首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined lightning activity and its relationship to precipitation and convective available potential energy(CAPE) in South China during 2001–12, based on data from the Guangdong Lightning Location System, the Tropical Rainfall Measuring Mission satellite, and the ERA-Interim dataset. Two areas of high lightning density are identified: one over the Pearl River Delta, and the other to the north of Leizhou Peninsula. Large peak-current cloud-to-ground(LPCCG) lightning(75 kA) shows weaker land–offshore contrasts than total CG lightning, in which negative cloud-to-ground(NCG) lightning occurs more prominently than positive cloud-to-ground(PCG) lightning on land. While the frequency of total CG lightning shows a main peak in June and a second peak in August, the LPCCG lightning over land shows only a single peak in June.The ratio of positive LPCCG to total lightning is significantly greater during February–April than during other times of the year. Diurnally, CG lightning over land shows only one peak in the afternoon, whereas CG lightning offshore shows morning and afternoon peaks. The rain yield per flash is on the order of 10~7–10~8kg per flash across the analysis region, and its spatial distribution is opposite to that of lightning density. Our data show that lightning activity over land is more sensitive than that over offshore waters to CAPE. The relationships between lightning activity and both precipitation and CAPE are associated with convection activity in the analysis region.  相似文献   

2.
The diurnal variation in the vertical structure of the raindrop size distribution(RSD) associated with stratiform rain at Kototabang, West Sumatra(0.20°S, 100.32°E), was investigated using micro rain radar(MRR) observations from January 2012 to August 2016. Along with the MRR data, the RSD from an optical disdrometer and vertical profile of precipitation from the Tropical Rainfall Measuring Mission were used to establish the microphysical characteristics of diurnal rainfall.Rainfall during 0000–0600 LST and 1800–2400 LST had a lower concentration of small drops and a higher concentration of large drops when compared to rainfall during the daytime(0600–1800 LST). The RSD stratified on the basis of rain rate(R) showed a lower total concentration of drops and higher mass-weighted mean diameter in 0000–0600 LST and1800–2400 LST than in the daytime. During the daytime, the RSD is likely governed by a riming process that can be seen from a weak bright band(BB). On the other hand, during 0000–0600 LST and 1800–2400 LST, the BB was stronger and the rainfall was associated with a higher concentration of midsize and large drops, which could be attributed to more active aggregation right above the melting layer with minimal breakup. Diurnal variation in the vertical profile of RSD led to a different radar reflectivity(Z)–R relationship in the rain column, in which Z during the periods 0000–0600 LST and1800–2400 LST was larger than at the other times, for the same R.  相似文献   

3.
A new radar echo tracking algorithm known as multi-scale tracking radar echoes by cross-correlation(MTREC) was developed in this study to analyze movements of radar echoes at different spatial scales.Movement of radar echoes,particularly associated with convective storms,exhibits different characteristics at various spatial scales as a result of complex interactions among meteorological systems leading to the formation of convective storms.For the null echo region,the usual correlation technique produces zero or a very small magnitude of motion vectors.To mitigate these constraints,MTREC uses the tracking radar echoes by correlation(TREC) technique with a large "box" to determine the systematic movement driven by steering wind,and MTREC applies the TREC technique with a small "box" to estimate small-scale internal motion vectors.Eventually,the MTREC vectors are obtained by synthesizing the systematic motion and the small-scale internal motion.Performance of the MTREC technique was compared with TREC technique using case studies:the Khanun typhoon on 11 September 2005 observed by Wenzhou radar and a squall-line system on 23 June 2011 detected by Beijing radar.The results demonstrate that more spatially smoothed and continuous vector fields can be generated by the MTREC technique,which leads to improvements in tracking the entire radar reflectivity pattern.The new multi-scale tracking scheme was applied to study its impact on the performance of quantitative precipitation nowcasting.The location and intensity of heavy precipitation at a 1-h lead time was more consistent with quantitative precipitation estimates using radar and rain gauges.  相似文献   

4.
The 3D radar reflectivity produced by a mosaic software system, with measurements from 29 operational weather radars in the Yangtze River–Huaihe River Basins(YRHRB) during the mei-yu season of 2007, is compared to coincident TRMM PR observations in order to evaluate the value of the ground-based radar reflectivity mosaic in characterizing the 3D structures of mei-yu precipitation. Results show reasonable agreement in the composite radar reflectivity between the two datasets,with a correlation coefficient of 0.8 and a mean bias of -1 dB. The radar mosaic data at constant altitudes are reasonably consistent with the TRMM PR observations in the height range of 2–5 km, revealing essentially the same spatial distribution of radar echo and nearly identical histograms of reflectivity. However, at altitudes above 5 km, the mosaic data overestimate reflectivity and have slower decreasing rates with height compared to the TRMM PR observations. The areas of convective and stratiform precipitation, based on the mosaic reflectivity distribution at 3-km altitude, are highly correlated with the corresponding regions in the TRMM products, with correlation coefficients of 0.92 and 0.97 and mean relative differences of -7.9% and -2.5%, respectively. Finally, the usefulness of the mosaic reflectivity at 3-km altitude at 6-min intervals is illustrated using a mesoscale convective system that occurred over the YRHRB.  相似文献   

5.
Previous studies have recognized reflectivity maxima above the freezing level(RMAF) within stratiform precipitation over mountain slopes, however, quantitative studies are limited due to the lack of adequate identification criteria. Here, we establish an identification method for RMAF precipitation and apply it to the Tropical Rainfall Measuring Mission(TRMM) Precipitation Radar(PR) observations. Using the TRMM 2A25 product from 1998 to 2013, we show that the RMAF structure in reflectivity profiles can be effectively identified. RMAF exists not only in stratiform precipitation but also in convective precipitation. RMAF frequency is positively correlated with elevation, which is thought to be caused by enhanced updrafts in the middle layers of stratiform precipitation, or in the low to middle layers of convective precipitation over mountains. The average RMAF heights in stratiform and convective precipitation were 1.35 and 2.01 km above the freezing level, respectively, which is lower than previous results. In addition, our results indicate that the RMAF structure increased the echo top height and enhanced precipitation processes above the RMAF height, but it suppressed the downward propagation of ice particles and the near-surface rain rate. Future studies of orographic precipitation should take into account the impact of the RMAF structure and its relevant dynamic triggers.  相似文献   

6.
Based on cloud-ground lightning data and Doppler weather radar echo products, both thecharacteristics and the relations of lightning and radar echoes for strong convective rainstorms over Yunnanare analyzed during the flood season of 2007. The results show that most rainstorms are convective in whichlightning is mostly negative and the negative lightning number accounts for more than 90% of the total.Although the correlation between precipitation and the lightning number is small on the rainstorm day, thelarge day-lightning frequency usually produces heavy precipitation. Hourly evolution of precipitation andlightning frequency shows peak-style characteristics. And their evolution is very coherent in strongrainstorm, but lightning often occurs before precipitation, whose peaks are in phase with or 1-to-2-hourlagged behind that of lightning frequency. Meanwhile the peaks of positive frequency are in phase with orfall behind that of precipitation. When the wind field is heterogeneous in radial velocity, it is conducive toboth the development of convection echoes and occurrence of lightning. Strong lightning-producingconvective rainstorms correspond to strong echo fields and usually result in reflectivity above 30 dBZ andecho top ET of more than 9 km, respectively.  相似文献   

7.
Diurnal variations in amount, frequency and intensity of warm-season hourly precipitation(HP) at seven levels, which are defined as HP 0.1, 0.5, 1, 5, 10, 20 and 50 mm, are revealed based on no less than 30 years of hourly rain-gauge observations at national stations over central and eastern China(CEC). This study investigates the variations, relationships, differences and similarities of total, stratiform, convective and extreme HP over the entire CEC and various subregions. Results indicate that the variations in the amount and frequency of HP at the seven levels over the entire CEC all display a bimodal feature. For various regions, the variations of total HP mostly feature two peaks, while convective HP mainly occurs in the late afternoon and determines the diurnal variation of total HP intensity. On the basis of the primary peak time periods of HP frequency at all levels over different subregions, the variations can be classified into three main categories: late-afternoon primary peak, nocturnal primary peak, and time-shifting primary peak. However, the variations over some coastal regions like the Liaodong Peninsula, the Shandong Peninsula, and the coastal regions of Guangdong, distinctly differ from those over their corresponding larger regions. Overall, the normalized diurnal variation amplitude of amount and frequency increases with the increasing HP intensity; convective precipitation can be represented by HP 10 mm; and the intensity of HP 50 mm is slightly larger during the nighttime than during the daytime over the entire CEC. In northern China, diurnal variation in HP 5 mm can represent well that in convective precipitation.  相似文献   

8.
Using nine years of Tropical Rainfall Measuring Mission(TRMM)2A25 data,based on the probability density function of rainfall,a comparative analysis of the diurnal cycle and its seasonal and interannual variation for convective rain,stratiform rain,and total rain is made between the Tibetan Plateau and the downstream Yangtze River basin and East China Sea.The diurnal convective rain is stronger than the diurnal stratiform rain over the Yangtze River basin,and the convective rain peaks in the afternoon when the stratiform rain maximum happens in the early morning.Convective rain and stratiform rain both peak in the early morning over the East China Sea.The diurnal total rain over the Tibetan Plateau is stronger than its downstream regions.The diurnal cycle appears quite different among the four seasons over the Yangtze River basin,and the seasonal variation of diurnal convective rain is more apparent than diurnal stratiform rain.The seasonal variation of the diurnal cycle is weak over the East China Sea and Tibetan Plateau.The maximum of total rain happens in the afternoon during1998–2002 over the Yangtze River basin,while it peaks in the early morning during 2003–2006,but no obvious phase differences can be found among years in the diurnal rain over the East China Sea and over the Tibetan Plateau.  相似文献   

9.
The diurnal cycles of precipitation over north China during summer in four strong rainfall years are examined using two-dimensional cloud-resolving modeling data. The diurnal signals are analyzed in terms of precipitation budget, fractional rainfall coverage and rain intensity over convective and stratiform rainfall area. The analysis of precipitation budget shows that the diurnal cycles of convective and stratiform precipitation mainly correspond respectively to those of water vapor convergence and transport of hydrometeor from convective rainfall area to stratiform rainfall area in 1964, 1994 and 1995, whereas they mainly correspond to those of water vapor convergence in 2013. The diurnal cycles of convective and stratiform precipitation are mainly associated with those of rain intensity in 1964, 1994 and 1995. In 2013, the diurnal cycle of stratiform precipitation is mainly related to that of fractional rainfall coverage over stratiform rainfall area. The multiple peaks of convective precipitation mainly correspond to the rain intensity maxima associated with strong water vapor convergence.  相似文献   

10.
Differences in rainfall budgets between convective and stratiform regions of a torrential rainfall event were investigated using high-resolution simulation data produced by the Weather Research and Forecasting(WRF) model. The convective and stratiform regions were reasonably separated by the radar-based convective–stratiform partitioning method, and the threedimensional WRF-based precipitation equation combining water vapor and hydrometeor budgets was further used to analyze the rainfall budgets. The results showed that the magnitude of precipitation budget processes in the convective region was one order larger than that in the stratiform region. In convective/stratiform updraft regions, precipitation was mainly from the contribution of moisture-related processes, with a small negative contribution from cloud-related processes. In convective/stratiform downdraft regions, cloud-related processes played positive roles in precipitation, while moisture-related processes made a negative contribution. Moisture flux convergence played a dominant role in the moisture-related processes in convective or stratiform updraft regions, which was closely related to large-scale dynamics. Differences in cloud-related processes between convective and stratiform regions were more complex compared with those in moisture-related processes.Both liquid-and ice-phase microphysical processes were strong in convective/stratiform updraft regions, and ice-phase processes were dominant in convective/stratiform downdraft regions. There was strong net latent heating within almost the whole troposphere in updraft regions, especially in the convective updraft region, while the net latent heating(cooling) mainly existed above(below) the zero-layer in convective/stratiform downdraft regions.  相似文献   

11.
Surface rainfall and cloud budgets associated with three heavy rainfall events that occurred over eastern China during the mei-yu season in June 2011 were analyzed using 2D cumulus ensemble model simulation data.Model domain mean rainfall showed three peaks in response to three prescribed ascending motion maxima,primarily through the mean moisture convergence during the torrential rainfall period.Prescribed ascending motion throughout the troposphere produced strong convective rainfall during the first (9 June) and third (17-18 June) rainfall events,whereas strong prescribed ascending motion in the mid and upper troposphere and weak subsidence near the surface generated equally important stratiform and convective rainfall during the second rainfall event (14 June).The analysis of surface rainfall budgets reveals that convective rainfall was associated with atmospheric drying during the first event and moisture convergence during the third event.Both stratiform and convective rainfall responded primarily to moisture convergence during the second event.An analysis of grid data shows that the first and third mean rainfall maxima had smaller horizontal scales of the precipitation system than the second.  相似文献   

12.
The responses of vertical structures,in convective and stratiform regions,to the large-scale forcing during the landfall of tropical storm Bilis(2006) are investigated using the data from a two-dimensional cloud-resolving model simulation.An imposed large-scale forcing with upward motion in the mid and upper troposphere and downward motion in the lower troposphere on 15 July suppresses convective clouds,which leads to ~100% coverage of raining stratiform clouds over the entire model domain.The imposed forci...  相似文献   

13.
The characteristics of raindrop size distribution(DSD) over the Tibetan Plateau and southern China are studied in this paper, using the DSD data from April to August 2014 collected by HSC-PS32 disdrometers in Nagqu and Yangjiang, comprising a total of 9430 and 6366 1-min raindrop spectra, respectively. The raindrop spectra, characteristics of parameter variations with rainfall rate, and the relationships between reflectivity factor(Z) and rainfall rate(R) are analyzed, as well as their DSD changes with precipitation type and rainfall rate. The results show that the average raindrop spectra appear to be one-peak curves, the number concentration for larger drops increase significantly with rainfall rate, and its value over southern China is much higher, especially in convective rain. Standardized Gamma distributions better describe DSD for larger drops, especially for convective rain in southern China. All three Gamma parameters for stratiform precipitation over the Tibetan Plateau are much higher, while its shape parameter(μ) and mass-weighted mean diameter(D_m), for convective precipitation, are less. In terms of parameter variation with rainfall rate, the normalized intercept parameter(N_w) over the Tibetan Plateau for stratiform rain increases with rainfall rate, which is opposite to the situation in convective rain. The μover the Tibetan Plateau for stratiform and convective precipitation types decreases with an increase in rainfall rate, which is opposite to the case for D m variation. In Z–R relationships, like "Z = AR~b", the coefficient A over the Tibetan Plateau is smaller, while its b is higher, when the rain type transfers from stratiform to convective ones. Furthermore, with an increase in rainfall rate, parameters A and b over southern China increase gradually, while A over the Tibetan Plateau decreases substantially, which differs from the findings of previous studies. In terms of geographic location and climate over the Tibetan Plateau and southern China, the precipitation in the pre-flood seasons is dominated by strong convective rain, while weak convective rain occurs frequently in northern Tibet with lower humidity and higher altitude.  相似文献   

14.
This study investigates diurnal variations of precipitation during May–August, 1998–2012, over the steep slopes of the Himalayas and adjacent regions(flat Gangetic Plains–FGP, foothills of the Himalayas–FHH, the steep slope of the southern Himalayas–SSSH, and the Himalayas-Tibetan Plateau tableland–HTPT). Diurnal variations are analyzed at the pixel level utilizing collocated TRMM precipitation radar and visible infrared data. The results indicate that rain parameters(including rain frequency, rain rate, and storm top altitude) are predominantly characterized by afternoon maxima and morning minima at HTPT and FGP, whereas, maximum rain parameters at FHH typically occur in the early morning. Rain parameters at SSSH are characterized by double peaks;one in the afternoon and one at midnight. Over HTPT and FGP,convective activity is strongest in the afternoon with the thickest crystallization layer. Over FHH, the vertical structure of precipitation develops most vigorously in the early morning when the most intense collision and growth of precipitation particles occurs. Over SSSH, moist convection is stronger in the afternoon and at midnight with strong mixing of ice and water particles. The results of harmonic analysis show that rain bands move southward from lower elevation of SSSH to FHH with apparent southward propagation of the harmonic phase from midnight to early morning. Moreover, the strongest diurnal harmonic is located at HTPT, having a diurnal harmonic percentage variance of up to 90%. Large-scale atmospheric circulation patterns exhibit obvious diurnal variability and correspond well to the distribution of precipitation.  相似文献   

15.
Characteristics of raindrop size distribution during summer are studied by using the data from six Parsivel disdrometers located in the northeastern Tibetan Plateau. The analysis focuses on convective and stratiform precipitation at high altitudes from 2434 m to 4202 m. The results show that the contribution of stratiform and convective precipitation with rain rate between 1≤R<5 mm h-1 to the total precipitation increases with altitude, and the raindrop scale and number concentration of conve...  相似文献   

16.
This paper investigates spatial and temporal distributions of the microphysical properties of precipitating stratiform clouds based on Doppler spectra of rain particles observed by an L-band profiler radar.The retrieval of raindrop size distributions(RSDs) is accomplished through eliminating vertical air motion and isolating the terminal fall velocity of raindrops in the observed Doppler velocity spectrum.The microphysical properties of raindrops in a broad stratiform region with weak convective cells are studied using data collected from a 1320-MHz wind profiler radar in Huayin,Shaanxi Province on 14 May 2009.RSDs and gamma function parameters are retrieved at altitudes between 700 and 3000 m above the surface,below a melting layer.It is found that the altitude of the maximum number of raindrops was closely related to the surface rain rate.The maximum number of large drops was observed at lower altitudes earlier in the precipitation event but at higher altitudes in later periods,suggesting decreases in the numbers of large and medium size raindrops.These decreases may have been caused by the breakup of larger drops and evaporation of smaller drops as they fell.The number of medium size drops decreased with increasing altitude.The relationship between reflectivity and liquid water content during this precipitation event was Z = 1.69×10~4M~(1.5),and the relationship between reflectivity and rain intensity was Z = 256I~(1.4).  相似文献   

17.
Seasonal variations of rainfall microphysics in East China are investigated using data from the observations of a twodimensional video disdrometer and a vertically pointing micro rain radar. The precipitation and rain drop size distribution(DSD) characteristics are revealed for different rain types and seasons. Summer rainfall is dominated by convective rain,while during the other seasons the contribution of stratiform rain to rainfall amount is equal to or even larger than that of convective rain. The mean mass-weighted diameter versus the generalized intercept parameter pairs of convective rain are plotted roughly around the "maritime" cluster, indicating a maritime nature of convective precipitation throughout the year in East China. The localized rainfall estimators, i.e., rainfall kinetic energy–rain rate, shape–slope, and radar reflectivity–rain rate relations are further derived. DSD variability is believed to be a major source of diversity of the aforementioned derived estimators. These newly derived relations would certainly improve the accuracy of rainfall kinetic energy estimation, DSD retrieval, and quantitative precipitation estimation in this specific region.  相似文献   

18.
The structure of radar echo in stratiform cloud which was found in mei-yu frontal cloud system is generally inhomogeneous, especially in the structure of bright band echoes. The inhomogeneous structure of warm region in stratiform cloud and the shower feature of precipitation are closely related to the inhomogeneous structure of bright band and convective cells embedded in stratiform cloud.During Summer time the mei-yu cloud system is an important precipitating system in the southern part of China. To study its structure is of great significance for weather forecast and understanding the physical processes of cloud and precipitation. Therefore, we have observed mei-yu frontal cloud system by use of 711 type radar (3 cm) and airplane at Tunxi, Anhui Province since 1979. It was found that the structure of stratiform cloud, especially the structure of its warm region appears to be inhomogeneous1),2). This is a significant feature of cloud structure in mei-yu frontal cloud system. In this paper, we shall fu  相似文献   

19.
The presence of embedded convection in stratiform clouds strongly affects ice microphysical properties and precipitation formation. In situ aircraft measurements, including upward and downward spirals and horizontal penetrations, were performed within both embedded convective cells and stratiform regions of a mixedphase stratiform cloud system on 22 May 2017. Supercooled liquid water measurements, particle size distributions, and particle habits in different cloud regions were discussed with the intent of characterizing the riming process and determining how particle size distributions vary from convective to stratiform regions. Significant amounts of supercooled liquid water, with maxima up to 0.6 g m~(-3), were observed between -3℃ and-6℃ in the embedded convective cells while the peak liquid water content was generally less than 0.1 g m~(-3) in the stratiform regions.There are two distinct differences in particle size distributions between convective and stratiform regions.One difference is the significant shift toward larger particles from upper -15℃ to lower -10℃ in the convective region, with the maximum particle dimensions increasing from less than 6000 μm to over 1 cm. The particles larger than 1 cm at -10℃ are composed of dendrites and their aggregates. The other difference is the large concentrations of small particles(25–205 μm) at temperatures between -3℃ and-5℃ in the convective region, where rimed ice particles and needles coexist. Needle regions are observed from three of the five spirals, but only the cloud conditions within the convective region fit into the Hallett-Mossop criteria.  相似文献   

20.
A lag correlation analysis is conducted with a 21-day TOGA COARE cloud-resolving model simulation data to identify the phase relation between surface rainfall and convective available potential energy (CAPE) and associated physical processes. The analysis shows that the maximum negative lag correlations between the model domain mean CAPE and rainfall occurs around lag hour 6. The minimum mean CAPE lags mean and convective rainfall through the vapor condensation and depositions, water vapor convergence, and heat divergence whereas it lags stratiform rainfall via the transport of hydrometeor concentration from convective regions to raining stratiform regions, vapor condensation and depositions, water vapor storage, and heat divergence over raining stratiform regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号