首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pillow lavas in Bompoka island of the Andaman–Nicobar islands, forming a part of Sunda–Burmese forearc, are composed of plagioclase and clinopyroxene microphenocrysts in a fine-grained ferruginous groundmass along with glass. They are also characterized by several quench plagioclase and clinopyroxene morphologies. Zr/TiO2 versus Nb/Y relationship of these pillow lavas show that these are tholeiitic basalts in composition. These basalts have low MgO (5.19–6.12 wt%), Ni (84–118 ppm), and Cr (144–175 ppm) abundance and high FeO(T)/MgO (1.71–1.92) ratios, reflecting their fractionated nature. In Th/Yb versus Nb/Yb and Ti/Yb versus Nb/Yb binary diagrams, they show N-MORB affinity. However, La/Nb–Y and Ce/Nb–Th/Nb relationships along with a slight LREE depleted (LaN/YbN = 0.75–0.82) pattern and high Ba/Zr (0.28–0.40) ratios and LILE (K, Rb, Ba, Sr and Th) enrichment relative to N-MORB, suggest their back-arc basin basalt affinity. It is inferred that these pillow basalts have been derived from a metasomatised N-MORB-like mantle source in a trench-distal (wider) back-arc basin, probably near the leading edge of the Eurasian continent during Early to Late Cretaceous times, prior to the currently active Andaman–Java subduction system.  相似文献   

2.
Summary Experiments at 25 kbar and 1000°C, on a model trace element-enriched carbonatite-eridotite mix, produced augite + pargasite ± garnet ± dolomite coexisting with a carbonatite melt. Proton microprobe analysis of the phases showed that key trace elements (Rb, Ba, Sr, Nb, Ta, Zr, Y and REE) all partitioned strongly into the melt (with the exception of Y, Ho and Lu in garnet), verifying that carbonatite is potentially a highly effective metasomatizing agent. The data also indicate that carbonatitic metasomatism will impart higher Ba/Rb, Ba/Nb, Nb/Ta, Sr/Ta, La/Ta, and lower Zr/Y, with little change to Sr/Nb, in affected mantle.
Spurenelementverteilung zwischen Silikatmineralen und Karbonatit bei 25 kbar: Anwendung für die Mantel-Metasomatose
Zusammenfassung Experimente mit einer Modell-mischung von Karbonatit-Peridotit, angereichert mit Spurenelementen, produzierten bei 25 kbar und 1000°C Augit + Pargasit ± Granat ±Dolomit coexistierend mit einer Karbonatitschmelze. Protonmikrosonden-Analyse der Phasen zeigte, dass alle Schlüsselspurenelemente (Rb, Ba, Sr, Nb, Ta, Zr, Y and REE) stark in der Schmelze angereichert werden (mit der Ausnahme von Y, Ho und Lu in Granat), was beweist, dass Karbonatit potentiell ein sehr effektives Agens für Metasomatose ist. Die Daten zeigen weiterhin, dass karbonatitische Metasomatose in betroffenen Mantel höhere Ba/Rb, Ba/Nb, Nb/Ta, Sr/Ta, La/Ta und niedrigere Zr/Y produziert, mit geringen Äderungen für Sr/Nb.


With 1 Figure  相似文献   

3.
A test comparing concentrations of 57 chemical elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, I, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Pb, Pr, Rb, Sb, Se, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn and Zr) determined by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) in 294 samples of the same bottled water (predominantly mineral water) sold in the European Union in glass and PET bottles demonstrates significant (Wilcoxon rank sum test, α = 0.05) differences in median concentrations for Sb, Ce, Pb, Al, Zr, Ti, Th, La, Pr, Fe, Zn, Nd, Sn, Cr, Tb, Er, Gd, Bi, Sm, Y, Lu, Dy, Yb, Tm, Nb and Cu. Antimony has a 21× higher median value in bottled water when sold in PET bottles (0.33 vs. 0.016 μg/L). Glass contaminates the water with Ce (19× higher than in PET bottles), Pb (14×), Al (7×), Zr (7×), Ti, Th (5×), La (5×), Pr, Fe, Zn, Nd, Sn, Cr, Tb (2×), Er, Gd, Bi, Sm, Y, Lu, Yb, Tm, Nb and Cu (1.4×). Testing an additional 136 bottles of the same water sold in green and clear glass bottles demonstrates an important influence of colour, the water sold in green glass shows significantly higher concentrations in Cr (7.3×, 1.0 vs. 0.14 μg/L), Th (1.9×), La, Zr, Nd, Ce (1.6×), Pr, Nb, Ti, Fe (1.3×), Co (1.3×) and Er (1.1×).  相似文献   

4.
Anomalous enrichments of Zr (>500 ppm), Zn (> 100 ppm), Nb (>25 ppm), Y (>60 ppm), Th (>20 pm), U (> 5 ppm), LREE (>230 ppm) and HREE (>35ppm), and high Rb/Sr (>5) characterize peralkaline granites, in contrast to their peraluminous and calc-alkaline equivalents. Within the peralkaline suite, comenditic and pantelleritic volcanics exhibit two- to five-fold increases in the concentrations of these trace elements over comagmatic granites. These cannot be explained by crystal- liquid fractionation processes, and require the evolution of a sodium-enriched fluid. Corresponding trace element increases in the granites in areas of alkali metasomatism support this argument, and reflect the partial confinement of this volatile phase within the high-level magma chambers. REE studies in particular might eventually allow an evaluation of the role of Cl versus F and CO3-complexing in the evolution of the volatile fluid.  相似文献   

5.
Small volumes of peralkaline granites were generated as the final phase of a Pan African calc-alkaline igneous event which built the Arabian Peninsula. The peralkaline granites are closely associated with trends or sutures related to ophiolites. Peralkaline rocks are chemically heterogeneous, with anomalous abundances of Zr (average 2,150 ppm±2,600 1), Y (200±190), and Nb (105±100), representing up to ten-fold enrichments of these elements relative to abundances in calc alkaline granite counterparts. Large enrichments of some rare earth elements and fluorine are also present.The peralkaline granites have scattered whole rock 18O values, averaging 8.7±0.6% in the Hadb Aldyaheen Complex and 10.7±1% in the Jabal Sayid Complex. Quartz-albite fractionations of 0.5 to 1.5% signify that the heavier whole rock -values probably represent the oxygen isotope composition of the peralkaline magma. Small variable enrichments of 18O, in conjunction with slightly elevated 87Sr/86Sr initial ratios relative to broadly contemporaneous calc alkaline granites, are both suggestive of a small degree of involvement of crustal, or crustal derived material in the peralkaline magmas. It is proposed that the peculiar magma genesis is associated with a relaxation event which followed continental collision and underthrusting of salt rich sediments.  相似文献   

6.
The Late Cretaceous bimodal Yunshan (Yongtai) volcanics in Fujian province contain peralkaline rhyolites, the only presence of such rhyolites in southeastern China. Whole-rock and mineral chemical compositions are analyzed for the coexisting aluminous (metaluminous to weakly peraluminous)-peralkaline high-silica rhyolites from the Yunshan volcanics. They are sparsely porphyritic, and contain K-feldspar, ferromagnesian minerals, quartz, magnetite, and titanomagnetite phenocrysts, as well as accessory minerals such as fayalite, chevkinite, apatite and zircon. The mineral assemblage indicates an oxidizing pre-eruption condition. These rhyolites exhibit diagnostic geochemical features of A-type granites, such as elevated 104 * Ga/Al (mostly greater than 2.6) and FeOT/(FeOT + MgO) ratios, enrichment in high field strength elements (HFSE) such as Zr (>400 ppm) and Nb, and strong depletion in Al2O3 (<13 wt%), CaO, Ba and Sr. On the basis of their petrographic and geochemical characteristics, it is suggested that the rhyolite magmas are derived from partial melting of H2O-poor (meta) granitic igneous rocks in the deep crust, and cannot be fractionated from the coeval Yunshan mafic magmas. Geochemical variations of major and trace elements indicate the possible fractionation of K-feldspar, calcium-rich pyroxene, Fe–Ti oxides and minor chevkinite during the magma evolution. In peralkaline rhyolites, we found that the pre-existing Fe–Ti oxide and hedenbergite phenocrysts had been transformed into aegirine + oxide and aegirine + oxide + fluorite assemblages, respectively. These mineral assemblages are the products of the subsolidus reaction of pre-existing phenocrysts and extraneous Na–F-rich fluids. Such Na–F-rich fluids may be derived from the degassing of the subvolcanic rocks. The reactions indicate that the Yunshan peralkaline rhyolites could be generated through the reaction of highly fractionated aluminous silica magmas and Na–F-rich fluids.  相似文献   

7.
The Nakora Ring Complex(NRC)(732 Ma) occurs as a part of Malani Igneous Suite(MIS) in the West-ern Rajasthan,India.This complex consists of three phases(volcanic,plutonic and dyke).Geochemically,the Na-kora granites are peralkaline,metaluminous and slightly peraluminous.They display geochemical characteristics of A-type granites and distinct variation trends with increasing silica content.The peralkaline granites show higher concentrations of SiO2,total alkalies,TiO2,MgO,Ni,Rb,Sr,Y,Zr,Th,U,La,Ce,Nd,Eu and Yb and lower concen-trations of Al2O3,total iron,Cu and Zn than metaluminous granites.AI content is ≥1 for peralkaline granites and <1 for peraluminous and metaluminous granites.Nakora peralkaline granites are plotted between 4 to 7 kb in pressure and are emplaced at greater depths(16-28 km and 480-840℃) as compared to metaluminous granites which indicate the high fluorine content in peralkaline granites.The primitive mantle normalized multi-element profiles suggest that Nakora granites(peralkaline,metaluminous and peraluminous) are characterized by low La,Sr and Eu and relatively less minima of Ba,Nb and Ti which suggests the aspects related to crustal origin for Nakora magma.The Nakora granites are characterized as A-type granites(Whalen et al.,1987) and correspond to the field of "Within Plate Gran-ite"(Pearce et al.,1984).Geochemical,field and petrological data suggest that Nakora granites are the product of partial melting of rocks similar to Banded Gneiss from Kolar Schist Belt of India.  相似文献   

8.
An anomalous area (100 km2) revealed by a previous regional overbank sediment sampling survey by the Geological Survey of Norway was followed-up for Ti, Nb, Y, Zr, La and Ce by drainage and lithogeochemical sampling and analyses. The drainage samples were anomalous in the same elements as in the overbank samples and contained similar concentrations. The lithogeochemical results did not indicate mineralization and showed only a small enhancement of Ti, Zr, La and Ce in mylonitic rocks.Mineralogical studies of the drainage samples revealed, apart from proportions of quartz and feldspars, that stream sediments and heavy mineral concentrates are similar in mineralogy, with epidote predomination and several vol% of fine-grained titanite and zircon. Drainage samples contained amounts of Nb, Y, and Zr up to ten times larger than average contents of rock samples. Enhanced light REE (La and Ce) and Nb reflect host minerals, titanite, and enhanced Y possibly zircon and/or allanite.Anomalies in both media do not relate to mineralization. The overbank samples and the drainage samples provide comparable geochemical data.  相似文献   

9.
《Geodinamica Acta》2001,14(1-3):159-167
Pliocene–Pleistocene volcanism accompanied strike-slip-related transtensional deformation along the Kızılırmak fault segment of the Central Anatolian fault zone (CAFZ) in the west of Şarkışla (Sivas–central Turkey). These volcanic rocks are represented by alkali olivine basalts. They can be divided into four different sub-groups on the basis of their Zr, Nb, TiO2 contents. A primitive mantle-normalized incompatible trace element diagram for four subgroups shows close similarity to typical OIB pattern. Some of the incompatible trace element ratios (Ce/Y, Zr/Nb, La/Ba, La/Nb) are also akin to OIB values. Highly fractionated REE patterns (La/YbN=24.7–9.2) with no Eu anomaly are the main features of the alkali basalts and are comparable to alkaline volcanism in continental rift zones. On the basis of Al2O3/TiO2, Nb/Y, Zr/Y Zr/Nb ratios, the geochemical differences among four sub-groups can be explained by variable degrees of partial melting of compositionally similar mantle source. Th/Nb, Th/Y, Nb/Y ratios and the primitive mantle-normalized trace element diagram suggests significant amount of crustal involvement for most of the alkali olivine basalts erupted along the CAFZ. Rupture of the continental lithosphere by strike-slip-related transtensional deformation might have caused decompressional partial melting of the asthenospheric mantle and generating alkali olivine basalts in this region.  相似文献   

10.
A thermobarometer for sphene (titanite)   总被引:9,自引:0,他引:9  
Sphene and zircon are common accessory minerals in metamorphic and igneous rocks of very different composition from many different geological environments. Their essential structural constituents, Ti and Zr, are capable of replacing each other to some degree. In this paper we detail the results of high pressure–temperature experiments as well as analyses of natural sphene crystals that establish a systematic relationship between temperature, pressure and Zr concentration in sphene. Calibrations of the temperature and pressure relationships are presented as a thermobarometer. Synthetic sphene crystals were crystallized in the presence of zircon, quartz and rutile at 1–2.4 GPa and 800–1,000°C from hydrothermal solutions. Crystals were analyzed for Zr by electron microprobe (EMP). The experimental results define a log-linear relationship between equilibrium Zr content (ppm by weight), pressure (GPa) and reciprocal absolute temperature: The incorporation of Zr into sphene was found to be rather sensitive to pressure effects and also to the effects of kinetic disequilibrium and growth entrapment that result in sector zoning. The Zr content of sphene is relatively insensitive to the presence of both REEs and F-Al substitutions in sphene. To supplement and test the experimental data, sphenes from seven rocks of well-constrained origin were analyzed for Zr by both EMP and ion microprobe (IMP). The sphene thermobarometer records crystallization temperatures that are consistent with independent thermometry. When applied to natural sphene of unknown origin or growth conditions, this thermobarometer has the potential to estimate temperatures with an approximate uncertainty of ±20°C over the temperature range of interest (600–1,000°C). The Zr-in-sphene thermobarometer can also be used in conjunction with the Zr-in-rutile thermobarometer to estimate both pressure and temperature of crystallization. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Leslie A. HaydenEmail:
  相似文献   

11.
The paper presents new original data on the Devonian felsic volcanism of the NW Rudny Altai (Russia) in the west of Central Asian Orogenic Belt (CAOB) – the front part of the Altai convergent margin of the Siberian continent. Two geochemical types of subvolcanic rhyolites were emplaced synchronously with the bimodal rhyolite-basalt association, which began to form in the end-Emsian, and clearly manifested on the border of the Givetian and the Frasnian. The rhyolites yield zircon U-Pb ages of ca. 390 Ma (R1-type) and 380 Ma (R2- and R3-types), reflecting two peaks of the volcanic activity. Most of these rocks have extreme petrochemical characteristics of high SiO2 contents and have contrast Na/K ratios. Their compositions are transition between calc-alkaline and tholeiite series: (La/Yb)n ~ 2–7, Zr/Y ~ 4 (Zr < 350 ppm) and La/Sm ~ 0.55–1. Rhyolites bear the distinctive geochemical signature of A-type felsic magma, such as enrichments in Zr, Nb, Y and Ce (>350 ppm), Zr (>250 ppm), and high Ga/Al (>2.6) values. The island-arc-like R1-rhyolite formed immediately after the beginning of rifting due to widespread crustal melting under reduced conditions. The generation of rift-like R2- and R3-rhyolites took place under non-equilibrium conditions, synchronously with the rise in the upper crust of Givetian-Frasnian basic magmas, as a result of the active lithospheric extension and high thermal input from the underlying hot mantle. We propose an extension regime in the transition area between the island-arc and back-arc basin for the origin of rhyolites. The study of the Devonian volcanism of the Rudny Altai gives important information about the processes that occurred at the initial stage of the formation of the Altai convergent margin.  相似文献   

12.
Rutile is an important carrier of high field strength elements (HFSE; Zr, Nb, Mo, Sn, Sb, Hf, Ta, W). Its Zr content is buffered in systems with quartz and zircon as coexisting phases. The effects of temperature (T) and pressure (P) on the Zr content in rutile have been empirically calibrated in this study by analysing rutile–quartz–zircon assemblages of 31 metamorphic rocks spanning a T range from 430 to 1,100°C. Electron microprobe measurements show that Zr concentrations in rutile vary from 30 to 8,400 ppm across this temperature interval, correlating closely with metamorphic grade. The following thermometer has been formulated based on the maximum Zr contents of rutile included in garnet and pyroxene:
No pressure dependence was observed. An uncertainty in absolute T of ±50°C is inherited from T estimates of the natural samples used. A close approach to equilibrium of Zr distribution between zircon and rutile is suggested based on the high degree of reproducability of Zr contents in rutiles from different rock types from the same locality. At a given locality, the calculated range in T is mostly ±10°C, indicating the geological and analytical precision of the rutile thermometer. Possible applications of this new geothermometer are discussed covering the fields of ultrahigh temperature (UHT) granulites, sedimentary provenance studies and metamorphic field gradients.  相似文献   

13.
Abstract

Pliocene-Pleistocene volcanism accompanied strike-slip-related transtensional deformation along the K?z?l?rmak fault segment of the Central Anatolian fault zone (CAFZ) in the west of ?ark??la (Sivas-central Turkey). These volcanic rocks are represented by alkali olivine basalts. They can be divided into four different sub-groups on the basis of their Zr, Nb, TiO2 contents. A primitive mantle-normalized incompatible trace element diagram for four subgroups shows close similarity to typical OIB pattern. Some of the incompatible trace element ratios (Ce/Y, Zr/Nb, La/Ba, La/Nb) are also akin to OIB values. Highly fractionated REE patterns (La/YbN=24.7–9.2) with no Eu anomaly are the main features of the alkali basalts and are comparable to alkaline volcanism in continental rift zones. On the basis of Al2O3/TiO2, Nb/Y, Zr/Y Zr/Nb ratios, the geochemical differences among four sub-groups can be explained by variable degrees of partial melting of compositionally similar mantle source. Th/Nb, Th/Y, Nb/Y ratios and the primitive mantle-normalized trace element diagram suggests significant amount of crustal involvement for most of the alkali olivine basalts erupted along the CAFZ. Rupture of the continental lithosphere by strike-slip-related transtensional deformation might have caused decompressional partial melting of the asthenospheric mantle and generating alkali olivine basalts in this region. © 2001 Éditions scientifiques et médicales Elsevier SAS.  相似文献   

14.
Small hexagonal and triangular platelets of molybdenite (MoS2), 5 to 25 m in diameter, were identified in phenocrysts and matrix glass of unaltered felsic volcanic rocks from Pantelleria, Italy. The MoS2 occurs commonly in pantellerites (peralkaline rhyolites), rarely in pantelleritic trachytes, and never in trachytes. The occurrence of euhedral MoS2 platelets in all phenocryst phases, in matrix glass, and even in some melt inclusions indicates that MoS2 precipitated directly from the peralkaline melt. Despite MoS2 saturation, the melt (glass) contains greater than 95% of the Mo in Pantellerian rocks: X-ray fluorescence analyses of 20 whole rocks and separated glasses show that whole rocks consistently contain less Mo than corresponding matrix glasses, the differences being in proportion to phenocryst abundances. The Mo contents increase with differentiation from trachytes (2–12 ppm) to pantellerites (15–25 ppm) and correlate positively with incompatible elements such as Th, Y, and Nb. The Mo concentrations, as determined by secondary ion mass spectrometry, are essentially the same in matrix glasses and melt inclusions, showing that Mo did not partition strongly into a volatile fluid phase during outgassing. The high Mo contents of the pantellerites (relative to metaluminous magmas with 1–5 ppm) may be due to several factors: (1) the enhanced stability of highly charged cations (such as Mo6+, U4+, and Zr4+) in peralkaline melts; (2) the rarity of Fe-Ti oxides and litanite into which Mo might normally partition; (3) reduced volatility of Mo in low fO2, H2O-poor (1–2 wt%) peralkaline magmas. Geochemical modeling indicates that the precipitation of MoS2 can be explained simply by the drop in temperature during magmatic differentiation. The occurrence of MoS2 in pantellerites may result from their high Mo concentrations and low redox state (Ni/NiO=-2.5) relative to metaluminous magmas, causing them to reach MoS2 saturation at magmatic temperatures. The apparent absence of MoS2 microphenocrysts in more oxidized, metaluminous rhyolites may indicate that Mo is dissolved primarily as a hexavalent ion in those magmas.  相似文献   

15.
The composition of accessory REE minerals (allanite, chevkinite, fergusonite, and REE carbonates) in alkaline metasomatic rocks of the Main Sayan Fault (quartz-albite-microcline-riebeckite-aegirine, quartzalbite-microcline-magnetite, and clinopyroxene-albite) was studied using back-scattered scanning electron microscopy. Chevkinite occurs only in quartz-albite-microline metasomatic rock. The paragenesis of allanite and titanite is stable in clinopyroxene-albite metasomatic rocks. Allanite and fergusonite are typical of all zones of the metasomatic column. Chevkinite and allanite are often altered due to interaction with hydrothermal fluid and lose some amount of LREE. Secondary bastnaesite, synchysite, and ancylite are formed after allanite, while secondary monazite is developed after chevkinite. Presumably, the low-temperature alteration of allanite and chevkinite under effect of F?, CO 3 2? , and P 4 3? -bearing fluids had not any significant manifestation in the total REE content in metasomatic rocks.  相似文献   

16.
Four overbank profiles from the three terraces of different age were sampled in 10 to 20 cm intervals for the bulk content of major and minor (Ca, Mg, Fe, Ti, Al, Na, K and P) and trace (Mo, Cu, Pb, Zn, Ni, Co, Mn, As, U, Th, Sr, Cd, Sb, V, La, Cr, Ba, W, Zr, Ce, Sn, Y, Nb, Ta, Sc, Li, Rb and Hf) elements in the minus 0.125 mm fraction. Univariate statistics together with analysis of variance discriminated between the lower-lying carbonate (CA) population dominantly composed of carbonates and the overlying silicate (SI) population being dominantly of silicate mineralogy. This stratified pattern resulted from the intensive erosive action of melting glaciers exerted on limestones and dolomites in the alpine region, followed by local inputs mainly of silicate composition. Elements exhibiting the greatest between-population variability are Ca and Mg being enriched in the CA population and Fe, Mn, P, Sr, Al, Na, K, Li, Rb, Y, Zr, Ni, Cr and Ti being enriched in the SI population. Anomalously high Hg, Pb and Ba concentrations (maximum values: 6,500±2,860 ppb, 225±13 ppm and 1,519±91 ppm, respectively) in the lowermost part of the profile S7, which is nearest to the Croatian-Slovenian border, derive from the mineralized Slovenian catchment area. This profile also contains trimodal frequency distributions of Fe, Mn and P whose highest concentrations coincide with increased values of Zn and Cu which are bimodally distributed. Geochemical patterns of majority of elements in all four profiles consistently reflect the average compositions of the upstream drainage basins.  相似文献   

17.
The Matomb region constitutes an important deposit of detrital rutile. The rutile grains are essentially coarse (> 3 mm), tabular and elongated, due to the short sorting of highly weathered detritus. This study reports the major, trace, and rare-earth element distribution in the bulk and rutile concentrated fractions. The bulk sediments contain minor TiO2 concentrations (1–2 wt%), high SiO2 contents (∼77–95 wt%) and variable contents in Al2O3, Fe2O3, Zr, Y, Ba, Nb, Cr, V, and Zn. The total REE content is low to moderate (86–372 ppm) marked by high LREE-enrichment (LREE/HREE ∼5–25.72) and negative Eu anomalies (Eu/Eu* ∼0.51–0.69). The chemical index of alteration (CIA) shows that the source rocks are highly weathered, characteristic of humid tropical zone with the development of ferrallitic soils. In the concentrated fractions, TiO2 abundances exceed 94 wt%. Trace elements with high contents include V, Nb, Cr, Sn, and W. These data associated with several binary diagrams show that rutile is the main carrier of Ti, V, Nb, Cr, Sn, and W in the alluvia. The REE content is very low (1–9 ppm) in spite of the LREE-abundance (LREE/HREE ∼4–40). The rutile concentrated fractions exhibit anomalies in Ce (Ce/Ce* ∼0.58 to 0.83; ∼1.41–2.50) and Eu (Eu/Eu* ∼0.42; 1.20–1.64). The high (La/Sm)N, (La/Yb)N and (Gd/Yb)N ratios indicate high REE fractionation.  相似文献   

18.
The authors have studied the geology, geochemistry, petrology and mineralogy of the rare earth elements (REE) occurring in the Western Keivy peralkaline granite massif (Kola Peninsula, NW Russia) aged 2674 ± 6 Ma. The massif hosts Zr- and REE-rich areas with economic potential (e.g. the Yumperuaiv and Large Pedestal Zr-REE deposits), where 25% of ΣREE are represented by heavy REE (HREE). The main REE minerals are: chevkinite-(Ce), britholite-(Y) and products of their metamict decay, bastnäsite-(Ce), allanite-(Ce), fergusonite-(Y), monazite-(Ce), and others. The areas contain also significant quantities of zircon reaching potentially economic levels. We have discovered that behavior of REE and Zr is controlled by alkalinity of melt/solution, which, in turn, is controlled by crystallization of alkaline pyroxenes (predominantly aegirine) and amphiboles (predominantly arfvedsonite) at a late magmatic stage. Crystallization of mafic minerals leads to a sharp increase of K2O content and decrease of SiO2 content that cause a decrease of melt viscosity and REE and Zr solubility in the liquid. Therefore, REE and zirconium immediately precipitate as zircon and REE-minerals. There are numerous pod- and lens-like granitic pegmatites within the massif. Pegmatites in the REE-rich areas are also enriched in REE, but HREE prevails over light REE (LREE), about 88% of REE sum.  相似文献   

19.
The Zargat Na’ am ring complex crops out 90 km NW of Shalatin City in the Southeastern Desert of Egypt. The ring complex forms a prominent ridge standing high above the surrounding mafic-ultramafic hills. It is cut by two sets of joints and faults which strike predominantly NNW-SSE and E-W, and is injected by dikes, porphyritic alkaline syenites, and felsite porphyries. It consists of alkali syenites, alkali quartz syenites, and peralkaline arfvedsonite-bearing granitic and pegmatitic dikes and sills. The complex is characterized locally by extreme enrichments in REEs, wolframite and rare, high field strength metals (HFSM), such as Zr and Nb. The highest concentrations (1.5 wt% Zr, 0.25 wt% Nb, 0.6 wt% Σ REEs) occur in aegirine-albite aplites that formed around arfvedsonite pegmatites. Quartzhosted melt inclusions in arfvedsonite granite and pegmatite provide unequivocal evidence that the peralkaline compositions and rare metal enrichments are primary magmatic features. Glass inclusions in quartz crystals also have high concentrations of incompatible trace elements including Nb (750 ¢ 10−6), Zr (2500 × 10−6) and REEs (1450 × 10−6). The REEs, Nb and Zr compositions of the aegirine-albite aplites plot along the same linear enrichment trends as the melt inclusions, and Y/Ho ratios mostly display unfractionated, near-chondritic values. The chemical and textural features of the aegirine-albite aplites are apparently resultant from rapid crystallization after volatile loss from a residual peralkaline granitic melt similar in composition to the melt inclusions.  相似文献   

20.
The Juzzak Sill occurs in the western part of the east-west trending, subduction-related magmatic belt known as the Chagai arc. The sill is concordantly emplaced in the Paleocene Juzzak Formation and locally cross-cuts the Early to Middle Eocene Robat Limestone and Eocene Saindak Formation. The sill is a porphyritic pyroxene diorite that grades into a porphyritic andesite (60.12–61.57 wt% SiO2) along the chilled margins. It comprises phenocrysts of hypersthene and plagioclase (An32–45) in a medium- to fine-grained groundmass of these minerals, opaque oxide, and apatite. The rocks are high-K (2.37–2.86 wt% K2O) calc-alkaline with low Mg# (42–55), Cr (51–80 ppm), and Ni (22–30 ppm) contents. Mantle-normalized trace element patterns, exhibited by marked negative Nb anomalies and positive spikes for Sr, Rb, and Zr and are akin to island arc signatures. The relatively higher ratios of Zr/Y (3.57–6.58), Ti/V (46.05–54.36), Ta/Yb (0.14–0.15), and Th/Yb (2.56–2.65) and high 87Sr/86Sr ratio (0.70524) suggest the role of continental crust materials, thus implying continental margin-type arc affinity. The source diagnostic ratios including K/Ba, P/Zr, and La/Ce of Juzzak Sill andesite and Eocene andesite from the Chagai arc are more or less similar, but the former has a much higher K/Y and Ba/Y ratios, which suggests assimilations of the host sediments during intrusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号