首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We measured the Fe isotope fractionation during the reactions of Fe(II) with goethite in the presence and absence of a strong Fe(III) chelator (desferrioxamine mesylate, DFAM). All experiments were completed in an O2-free glove box. The concentrations of aqueous Fe(II) ([Fe(II)aq]) decreased below the initial total dissolved Fe concentrations ([Fe(II)total], 2.15 mM) due to fast adsorption within 0.2 day. The concentration of adsorbed Fe(II) ([Fe(II)ads]) was determined as the difference between [Fe(II)aq] and the concentration of extracted Fe(II) in 0.5 M HCl ([Fe(II)extr]) (i.e., [Fe(II)ads] = [Fe(II)extr] − [Fe(II)aq]). [Fe(II)ads] also decreased with time in experiments with and without DFAM, documenting that fast adsorption was accompanied by a second, slower reaction. Interestingly, [Fe(II)extr] was always smaller than [Fe(II)total], indicating that some Fe(II) was sequestered into a pool that is not HCl-extractable. The difference was attributed to Fe(II) incorporated into goethite structure (i.e., [Fe(II)inc] = [Fe(II)total] −[Fe(II)extr]). More Fe(II) was incorporated in the presence of DFAM than in its absence at all time steps. Regardless of the presence of DFAM, both aqueous and extracted Fe(II) (δ56/54Fe(II)aq and δ56/54Fe(II)extr) became isotopically lighter than or similar to goethite (− 0.27‰) at day 7, implying that the isotope exchange occurred between bulk goethite and aqueous Fe. Consistently, the mass balance indicated that the incorporated Fe is isotopically heavier than extracted Fe. These observations suggested that (i) co-adsorption of Fe(II) with DFAM resulted in more pervasive electron transfer, (ii) the electron transfer from heavy Fe(II) in the adsorbed Fe(II) to light Fe(III) in goethite results in the fixation of heavy adsorbed Fe(III) on the surface and accumulation of Fe(II) within the goethite, and (iii) desorption of the reduced, light Fe from goethite does not necessarily occur at the same surface sites where adsorption occurred.  相似文献   

2.
Fe released into solution is isotopically lighter (enriched in the lighter isotope) than hornblende starting material when dissolution occurs in the presence of the siderophore desferrioxamine mesylate (DFAM). In contrast, Fe released from goethite dissolving in the presence of DFAM is isotopically unchanged. Furthermore, Δ56Fesolution-hornblende for Fe released to solution in the presence of ligands varies with the affinity of the ligand for Fe. The extent of isotopic fractionation of Fe released from hornblende also increases when experiments are agitated continuously. The Fe isotope fractionation observed during hornblende dissolution with organic ligands is attributed predominantly to retention of 56Fe in an altered surface layer, while the lack of isotopic fractionation during goethite dissolution in DFAM is consistent with the lack of an altered layer. When a siderophore-producing soil bacterium is added to the system (without added organic ligands), Fe released to solution from both hornblende and goethite differs isotopically from Fe in the bulk mineral: Δ56Fesolution-starting material = −0.56 ± 0.19 (hornblende) and −1.44 ± 0.16 (goethite). Increased isotopic fractionation is attributed in this case to the fact that as bacterial respiration depletes the system in oxygen and aqueous Fe is reduced, equilibration between aqueous ferrous and ferric iron creates a pool of isotopically heavy ferric iron that is assimilated by bacterial cells. Adsorption of isotopically heavy ferrous iron (Fe(II) enriched in the heavier isotope) or precipitation of isotopically heavy Fe minerals may also contribute to observed fractionations.To test whether these Fe isotope signatures are recorded in natural systems, we also investigated extractions of samples of soils from which the bacteria were isolated. These extractions show variability in the isotopic signatures of exchangeable Fe and Fe oxyhydroxide fractions from one soil sample to another, but exchangeable Fe is observed to be lighter than Fe in soil Fe oxyhydroxides and hornblende. This observation is consistent with isotopically light Fe-organic complexes in soil pore water derived from the Fe-silicate starting materials in the presence of growing microorganisms, as documented in experiments reported here. The contributions from phenomena including organic ligand-promoted nonstoichiometric dissolution of Fe silicates, uptake of ferric iron by organisms, adsorption of isotopically heavy ferrous iron, and precipitation of iron minerals should create complex isotopic signatures in soils. Better understanding of these processes and the timescales over which they contribute to fractionation is needed.  相似文献   

3.
《Applied Geochemistry》2005,20(1):169-178
A sampling-separation method and a dynamic monitoring method were used to investigate the time-dependent reactions of H+ ions with two contrasting types of soil, variable charge soils (VCS) and constant charge soils (CCS), by directly evaluating H+ ion consumption and other relevant consequences. The results for both CCS and VCS show that H+ ion consumption, increase in positive surface charge and increase in soluble Al are all characterized by a rapid step followed by a slow one. The higher the content of free Fe oxides in the soil, the larger the increase in positive surface charge and in H+ ion consumption in the initial rapid step. This is due mainly to protonation on external surfaces. The gradual increase in positive surface charge in the slow step for the 3 VCSs is a result of H+ ion diffusion to the reactive sites of Fe–OH on internal surfaces. The very low content of free Fe oxides on internal surfaces of the 2 CCSs render a negligible increase in positive surface charge in the slow step. For the 3 VCSs, the gradual consumption of H+ ions in the slow process is the result of protonation, Al dissolution and/or transformation into exchangeable acidity. For the 2 CCSs, however, the gradual consumption is mainly the result of Al dissolution and/or transformation into exchangeable acidity. The time-dependent Al dissolution from both VCS and CCS is influenced by several factors such as mineral components, solubility and dissolution rates of the soils, and H+ ion concentration in soil suspensions.  相似文献   

4.
Recent research has revealed that siderophores, a class of biogenic ligands with high affinities for Fe(III), can also strongly complex Co(III), an element essential to the normal metabolic function of microbes and animals. This study was conducted to quantify the rates and identify the products and mechanisms of the siderophore-promoted dissolution of Co from synthetic Co-bearing minerals. The dissolution reactions of heterogenite (CoOOH) and four Co-substituted goethites (Co-FeOOH) containing different Co concentrations were investigated in the presence of a trihydroxamate siderophore, desferrioxamine B (DFOB), using batch and flow-through experiments. Results showed that DFOB-promoted dissolution of Co from Co-bearing minerals may occur via pH-dependent ligand-promoted or reductive dissolution mechanisms. For heterogenite, ligand-promoted dissolution was the dominant pathway at neutral to alkaline pH, while production of dissolved Co(II) for pH <6. It was not possible from our data to decouple the separate contributions of homogenous and heterogeneous reduction reactions to the aqueous Co(II) pool. Cobalt substitution in Co-substituted goethite, possibly caused by distortion of goethite structure and increased lattice strain, resulted in enhanced total dissolution rates of both Co and Fe. The DFOB-promoted dissolution rates of Co-bearing minerals, coupled with the high affinity of Co(III) for DFOB, suggest that siderophores may be effective for increasing Co solubility, and thus possibly Co bioavailability. The results also suggest that siderophores may contribute to the mobilization of radioactive 60Co from Co-bearing mineral phases through mineral weathering and dissolution processes.  相似文献   

5.
That microbial siderophores may be mediators of Mn(III) biogeochemistry is suggested by recent studies showing that these well known Fe(III)-chelating ligands form very stable Mn(III) aqueous complexes. In this study, we examine the influence of desferrioxamine B (DFOB), a trihydroxamate siderophore, on the dissolution of hausmannite, a mixed valence Mn(II, III) oxide found in soils and freshwater sediments. Batch dissolution experiments were conducted both in the absence (pH 4-9) and in the presence of 100 μM DFOB (pH 5-9). In the absence of the ligand, there is a sharp decrease in the extent of proton-promoted dissolution above pH 5 and no appreciable dissolution above pH 8. The resulting aqueous Mn2+ activities were in good agreement with previous studies, indirectly supporting the accepted two-step mechanism involving the formation of manganite and reprecipitation of hausmannite. Desferrioxamine B enhanced hausmannite dissolution over the entire pH range investigated, both via the formation of a Mn(III) complex and through surface-catalyzed reductive dissolution. Above pH 8, non-reductive ligand-promoted dissolution dominated, whereas below pH 8, dissolution was non-stoichiometric with respect to DFOB. Concurrent proton-promoted, ligand-promoted, reductive, and induced dissolution was observed, with Mn release by either reductive or induced dissolution increasing linearly with decreasing pH. The fast kinetics of the DFOB-promoted dissolution of hausmannite, as compared to iron oxides, suggest that the siderophore-promoted dissolution of Mn(III)-bearing minerals may compete with the siderophore-promoted dissolution of Fe(III)-bearing minerals.  相似文献   

6.
Batch reactor experiments were conducted to assess perthitic alkali-feldspar dissolution and secondary mineral formation in an initially acidic fluid (pH = 3.1) at 200 °C and 300 bars. Temporal evolution of fluid chemistry was monitored by major element analysis of in situ fluid samples. Solid reaction products were retrieved from two identical experiments terminated after 5 and 78 days. Scanning electron microscopy revealed dissolution features and significant secondary mineral coverage on feldspar surfaces. Boehmite and kaolinite were identified as secondary minerals by X-ray diffraction and transmission electron microscopy. X-ray photoelectron spectroscopy analysis of alkali-feldspar surfaces before and after reaction showed a trend of increasing Al/Si ratios and decreasing K/Al ratios with reaction progress, consistent with the formation of boehmite and kaolinite.Saturation indices of feldspars and secondary minerals suggest that albite dissolution occurred throughout the experiments, while K-feldspar exceeded saturation after 216 h of reaction. Reactions proceeded slowly and full equilibrium was not achieved, the relatively high temperature of the experiments notwithstanding. Thus, time series observations indicate continuous supersaturation with respect to boehmite and kaolinite, although the extent of this decreased with reaction progress as the driving force for albite dissolution decreased. The first experimental evidence of metastable co-existence of boehmite, kaolinite and alkali feldspar in the feldspar hydrolysis system is consistent with theoretical models of mineral dissolution/precipitation kinetics where the ratio of the secondary mineral precipitation rate constant to the rate constant of feldspar dissolution is well below unity. This has important implications for modeling the time-dependent evolution of feldspar dissolution and secondary mineral formation in natural systems.  相似文献   

7.
In natural weathering systems, both the chemistry and the topography of mineral surfaces change as rocks and minerals equilibrate to surface conditions. Most geochemical research has focused on changes in solution chemistry over time; however, temporal changes in surface topography may also yield information about rates and mechanisms of dissolution. We use stochastic dissolution simulations of a regular 2-D lattice with reaction mechanisms defined in terms of nearest neighbor interactions to elucidate how the surface area and reactivity of a crystal evolve during dissolution. Despite the simplicity of the model, it reproduces key features observed or inferred for mineral dissolution. Our model results indicate that: (i) dissolving surfaces reach a steady-state conformation after sufficient dissolution time, (ii) linear defects cause surface area and dissolution rate to vary in concert with one another, (iii) sigmoidal and non-sigmoidal rate vs. free-energy of reaction (ΔGrxn) behavior can be rationalized in terms of the multiple steps occurring during dissolution, and (iv) surface roughness as a function of ΔGrxn is highly sensitive to the reaction mechanism. When simulated times to reach steady-state are compared to published time series rate data using suitable scaling, good agreement is found for silicate minerals while the model significantly over-predicts the duration of the transient for Fe and Al oxides. The implication of our simple model is that many aspects of mineral dissolution behavior, including approach to steady-state, sigmoidal vs. non-sigmoidal rate vs. ΔGrxn behavior, and development of rougher surfaces in conditions further from equilibrium can be explained by nearest neighbor interactions and simple Kossel-type models where reactivity of a surface is defined in terms of perfect surface, step, and kink sites.  相似文献   

8.
The dissolution rate and mechanism of three different cleavage faces of a dolomite crystal from Navarra (near Pamplona), Spain, were studied in detail by vertical scanning interferometry techniques. A total of 37 different regions (each about 124 × 156 μm in size) on the three sample surfaces were monitored as a function of time during dissolution at 25°C and pH 3. Dissolution produced shallow etch pits with widths reaching 20 μm during 8 h of dissolution. Depth development as a function of time was remarkably similar for all etch pits on a given dolomite surface.On the basis of etch pit distribution and volume as a function of time, the calculated dissolution rate increases from near zero to 4 × 10−11 mol cm−2 s−1 over 5 h. The time variation is different for each of the three cleavage surfaces studied. In addition, the absolute dissolution rates of different parts of the dolomite crystal surface can be computed by using a reference surface. The different surfaces yield an “average” rate of 1.08 × 10−11 mol cm−2 s−1 with a standard deviation of 0.3 × 10−11 mol cm−2 s−1 based on about 60 analyses. The mean absolute rate of the dolomite surface is about 10 times slower than the rate calculated from etch pit dissolution alone. On the other hand, earlier batch rate data that used BET surface areas yield rates that are at least 30 to 60 times faster than our directly measured mean dissolution rate for the same pH and temperature.A conceptual model for mineral dissolution has been inferred from the surface topography obtained by the interferometry investigations. In this model, mineral dissolution is not dominated by etch pit formation itself but rather by extensive dissolution stepwaves that originate at the outskirts of the etch pits. These stepwaves control the overall dissolution as well as the dependence on temperature and saturation state.  相似文献   

9.
《Chemical Geology》2002,182(2-4):265-273
Si adsorption onto Bacillus subtilis and Fe and Al oxide coated cells of B. subtilis was measured both as a function of pH and of bacterial concentration in suspension in order to gain insight into the mechanism of association between silica and silicate precipitates and bacterial cell walls. All experiments were conducted in undersaturated solutions with respect to silicate mineral phases in order to isolate the important adsorption reactions from precipitation kinetics effects of bacterial surfaces. The experimental results indicate that there is little association between aqueous Si and the bacterial surface, even under low pH conditions where most of the organic acid functional groups that are present on the bacterial surface are fully protonated and neutrally charged. Conversely, Fe and Al oxide coated bacteria, and Fe oxide precipitates only, all bind significant concentrations of aqueous Si over a wide range of pH conditions. Our results are consistent with those of Konhauser et al. [Geology 21 (1993) 1103; Environ. Microbiol. 60 (1994) 49] and Konhauser and Urrutia [Chem. Geol. 161 (1999) 399] in that they suggest that the association between silicate minerals and bacterial surfaces is not caused by direct Si–bacteria interactions. Rather, the association is most likely caused by the adsorption of Si onto Fe and Al oxides which are electrostatically bound to the bacterial surface. Therefore, the role of bacteria in silica and silicate mineralization is to concentrate Fe and Al through adsorption and/or precipitation reactions. Bacteria serve as bases, or perhaps templates, for Fe and Al oxide precipitation, and it is these oxide mineral surfaces (and perhaps other metal oxide surfaces as well) that are reactive with aqueous Si, forming surface complexes that are the precursors to the formation of silica and silicate minerals.  相似文献   

10.
The aim of this study was to investigate the dissolution and transformation characteristics of phyllosilicate under low molecular weight organic acids in the farmland environment (pH 4.0–8.0). Changes of dissolution and morphology of biotite were evaluated using chemical extraction experiments and in situ/ex situ atomic force microscopy (AFM) with fluids of citric acid (CA) solution at pH 4.0, 6.0, and 8.0. Results of extracting experiments show that CA solutions contributed to the release rate of potassium (K), silicon (Si), and aluminum (Al) from biotite relative to a control aqueous solution. In situ AFM observations indicate that the dissolution of biotite from the biotite (0 0 1) surface occurred on the terrace, segment, and fringe of pits, while new etch pits did not readily form on biotite (0 0 1) surfaces in aqueous solutions. However, dissolution rates of terraces can be greatly accelerated with the help of citrate. In pH 4.0 CA solution, 70 min dissolution reactions of biotite (0 0 1) surfaces result in more etch pits than in pH 6.0 and 8.0 solutions. In addition, the transformation of biotite occurred simultaneously with the dissolution process. Secondary coating was observed on the biotite (0 0 1) surface after 140 h of immersion in a weak acid environment. Thus, the protons have a dominant role in the dissolution process of biotite with organic (carboxyl) acting as a catalyst under acidic condition. Based on the theory of interactions on a water–mineral interface in a weak acid environment, dissolution of biotite starts from defect/kink sites on the surface, one layer by one layer, and develops along the [h k 0] direction. A secondary coating that forms on the biotite (0 0 1) surface may restrain the formation and growth of etch pits, whereas this process may have a positive role on the stability of soil structure during long-term soil management.  相似文献   

11.
Magnesium inhibition of calcite dissolution kinetics   总被引:1,自引:0,他引:1  
We present evidence of inhibition of calcite dissolution by dissolved magnesium through direct observations of the (104) surface using atomic force microscopy (AFM) and vertical scanning interferometry (VSI). Far from equilibrium, the pattern of magnesium inhibition is dependent on solution composition and specific to surface step geometry. In CO2-free solutions (pH 8.8), dissolved magnesium brings about little inhibition even at concentrations of 0.8 × 10−3 molal. At the same pH, magnesium concentrations of less than 0.05 × 10−3 molal in carbonate-buffered solutions generate significant inhibition, although no changes in surface and etch pit morphology are observed. As concentrations exceed magnesite saturation, the dissolution rate shows little additional decrease; however, selective pinning of step edges results in unique etch pit profiles, seen in both AFM and VSI datasets. Despite the decreases in step velocity, magnesium addition in carbonated solutions also appears to activate the surface by increasing the nucleation rate of new defects. These relationships suggest that the modest depression of the bulk rate measured by VSI reflects a balance between competing reaction mechanisms that simultaneously depress the rate through selective inhibition of step movement, but also enhance reactivity on terraces by lowering the energy barrier to new etch pit formation.  相似文献   

12.
We studied stable iron isotope fractionation during dissolution of a biotite and chlorite enriched mineral fraction from granite by HCl and 5 mM oxalic acid in a pH range of 4-5.9. Batch experiments covered a time period from 2 h to 100 days and were performed at initial potassium concentrations of 0, 0.5, and 5 mM to induce different levels of biotite exfoliation. All experiments were kept anoxic to investigate solely the dissolution step without the influence of oxidation and precipitation of secondary Fe oxyhydroxides. Oxalic acid increased the release of Fe by a factor of ∼15 compared with the HCl experiments. Addition of 0.5 mM K to initial solutions in proton-promoted dissolution decreased the release of Fe by 30-65% depending on the dissolution stage. In ligand-controlled dissolution, K reduced the Fe release only to a minor extent. All solutions of the early dissolution stages were enriched in light Fe isotopes by up to −1.4‰ in δ56Fe compared with the isotopic composition of biotite and chlorite mineral separates, which we explained by a kinetic isotope effect. In proton-promoted dissolution, early released fractions of K-enriched experiments were significantly lighter (−0.7‰ to −0.9‰) than in the initially K-free experiments. The evolution of Fe isotope ratios in solution was modeled by a linear combination of kinetic isotope effects during two independent dissolution processes attacking different crystallographic sites. In ligand-controlled dissolution, K did not influence the kinetic isotope effect and the Fe isotope composition in solution in the late dissolution stages remained slightly lighter than the bulk composition of the biotite/chlorite enriched mineral fraction. This study demonstrates that the initial Fe weathering flux should be enriched in light Fe isotopes and that Fe isotope data in combination with dissolution kinetics and stoichiometry provide new insights into dissolution mechanisms.  相似文献   

13.
We revisit a fundamental question in mineral dissolution kinetics, namely: is the function of dissolution rate versus the distance from equilibrium continuous, or does the “switch” between two different reaction mechanisms cause a discontinuity, i.e., a kinetic bifurcation? Based on new insight from experimental results, including direct observations of retreating crystal surfaces with vertical scanning interferometry (VSI), we present evidence that a discontinuity does indeed exist. Through a carefully designed near-equilibrium albite dissolution experiment, we show how a non-steady-state dissolution rate observed on a crystal surface reflects reactivity inherited from earlier episodes of undersaturation. This outcome forces us to re-think the common practice of extrapolating overall dissolution rates measured far-from-equilibrium to near-equilibrium conditions.  相似文献   

14.
Extracellular polymeric substances (EPS) are continuously produced by bacteria during their growth and metabolism. In soils, EPS are bound to cell surfaces, associated with biofilms, or released into solution where they can react with other solutes and soil particle surfaces. If such reaction results in a decrease in EPS bioaccessibility, it may contribute to stabilization of microbial-derived organic carbon (OC) in soil. Here we examined: (i) the chemical fractionation of EPS produced by a common Gram positive soil bacterial strain (Bacillus subtilis) during reaction with dissolved and colloidal Al species and (ii) the resulting stabilization against desorption and microbial decay by the respective coprecipitation (with dissolved Al) and adsorption (with Al(OH)3(am)) processes. Coprecipitates and adsorption complexes obtained following EPS-Al reaction as a function of pH and ionic strength were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The stability of adsorbed and coprecipitated EPS against biodegradation was assessed by mineralization experiments for 1100 h. Up to 60% of the initial 100 mg/L EPS-C was adsorbed at the highest initial molar Al:C ratio (1.86), but this still resulted only in a moderate OC mass fraction in the solid phase (17 mg/g Al(OH)3(am)). In contrast, while coprecipitation by Al was less efficient in removing EPS from solution (maximum values of 33% at molar Al:C ratios of 0.1-0.2), the OC mass fraction in the solid product was substantially larger than that in adsorption complexes. Organic P compounds were preferentially bound during both adsorption and coprecipitation. Data are consistent with strong ligand exchange of EPS phosphoryl groups during adsorption to Al(OH)3(am), whereas for coprecipitation weaker sorption mechanisms are also involved. X-ray photoelectron analyses indicate an intimate mixing of EPS with Al in the coprecipitates, which is not observed in the case of EPS adsorption complexes. The incubation experiments showed that both processes result in overall stabilization of EPS against microbial decay. Stabilization of adsorbed or coprecipitated EPS increased with increasing molar Al:C ratio and biodegradation was correlated with EPS desorption, implying that detachment of EPS from surface sites is a prerequisite for microbial utilization. Results indicate that the mechanisms transferring EPS into Al-organic associations may significantly affect the composition and stability of biomolecular C, N and P in soils. The observed efficient stabilization of EPS might explain the strong microbial character of organic matter in subsoils.  相似文献   

15.
The biologically mediated weathering of the ocean crust has received increasing attention in recent decades, but the rates and the possible mechanism of elemental release during microbe–basalt interactions occurring below the seafloor have not been studied in detail. In this study, we established an experimental weathering study of seafloor natural basaltic glass comparing the effect of microbial activity (Pseudomonas fluorescens) in P-rich and P-poor media with parallel controls containing either nonviable cells or organic acid. The changes in the chemical parameters, including pH, bacterial densities, and ion concentrations (Ca, Mg, Si, Mn, Al, Fe, and P) in the solution, were examined during the different batch experiments. The results showed that the pH decreased from 7.0 to 3.5 and the bacterial density increased from 105 to 108 cells/ml during the first 120 h, and the cell numbers remained constant at 108 cells/ml and the pH increased from 3.5 to 6 between 120 h and 864 h in the P-bearing reactors containing bacteria. In contrast, during all the experimental time, the pH remained close to neutral condition in the abiotic control systems and the dissolution rates increased markedly with a decrease in pH and became minimal at near-neutral pH in P-bearing reactors containing bacteria, where Ca, Si, and Mg release rates were 2- to 4-fold higher than those obtained in chemical systems and biotic P-limited systems. Furthermore, the surfaces of the natural volcanic glass from the biotic systems were colonized by bacteria. Simultaneously, the etch pits were observed by Scanning Electron Microscope, which further indicate that the bacteria may promote the mineral dissolution for energy gain. Some elements (e.g., Fe, Mn, and Al) releasing from natural volcanic glass are likely an important source of the elemental budget in the ocean, and thus the element release and its possible mechanism conducted in this experimental study have potential implications on the biogeochemical cycling process in the Mid-Oceanic Ridge setting.  相似文献   

16.
Batch and flow-through experiments were performed on quartz–feldspar granular aggregates at hydrothermal conditions (up to ≈150 °C, up to 5 MPa effective pressure, and near-neutral pH) for up to 141 days. The effect of dissolution–precipitation reactions on the surface morphology of the mineral grains was investigated. The starting materials as well as the solids and fluids resulting from the experiments were characterized using BET, energy dispersive X-ray spectroscopy, electron microprobe analysis, inductively coupled plasma-optical emission spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, and X-ray fluorescence spectroscopy. The electrical conductivity of fluid samples was used as a proxy for the evolution of the fluid composition in the experiments. The chemical analyses of the fluids in combination with hydrogeochemical simulations with PHREEQC suggested the precipitation of Al–Si-bearing solid phases. Electron microscopy confirmed the formation of secondary amorphous Al–Si-bearing solid phases. The microscopic observations are consistent with a process of stoichiometric dissolution of the mineral grains, transport of dissolved ions in the fluid phase, and spatially coupled precipitation of sub-μm sized amorphous particles on mineral surfaces. These findings shed light onto early stages of diagenesis of quartz–feldspar sands and indicate that amorphous phases may be precursors for the formation of crystalline phases, for example, clay minerals.  相似文献   

17.
In situ measurements of mineral surface evolution during the process of pressure solution are possible with the high brightness of synchrotron X-ray sources. This capability has been explored through the use of newly developed reaction vessels that allow transmission of the incident and scattered X-ray beam through a low atomic weight piston. Several new vessels are described, along with details of computational algorithms that are used to simulate X-ray scattering in this unconventional geometry. Results using calcite (CaCO3) and halite (NaCl) as reactant crystals are presented and compared to other atomic-scale measurements of surface dissolution processes. Calcite was reacted with an unsaturated fluid at 30 bars of pressure for approximately 24 h. During reaction the root mean square surface roughness (σ) evolved from 13.7 Å (± 0.5 Å) to 19.5 Å (± 1.0 Å), giving a roughening rate of: dσ/dt = +6.3 × 10− 5 Å s− 1. This is consistent with other measurements made with free calcite surfaces and is driven almost entirely by chemical disequilibrium. Analysis of the surface ex situ post-reaction gives an identical σ value, showing that the in situ measurements are well-constrained. Experiments also at 30 bars but in a saturated solution indicate that the calcite surface does not significantly roughen, giving the result that pressure solution of calcite at this pressure cannot be monitored in experiments of several days duration. Experiments with halite, a much more reactive phase, in saturated solutions showed the reflectivity profile to be dynamic on a time scale of hours. This experiment was left to reach equilibrium over 108 days and then re-analyzed, showing that σ had increased from 34 Å (± 2 Å) to 41 Å (± 2 Å), giving a roughening rate of: dσ/dt ≤ +6.4 × 10− 7 Å s− 1. This is two orders of magnitude smaller than the calcite roughening rate caused by chemical disequilibrium and provides the first direct in situ atomic-scale measurement of the rate of surface roughening due to pressure solution.  相似文献   

18.
The dissolution rate of illite, a common clay mineral in Australian soils, was studied in saline-acidic solutions under far from equilibrium conditions. The clay fraction of Na-saturated Silver Hill illite (K1.38Na0.05)(Al2.87Mg0.46Fe3+0.39Fe2+0.28Ti0.07)[Si7.02Al0.98]O20(OH)4 was used for this study. The dissolution rates were measured using flow-through reactors at 25 ± 1 °C, solution pH range of 1.0-4.25 (H2SO4) and at two ionic strengths (0.01 and 0.25 M) maintained using NaCl solution. Illite dissolution rates were calculated from the steady state release rates of Al and Si. The dissolution stoichiometry was determined from Al/Si, K/Si, Mg/Si and Fe/Si ratios. The release rates of cations were highly incongruent during the initial stage of experiments, with a preferential release of Al and K over Si in majority of the experiments. An Al/Si ratio >1 was observed at pH 2 and 3 while a ratio close to the stoichiometric composition was observed at pH 1 and 4 at the higher ionic strength. A relatively higher K+ release rate was observed at I = 0.25 in 2-4 pH range than at I = 0.01, possibly due to ion exchange reaction between Na+ from the solution and K+ from interlayer sites of illite. The steady state release rates of K, Fe and Mg were higher than Si over the entire pH range investigated in the study. From the point of view of the dominant structural cations (Si and Al), stoichiometric dissolution of illite occurred at pH 1-4 in the higher ionic strength experiments and at pH ?3 for the lower ionic strength experiments. The experiment at pH 4.25 and at the lower ionic strength exhibited lower RAl (dissolution rate calculated from steady state Al release) than RSi (dissolution rate calculated from steady state Si release), possibly due to the adsorption of dissolved Al as the output solutions were undersaturated with respect to gibbsite. The dissolution of illite appears to proceed with the removal of interlayer K followed by the dissolution of octahedral cations (Fe, Mg and Al), the dissolution of Si is the limiting step in the illite dissolution process. A dissolution rate law showing the dependence of illite dissolution rate on proton concentration in the acid-sulfate solutions was derived from the steady state dissolution rates and can be used in predicting the impact of illite dissolution in saline acid-sulfate environments. The fractional reaction orders of 0.32 (I = 0.25) and 0.36 (I = 0.01) obtained in the study for illite dissolution are similar to the values reported for smectite. The dissolution rate of illite is mainly controlled by solution pH and no effect of ionic strength was observed on the dissolution rates.  相似文献   

19.
Data from studies of dissimilatory bacterial (108 cells mL−1 of Shewanella putrefaciens strain CN32, pH 6.8) and ascorbate (10 mM, pH 3.0) reduction of two synthetic Fe(III) oxide coated sands and three natural Fe(III) oxide-bearing subsurface materials (all at ca. 10 mmol Fe(III) L−1) were analyzed in relation to a generalized rate law for mineral dissolution (Jt/m0 = k′(m/m0)γ, where Jt is the rate of dissolution and/or reduction at time t, m0 is the initial mass of oxide, and m/m0 is the unreduced or undissolved mineral fraction) in order to evaluate changes in the apparent reactivity of Fe(III) oxides during long-term biological vs. chemical reduction. The natural Fe(III) oxide assemblages demonstrated larger changes in reactivity (higher γ values in the generalized rate law) compared to the synthetic oxides during long-term abiotic reductive dissolution. No such relationship was evident in the bacterial reduction experiments, in which temporal changes in the apparent reactivity of the natural and synthetic oxides were far greater (5-10 fold higher γ values) than in the abiotic reduction experiments. Kinetic and thermodynamic considerations indicated that neither the abundance of electron donor (lactate) nor the accumulation of aqueous end-products of oxide reduction (Fe(II), acetate, dissolved inorganic carbon) are likely to have posed significant limitations on the long-term kinetics of oxide reduction. Rather, accumulation of biogenic Fe(II) on residual oxide surfaces appeared to play a dominant role in governing the long-term kinetics of bacterial crystalline Fe(III) oxide reduction. The experimental findings together with numerical simulations support a conceptual model of bacterial Fe(III) oxide reduction kinetics that differs fundamentally from established models of abiotic Fe(III) oxide reductive dissolution, and indicate that information on Fe(III) oxide reactivity gained through abiotic reductive dissolution techniques cannot be used to predict long-term patterns of reactivity toward enzymatic reduction at circumneutral pH.  相似文献   

20.
In order to evaluate the extent of CO2–water–rock interactions in geological formations for C sequestration, three batch experiments were conducted on alkali feldspars–CO2–brine interactions at 150–200 °C and 300 bars. The elevated temperatures were necessary to accelerate the reactions to facilitate attainable laboratory measurements. Temporal evolution of fluid chemistry was monitored by major element analysis of in situ fluid samples. SEM, TEM and XRD analysis of reaction products showed extensive dissolution features (etch pits, channels, kinks and steps) on feldspars and precipitation of secondary minerals (boehmite, kaolinite, muscovite and paragonite) on feldspar surfaces. Therefore, these experiments have generated both solution chemistry and secondary mineral identity. The experimental results show that partial equilibrium was not attained between secondary minerals and aqueous solutions for the feldspar hydrolysis batch systems. Evidence came from both solution chemistry (supersaturation of the secondary minerals during the entire experimental duration) and metastable co-existence of secondary minerals. The slow precipitation of secondary minerals results in a negative feedback in the dissolution–precipitation loop, reducing the overall feldspar dissolution rates by orders of magnitude. Furthermore, the experimental data indicate the form of rate laws greatly influence the steady state rates under which feldspar dissolution took place. Negligence of both the mitigating effects of secondary mineral precipitation and the sigmoidal shape of rate–ΔGr relationship can overestimate the extent of feldspar dissolution during CO2 storage. Finally, the literature on feldspar dissolution in CO2-charged systems has been reviewed. The data available are insufficient and new experiments are urgently needed to establish a database on feldspar dissolution mechanism, rates and rate laws, as well as secondary mineral information at CO2 storage conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号