进步,人们认识到色球和日冕加热机制主要与MHD过程有关。因此,在本文中着重介绍四种MHD色球和日冕加热机制:(1)阿尔芬波;(2)MHD湍动;(3)场向电流;(4)磁重联。由于这四种加热机制的有效性都需要通过高分辨率观测来判定,所以空间太阳观测对于研究色球和日冕加热问题具有重大意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号