首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of the momentum addition, which may be associated with the average or fluctuation transverse component of the magnetic field or others, on the acceleration the solar wind or stellar wind is studied in a local streamtube. The results show that the larger the momentum addition the stronger the acceleration of the wind. For example, if the typical transverse magnetic field is about 0.1 of the longitudinal field, the velocity of the solar wind at 1 AU may be increased by 40%. The coronal hole may be considered as a streamtube, the presence of a high stream from the coronal hole may be explained by the existence of an average or fluctuation transverse magnetic field in the streamtube. A similar conclusion may be applied to the polar region, where the velocity of the solar wind will be larger than elsewhere as if there is a transverse component of magnetic field, as well as to the stellar wind. The influence of other parameters on the acceleration of the solar wind is also discussed. From the viewpoint of the solar wind mechanism, the present paper shows that the momentum addition in the subsonic flow region can increase the velocity of the solar wind at 1 AU.  相似文献   

2.
John R. Varsik 《Solar physics》1995,161(2):207-228
The Big Bear videomagnetograph is calibrated using three methods. Longitudinal magnetograms are calibrated by using the differences in radial velocity of the Sun caused by solar rotation, or by measuring the line profile in the Zeeman-sensitive 6103 line used by the magnetograph system. Transverse magnetograms can be calibrated by obtaining spectra in the more magnetically sensitive 5250 line which measure the total magnetic field and then subtracting the longitudinal component. The calibration of the transverse magnetograms is in agreement with that obtained by line profile measurements. Observations of an active region on 1993 March 8 with both the magnetograph system and with the BBSO spectrograph showed that good agreement was found between all three methods, provided the effect of seeing on the magnetograms is allowed for. Magnetograph saturation does not occur for magnetic fields below about 2100 G.  相似文献   

3.
The noise in photographic measurements of solar velocities and magnetic fields is assumed to be essentially determined by the granularity of the film, its gamma, the scanning spot size and the parameters of the specific spectral line. A formula is derived which serves for a quantitative estimate of the rms velocity and magnetic field noise when evaluating spectrograms and spectroheliograms. Four typical examples are treated and show that the estimate is correct within 20%.Mitteilungen aus dem Fraunhofer Institut Nr. 118.  相似文献   

4.
Since solar magnetic fields are inhomogeneous, the averaging of Stokes parameter I within the entrance slit of the magnetograph is different from averaging Stokes Q0 and V, because the former contains also light from non-magnetic, while the latter only contain light from magnetic regions. If the magnetographic calibration functions are calculated for homogeneous magnetic fields, errors arise, when they are used to reduce measurements of inhomogeneous fields. Therefore, we propose to use the line-ratio method to transform magnetographic measurements into the parameters of the magnetic vector field. The Q ratios and the V ratios of two carefully selected lines are free from errors of this kind. This is also the case for the Q ratios in line core and line wings in single-line magnetographs. An iterative method is presented to calculate the magnetic field parameters using the corresponding new calibration functions. An important advantage is, that the influence of scattered light in sunspots is also eliminated in a good approximation and the filling factor in plages can be estimated. This method is now used to determine magnetic vector fields in plages and sunspots of active regions with a new double-vector magnetograph.  相似文献   

5.
The GOLF experiment on the SOHO mission aims to study the internal structure of the sun by measuring the spectrum of global oscillations in the frequency range 10–7 to 10–2 Hz. Bothp andg mode oscillations will be investigated, with the emphasis on the low order long period waves which penetrate the solar core. The instrument employs an extension to space of the proven ground-based technique for measuring the mean line-of-sight velocity of the viewed solar surface. By avoiding the atmospheric disturbances experienced from the ground, and choosing a non-eclipsing orbit, GOLF aims to improve the instrumental sensitivity limit by an order of magnitude to 1 mm s–1 over 20 days for frequencies higher than 2.10–4 Hz. A sodium vapour resonance cell is used in a longitudinal magnetic field to sample the two wings of the solar absorption line. The addition of a small modulating field component enables the slope of the wings to be measured. This provides not only an internal calibration of the instrument sensitivity, but also offers a further possibility to recognise, and correct for, the solar background signal produced by the effects of solar magnetically active regions. The use of an additional rotating polariser enables measurement of the mean solar line-of-sight magnetic field, as a secondary objective.  相似文献   

6.
The magnetic shear at a point within an active region field configuration can be defined (Hagyard et al., 1984b) as the difference in angle between the observed photospheric transverse field and that of a reference potential field calculated using the observed line-of-sight field as a boundary condition. Using analytic models for non-potential (but force-free) fields representative of preflaring active regions, we calculate the degree of magnetic shear along the magnetic neutral line that such fields would exhibit, as a function of the location and orientation of the active region on the solar disk. We find that, except for regions close to disk center, the position of the inferred neutral line (zero line-of-sight field) is significantly different from the actual neutral line (zero radial field), and that the calculated reference potential field also varies significantly with the position of the region. Thus the inferred degree of shear can vary significantly with the position and orientation of the region, due to (a) straightforward geometric projection effects, (b) the shift of the inferred neutral line relative to its true position, and (c) variations in the reference potential field. The significance of these results for flare prediction is considered.Presidential Young Investigator.  相似文献   

7.
We describe the use of the magneto-optic filter (MOF) to observe solar magnetic fields in the potassium line at 7699 Å. The filter has been used in the Big Bear video-magnetograph since 23 October. It gives a high sensitivity and dynamic range for longitudinal magnetic fields and enables us to measure transverse magnetic fields using the sigma component. Examples of the observations are presented.This paper was presented at the third meeting of the Solar Cycle Workshop, held in Sydney, Australia, January 9–13, 1989.NRC Senior Res. Fellow.  相似文献   

8.
We study motions of charged particles in reconnecting current sheets (CS) which have both transverse (perpendicular to the current sheet plane) and longitudinal (parallel to the electric current inside the sheet) components of the magnetic field. Such CS, called non-neutral, are formed in regions of magnetic field line reconnection in the solar atmosphere. We develop an analytical technique which allows us to reproduce previous results concerning the influence of transverse fields on particle motion and acceleration. This technique also allows us to evaluate the effect of the longitudinal field. The latter increases considerably the efficiency of particle acceleration in CS. The energizing of electrons during the main phase of solar flares can be interpreted as their acceleration in non-neutral CS.  相似文献   

9.
The magnetohydrodynamic stability of a streaming liquid cylinder subject to surface tension and pervaded by a magnetic vacuum field has been elaborated for all axisymmetric and non-axisymmetric disturbances. The dispersion relation is obtained and studied analytically and numerically. the streaming has always a destabilizing effect. The axial magnetic fields inside and outside the jet have always stabilizing effects for all perturbations. The transverse magnetic field has a destabilizing effect. However, if the axial field intensity is so high and paramount over that the transverse field, the destabilizing character of the model is suppressed. The latter is satisfied if the Alfvén wave velocity is greater than the equilibrium liquid velocity.  相似文献   

10.
T. Moran  P. Foukal 《Solar physics》1991,135(1):179-191
We describe an electrograph instrument designed for measurement of macroscopic electric fields in solar plasmas, using the polarization dependence of line width in Stark-broadened hydrogen Paschen emission lines. Observations of quiescent prominences and limb chromosphere with our electrograph at the NSO/Sac Peak Evans Coronal Facility provide upper limits of 5–10 V cm–1 for transverse macroscopic electric fields in these structures, averaged over an area of about 5 × 7 arc sec. Random thermal motions of hydrogen ions across magnetic field lines generate a quasi-static electric field, which should be distinguishable from pressure broadening in the intensely magnetized chromosphere over a sunspot, given an electrograph sensitivity a factor 2–3 better than that achieved here. Future electrograph measurements of limb flares, post-flare loops and eruptive prominences, even at 5 V cm–1 sensitivity, could provide a useful new test of reconnection and discharge effects in such dynamic structures.  相似文献   

11.
A Stokes polarimeter has been built at the High Altitude Observatory to obtain line profiles in both linear and circular polarization in solar spectral lines. These measurements are interpreted using the theory of radiative transfer in the presence of a magnetic field to obtain vector magnetic fields on the solar disk and using the theory of resonance scattering and the Hanle effect to obtain vector magnetic fields in prominences. The polarimeter operates on the Sacramento Peak Observatory 40 cm coronagraph. It is an extensively modified and improved version of an earlier instrument.Polarization modulation is achieved by two KD*P Pockels cells at the coronagraph prime focus and demodulation is by a microprocessor. The instrument control and data handling is done by a minicomputer. Silicon photodiode 128 element line array detectors have replaced the two photomultipliers used on the earlier instrument. This gives a speed increase of a factor of 50.A polarization scrambler provides a chop to a reference beam of unpolarized light by time scrambling the polarization of the solar beam. This device improves sensitivity to polarizations less than 0.01%. The polarization measurements are photon noise limited in most cases. This noise is 0.1% for a typical three second observation which is about one gauss on the longitudinal field and 10 gauss on the transverse field.The National Center for Atmospheric Research is sponsored by The National Science Foundation.  相似文献   

12.
Statistical properties of solar granulation in an active region on the solar surface from the photosphere to the lower chromosphere are studied. We use the values of the velocity, intensity, and magnetic field that were obtained at different heights in the solar atmosphere according to the observation data on the VTT telescope at Observatorio del Teide, Tenerife. The changes in the line??s parameters (central depth of the line, halfwidth, equivalent width, and central depth shift) and convective velocity are presented as functions of the value of the magnetic field. We propose a 16-column model of solar granulation depending on the direction of motion of convective elements and on the sign of contrast at two heights??in the continuous spectrum and in the highest layer (h = 650 km). We found that the magnetic field impedes the change in the sign and motion direction of convective elements.  相似文献   

13.
The solar wind parameters were analyzed using the concept which is being developed by the authors and assumes the existence of several systems of magnetic fields of different scales on the Sun. It was demonstrated that the simplest model with one source surface and a radial expansion does not describe the characteristics of the quiet solar wind adequately. Different magnetic field subsystems on the Sun affect the characteristics of the solar wind plasma in a different way, even changing the sign of correlation. New multiparameter schemes were developed to compute the velocity and the magnetic field components of the solar wind. The radial component of the magnetic field in the solar corona and the tilt of the heliospheric current sheet, which determines the degree of divergence of field lines in the heliosphere, were taken into account when calculating the magnetic field in the solar wind. Both the divergence of field lines in the corona and the strength of the solar magnetic field are allowed for in calculating the solar wind speed. The suggested schemes provide a considerably higher computation accuracy than that given by commonly used one-parameter models.  相似文献   

14.
In this paper, we analyze the relations between photospheric vector magnetic fields, chromospheric longitudinal magnetic fields and velocity fields in a solar active region. Agreements between the photospheric and chromospheric magnetograms can be found in large-scale structures or in the stronger magnetic structures, but differences also can be found in the fine structures or in other places, which reflect the variation of the magnetic force lines from the photosphere to the chromosphere. The chromospheric superpenumbral magnetic field, measured by the Hline, presents a spoke-like structure. It consists of thick magnetic fibrils which are different from photospheric penumbral magnetic fibrils. The outer superpenumbral magnetic field is almost horizontal. The direction of the chromospheric magnetic fibrils is generally parallel to the transverse components of the photospheric vector magnetic fields. The chromospheric material flow is coupled with the magnetic field structure. The structures of the H chromospheric magnetic fibrils in the network are similar to H dark fibrils, and the feet of the magnetic fibrils are located at the photospheric magnetic elements.  相似文献   

15.
扼要地介绍了色球和日冕加热问题的研究历史。随着空间太阳观测技术的进步,人们认识到色球和日冕加热机制主要与MHD过程有关。因此,在本文中着重介绍四种MHD色球和日冕加热机制:(1)阿尔芬波;(2)MHD湍动;(3)场向电流;(4)磁重联。由于这四种加热机制的有效性都需要通过高分辨率观测来判定,所以空间太阳观测对于研究色球和日冕加热问题具有重大意义。  相似文献   

16.
The H velocity field at 0516 UT during the eruption of the X1.5/3B flare in the active region E58 N11 (Boulder 3106) on 1981 May 13, obtained with the horizontal solar spectrograph of Yunnan Observatory is given in this paper. A comparative analysis of the velocity field with the magnetic field shows that the velocity field is related to the gradient and neutral line of the magnetic field and the brightness of the flare maximum changes in the velocity field of ±15 km/s occurs at the location of greatest magnetic field gradient.

The neutral line of the magnetic field (h = 0) basically matches the zero velocity line (v = 0) between the two bright ribbons. But they do not match between the two bright knots where the filament is twisted and ascends. The spectral lines show the sloping morphology, from which we deduced the dynamical parameters of the twist of the rising filament.  相似文献   


17.
The net circular polarization in a spectral line due to the combined effect of magnetic fields and velocity gradients is analyzed for a few schematic situations. In some particular cases, its dependence on the magnetic field, velocity field and line parameters can be expressed analytically.On leave from Dipartimento di Astronomia e Scienza dello Spazio, Università di Firenze, Largo E. Fermi 5, I-50125 Firenze, Italia  相似文献   

18.
E. J. Weber 《Solar physics》1969,9(1):150-159
A model of the solar atmosphere is presented in which we discuss the conservation of angular momentum for the two basic states in which the solar gas can be: namely, either confined by closed field lines or outflowing along open magnetic field lines. It can be shown that the boundary conditions are in general different for these two cases. From this we obtain the results that in the closed configuration the gas can corotate at the solar surface with the magnetic field lines and its angular velocity will then increase with height, whereas for a gas flowing along an open field line the angular velocity will decrease. An exception to the latter case can be found where the open magnetic field lines are strongly nonradial and where the density is a slowly varying function of radius. In such regions the angular velocity may initially increase with height, reach a maximum and then decrease.Kitt Peak National Observatory Contribution No. 439.Operated by The Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

19.
We numerically analyze a magnetohydrodynamic, steady-state model for the interaction of a spherically symmetric solar wind with a three-component local interstellar medium (LISM), which is composed of plasma, hydrogen atoms, and a magnetic field. The magnetic field is assumed to be parallel to the velocity in the LISM. In this case, the model is axisymmetric. We study the effects of magnetic field on the plasma-flow geometry and on the distribution of hydrogen-atom parameters. In particular, we show that the presence of hydrogen atoms does not affect the qualitative change in the shape of the bow shock, the heliopause, and the solar-wind shock with increasing strength of the interstellar magnetic field. The presence of a magnetic field in the LISM can strongly affect the parameters of the energetic hydrogen atoms originated in the solar wind, although its effect on the “hydrogen wall” observed with the GHRS instrument onboard the HST spacecraft (Linsky and Wood 1996) is marginal.  相似文献   

20.
M. L. Demidov 《Solar physics》1994,153(1-2):115-129
This paper examines the question of the influence of the 525.02 nm Fei line profile (slope of its wings) variations over the solar disk upon observations of large-scale magnetic fields (LSMF) made in this line. The study has shown that depending on the position on the disk (center-limb effect) and magnetic field parameters at the place of the observation, values of magnetic field strengths determined with proper account of the real line profile and in the usual way (by calibration using the line profile at the center of the solar disk only) can differ by 25% or more, which is of crucial importance. Observations at the Solar Telescope for Operative Predictions (STOP) of the Sayan Observatory have been used to accomplish this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号