首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT

Somalia has frequently been affected by droughts, famines and water-related humanitarian crises. Water is scarce and the only perennial streams, the Juba and Shabelle rivers, are trans-boundary with river flows mainly originating from the Ethiopian highlands. In both riparian countries water demands are projected to increase. This paper reveals the impact of rising regional water abstractions on stream flows by illustrating sectoral demands and joining them into scenarios of medium and high population and economic growth. These scenarios are associated to the time horizons of 2035 and 2055, respectively. The scenarios disclose alarming trends especially for the Shabelle River: in the medium and high growth scenarios, water demands surpass the available river flows by 200 and 3500 hm3, respectively. The calculated deficits partly derive from conflicting assumptions about river flows by the two main riparian countries, an obstacle to any integrated planning efforts and sustained regional development.
EDITOR Z.W. Kundzewicz; ASSOCIATE EDITOR F. Hattermann  相似文献   

2.
太湖水系结构特点及其功能的变化   总被引:12,自引:8,他引:12  
韩昌来  毛锐 《湖泊科学》1997,9(4):300-306
太源水系上游为树状排列的河流,下游为扇形排水系统,全区江河湖海相贯通,受海潮和江流的作用,下游水系多变,防洪抗灾能力脆弱。近年来,虽经治理,该水系仍出现了“中雨大灾”,水资源不足及水质污染突出等一系列功能性的变化。  相似文献   

3.
Abstract

A monthly rainfall-runoff model was calibrated for a large tropical catchment in southern India. Various land-use and climatic change scenarios were tested to assess their effects on mean annual runoff and assured water yield at the Bhavanisagar Reservoir in Tamil Nadu, India. The largest increase in runoff (19%) came from converting forest and savanna (the indigenous control scenario) to agriculture. Mean annual runoff decreased by 35% after conversion to commercial forest and 6% after partial conversion to tea plantations. The predicted climate scenarios of reduced dry season rainfall decreased the annual runoff by 5% while enhanced annual rainfall caused a 17% increase in runoff. Even if land-use and climate changes had relatively large effects on runoff, the changes in reservoir yield which can be assured every year, were often less severe. This was probably due to the buffering effect of the reservoir and variation in the mean annual runoff.  相似文献   

4.
Water temperature is an important habitat factor in river ecosystems that exhibits the characteristics of continuous change. Dam construction disrupts the continuity of river water temperature and reset it, thus exerting sharp rise/decrease on the characteristics of water temperature change. The effect of a dam on river continuity is directly related to the dam size. To explain this relationship, two rivers in China were selected: one river without reservoirs and one river with cascade reservoirs. Through the analysis of the longitudinal change of water temperature in free-flowing rivers, we found that water temperature changes continuously and steadily in the longitudinal direction. Based on this, a temperature trend hypothesis in river was proposed, and the discontinuity of the water temperature in the reservoir section was evaluated. The results are as follows: (1) In mixed reservoirs, river water temperature remained as continuous as free-flowing rivers. However, the river water temperature had a large discontinuity in the stratified reservoir. (2) Water residence time was used as an indicator of the continuity of reservoir water temperature. (3) Selective withdrawal of stratified reservoirs in January could not remove the discontinuity caused by itself, but it worked in June.  相似文献   

5.
石希  夏军强  孙健 《湖泊科学》2022,34(1):307-319
水温是影响河流生态环境的重要因素.传统水温观测手段受限于测站的地理位置,数据分布稀疏.近20年来随着热红外卫星传感器在空间分辨率上的革新,热红外遥感影像逐步被应用于反演河流水温,但目前相关研究聚焦于利用单颗卫星数据并使用单一水温反演方法而忽略与其他卫星以及处理方法做对比.本文以长江上游流域为例,分别评估了水文反演流程中...  相似文献   

6.
Human‐accelerated climate change is quickly leading to glacier‐free mountains, with consequences for the ecology and hydrology of alpine river systems. Water origin (i.e., glacier, snowmelt, precipitation, and groundwater) is a key control on multiple facets of alpine stream ecosystems, because it drives the physico‐chemical template of the habitat in which ecological communities reside and interact and ecosystem processes occur. Accordingly, distinct alpine stream types and associated communities have been identified. However, unlike streams fed by glaciers (i.e., kryal), groundwater (i.e., krenal), and snowmelt/precipitation (i.e., rhithral), those fed by rock glaciers are still poorly documented. We characterized the physical and chemical features of these streams and investigated the influence of rock glaciers on the habitat template of alpine river networks. We analysed two subcatchments in a deglaciating area of the Central European Alps, where rock glacier‐fed, groundwater‐fed, and glacier‐fed streams are all present. We monitored the spatial, seasonal, and diel variability of physical conditions (i.e., water temperature, turbidity, channel stability, and discharge) and chemical variables (electrical conductivity, major ions, and trace element concentrations) during the snowmelt, glacier ablation, and flow recession periods of two consecutive years. We observed distinct physical and chemical conditions and seasonal responses for the different stream types. Rock glacial streams were characterized by very low and constant water temperatures, stable channels, clear waters, and high concentrations of ions and trace elements that increased as summer progressed. Furthermore, one rock glacier strongly influenced the habitat template of downstream waters due to high solute export, especially in late summer under increased permafrost thaw. Given their unique set of environmental conditions, we suggest that streams fed by thawing rock glaciers are distinct river habitats that differ from those normally classified for alpine streams. Rock glaciers may become increasingly important in shaping the hydroecology of alpine river systems under continued deglaciation.  相似文献   

7.
The effect of forests on annual water yield is an unresolved central issue in forest hydrology despite years of study. There has been a particular shortage of research in the mountains of arid inland river basins. In the present study, we examined the effects of forests on hydrology using data on precipitation, evaporation, canopy interception, transpiration, and runoff from 1994 to 2008 for the Pailugou catchment of northwestern China's Qilian Mountains. We modelled the water balance to assess the contribution of different vegetation types to annual water yield. In our study area, Picea crassifolia forest covered 38·5% of the catchment area, but contributed little to annual water yield. For an annual average precipitation of 407·1 mm (from 2003 to 2008) at an elevation of 2700 m, the runoff depth from the forest was 11·6 mm, accounting for only 3·5% of total annual water yield of the catchment. For an annual average precipitation of 374·1 mm (from 1994 to 2002), the runoff depth from the forest was ? 14·3 mm (i.e. 5·9% of total annual water yield of the catchment was consumed to sustain tree growth). This has significant implications, because forests are increasingly being planted in the Qilian Mountains, and this may decrease the downstream water supply. Thus, the relationship between the forest and water yield must be better understood to permit the establishment of an appropriate regional level of forest cover. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The glacially formed northeastern German lowlands are characterized by extensive floodplains, often interrupted by relatively steep moraine hills. The hydrological cycle of this area is governed by the tight interaction of surface water dynamics and the corresponding directly connected shallow groundwater aquifer. Runoff generation processes, as well as the extent and spatial distribution of the interaction between surface water and groundwater, are controlled by floodplain topography and by surface water dynamics. A modelling approach based on extensive experimental analyses is presented that describes the specific water balance of lowland areas, including the interactions of groundwater and surface water, as well as reflecting the important role of time‐variable shallow groundwater stages for runoff generation in floodplains. In the first part, experimental investigations of floodplain hydrological characteristics lead to a qualitative understanding of the water balance processes and to the development of a conceptual model of the water balance and groundwater dynamics of the study area. Thereby model requirements which allow for an adequate simulation of the floodplain hydrology, considering also interactions between groundwater and surface water have been characterized. Based on these analyses, the Integrated Modelling of Water Balance and Nutrient Dynamics (IWAN) approach has been developed. This consists of coupling the surface runoff generation and soil water routines of the deterministic, spatially distributed hydrological model WASIM‐ETH‐I with the three‐dimensional finite‐difference‐based numerical groundwater model MODFLOW and Processing MODFLOW. The model was applied successfully to a mesoscale subcatchment of the Havel River in northeast Germany. It was calibrated for two small catchments (1·4 and 25 km2), where the importance of the interaction processes between groundwater and surface waters and the sensitivity of several controlling parameters could be quantified. Validation results are satisfying for different years for the entire 198 km2 catchment. The model approach was further successfully tested for specific events. The experimental area is a typical example of a floodplain‐dominated landscape. It was demonstrated that the lateral flow processes and the interactions between groundwater and surface water have a major importance for the water balance and periodically superimposed on the vertical runoff generation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
10.
A comprehensive numerical analysis of the seismic response and site period of curved alluvial valleys was performed by taking into account the characteristics of sedimentary materials. This study presents a criterion as a combination of the three following geometrical and geotechnical characteristics of curved valleys in order to provide a simple method for code implementation of complex site effects: depth ratio, filling ratio and impedance ratio. The parametric studies were performed by a HYBRID program combining finite elements in the near field and boundary elements in the far field (FEM/BEM). The amplification patterns under above-mentioned characteristics were determined at the central point of valleys. The results are shown in the form of response spectra. Different impedance coefficients of materials were considered to evaluate effects resulting from combination with filling ratio and geometrical parameters. Finally, a criterion is proposed in terms of engineering applications to assess the spectral response at the surface of curved alluvial valleys.  相似文献   

11.
Increased sediment and nutrient losses resulting from unsustainable grazing management in the Burdekin River catchment are major threats to water quality in the Great Barrier Reef Lagoon. To test the effects of grazing management on soil and nutrient loss, five 1 ha mini-catchments were established in 1999 under different grazing strategies on a sedimentary landscape near Charters Towers. Reference samples were also collected from watercourses in the Burdekin catchment during major flow events. Soil and nutrient loss were relatively low across all grazing strategies due to a combination of good cover, low slope and low rainfall intensities. Total soil loss varied from 3 to 20 kg ha(-1) per event while losses of N and P ranged from 10 to 1900 g ha(-1) and from 1 to 71 g ha(-1) per event respectively. Water quality of runoff was considered moderate across all strategies with relatively low levels of total suspended sediment (range: 8-1409 mg l(-1)), total N (range: 101-4000 microg l(-1)) and total P (range: 14-609 microg l(-1)). However, treatment differences are likely to emerge with time as the impacts of the different grazing strategies on land condition become more apparent. Samples collected opportunistically from rivers and creeks during flow events displayed significantly higher levels of total suspended sediment (range: 10-6010 mg l(-1)), total N (range: 650-6350 microg l(-1)) and total P (range: 50-1500 microg l(-1)) than those collected at the grazing trial. These differences can largely be attributed to variation in slope, geology and cover between the grazing trial and different catchments. In particular, watercourses draining hillier, grano-diorite landscapes with low cover had markedly higher sediment and nutrient loads compared to those draining flatter, sedimentary landscapes. These preliminary data suggest that on relatively flat, sedimentary landscapes, extensive cattle grazing is compatible with achieving water quality targets, provided high levels of ground cover are maintained. In contrast, sediment and nutrient loss under grazing on more erodable land types is cause for serious concern. Long-term empirical research and monitoring will be essential to quantify the impacts of changed land management on water quality in the spatially and temporally variable Burdekin River catchment.  相似文献   

12.
Located at southern coast of China, the Pearl River Delta (PRD) is facing serious water problems in both quantity and quality after its rapid urbanization in the last decade. Most remarkably, the local groundwater, that was used to be the source of drinking water before the urbanization was polluted due to poor management of the septic tanks. In order to study the effects of suburban development on local groundwater flow and water quality in the PRD region, Fengcun of Guangzhou has been chosen as the study area. In Fengcun, drinking water was groundwater before the 1990s, but now piped reservoir water is used by each family because the groundwater has been polluted. This study clarifies the source and process of the groundwater pollution from septic tanks using isotopic and geochemical characteristics, especially nitrate (NO3?) concentrations. Water samples were collected from the wells and ponds in Fengcun in March and July 2005 and in July 2006. Based on the pe–pH diagram, NO3? and ammonium of groundwater are from the effect of human activities, rather than from nitrification and ammonification of N2. NO3? pollution of groundwater is from point sources, and NO3? concentrations decrease from northeast to southwest. Groundwater is polluted rapidly by the leakage of septic tanks. NO3? concentrations of pollution sources were lower than 20 mg l?1 in March 2005, but had increased to about 120 mg l?1 in July 2006. This implies that groundwater protection should be strengthened in rural areas of the PRD. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
The ability to quantify the processes driving geomorphic change in river valley margins is vital to geomorphologists seeking to understand the relative role of transport mechanisms (e.g. fluvial, aeolian, and hillslope processes) in landscape dynamics. High‐resolution, repeat topographic data are becoming readily available to geomorphologists. By contrasting digital elevation models derived from repeat surveys, the transport processes driving topographic changes can be inferred, a method termed ‘mechanistic segregation.’ Unfortunately, mechanistic segregation largely relies on subjective and time consuming manual classification, which has implications both for its reproducibility and the practical scale of its application. Here we present a novel computational workflow for the mechanistic segregation of geomorphic transport processes in geospatial datasets. We apply the workflow to seven sites along the Colorado River in the Grand Canyon, where geomorphic transport is driven by a diverse suite of mechanisms. The workflow performs well when compared to field observations, with an overall predictive accuracy of 84% across 113 validation points. The approach most accurately predicts changes due to fluvial processes (100% accuracy) and aeolian processes (96%), with reduced accuracy in predictions of alluvial and colluvial processes (64% and 73%, respectively). Our workflow is designed to be applicable to a diversity of river systems and will likely provide a rapid and objective understanding of the processes driving geomorphic change at the reach and network scales. We anticipate that such an understanding will allow insight into the response of geomorphic transport processes to external forcings, such as shifts in climate, land use, or river regulation, with implications for process‐based river management and restoration. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
In order to assess and compare the ecological impacts of channelization and shallow lowland reservoirs, macroinvertebrate communities of a lowland metapotamal river below reservoirs with epilimnial release were studied. The study was carried out in the Dyje River (Czech Republic) at five sites located from 1.5 to 22.5 km downstream of the reservoir outfall. The five sites differed in the degree of channel modification from natural muddy banks to riprap regulation. Seven samples were collected during the years 1998 and 1999 at each site using a semiquantitative method. The data were processed using multivariate analyses and methods for assessing the ecological and functional structure of communities. Altogether, 261 species of benthic macroinvertebrates were recorded including several rare and threatened taxa. Based on the results of principal component analysis (PCA), most of the variability within the species data (the first PCA axis) was explained by the degree of channel modification, from natural muddy banks with aquatic vegetation to a man-made riprap. The second axis was strongly correlated with current velocity. The sites differed in species richness, total abundances, proportion of individual functional feeding groups, pattern of the distribution of the current preference groups, and values of several biotic indexes, all of which also corresponded to the degree of channel modification. Thus, the morphological man-made modifications of the river channel were found to be the main factor affecting lowland river macroinvertebrates and their biodiversity. Our results suggest that the biggest threat to benthic macroinvertebrate diversity of lowland rivers comes from channelization. The impact of reservoirs can be completely overwhelmed by the impact of channelization, especially when muddy banks with aquatic vegetation present a substantial part of habitat diversity and significantly contribute to the total species pool.  相似文献   

15.
The paper examines the chemical composition of alluvial soils from the Zeya and Selemdzha River valleys, one of the branch rivers in the Amur River basin. It has been established that the compositions of these soils are characterized by a relative shortage of practically all analyzed macro- and microelements as compared with UCC (upper continental crust) and PAAS (post- Arhean Australian average shale) compositions. The chemical composition of alluvial soils approximates that of the soils in NE China and Korea due to similar climatic and geographic conditions. On the basis of relationships between major and trace elements and peculiarities of trace elements concentration it is shown that the alluvial soils in the middle reaches of the Zeya River were formed by the sources largely transformed by chemical weathering processes. By comparison, the soils in the Selemdzha River and lower reaches of the Zeya River (below the Selemdzha River mouth) are dominated by material to a large degree reworked by the physical processes rather than chemical ones. This inference conforms with specific geological settings of the water-collector.  相似文献   

16.
Impact studies of catchment management in the developing world rarely include detailed hydrological components. Here, changes in the hydrological response of a 200‐ha catchment in north Ethiopia are investigated. The management included various soil and water conservation measures such as the construction of dry masonry stone bunds and check dams, the abandonment of post‐harvest grazing, and the establishment of woody vegetation. Measurements at the catchment outlet indicated a runoff depth of 5 mm or a runoff coefficient (RC) of 1·6% in the rainy season of 2006. Combined with runoff measurements at plot scale, this allowed calculating the runoff curve number (CN) for various land uses and land management techniques. The pre‐implementation runoff depth was then predicted using the CN values and a ponding adjustment factor, representing the abstraction of runoff induced by the 242 check dams in gullies. Using the 2006 rainfall depths, the runoff depth for the 2000 land management situation was predicted to be 26·5 mm (RC = 8%), in line with current RCs of nearby catchments. Monitoring of the ground water level indicated a rise after catchment management. The yearly rise in water table after the onset of the rains (ΔT) relative to the water surplus (WS) over the same period increased between 2002–2003 (ΔT/WS = 3·4) and 2006 (ΔT/WS >11·1). Emerging wells and irrigation are other indicators for improved water supply in the managed catchment. Cropped fields in the gullies indicate that farmers are less frightened for the destructive effects of flash floods. Due to increased soil water content, the crop growing period is prolonged. It can be concluded that this catchment management has resulted in a higher infiltration rate and a reduction of direct runoff volume by 81% which has had a positive influence on the catchment water balance. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
A rising exposure to flood risk is a predicted consequence of increased development in vulnerable areas and an increase in the frequency of extreme weather events due to climate change. In the face of this challenge, a continued reliance on engineered at‐a‐point flood defences is seen as both unrealistic and undesirable. The contribution of ‘soft engineering’ solutions (e.g. riparian forests, wood in rivers) to integrated, catchment scale flood risk management has been demonstrated at small scales but not larger ones. In this study we use reduced complexity hydrological modelling to analyse the effects of land use and channel changes resulting from river restoration upon flood flows at the catchment scale. Results show short sections of river‐floodplain restoration using engineered logjams, typical of many current restoration schemes, have highly variable impacts on catchment‐scale flood peak magnitude and so need to be used with caution as a flood management solution. Forested floodplains have a more general impact upon flood hydrology, with areas in the middle and upper catchment tending to show reductions in peak magnitude at the catchment outflow. The most promising restoration scenarios for flood risk management are for riparian forest restoration at the sub‐catchment scale, representing 20–40% of the total catchment area, where reductions in peak magnitude of up to 19% are observed through de‐synchronization of the timings of sub‐catchment flood waves. Sub‐catchment floodplain forest restoration over 10–15% of total catchment area can lead to reductions in peak magnitude of 6% at 25 years post‐restoration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Estimation methods of eco-environmental water requirements: Case study   总被引:6,自引:0,他引:6  
With the enhancement of knowledge on the rela- tionship between water resources and ecological environment, the eco-environmental water require- ments have become an important factor in the alloca-tion of water resources[1―4]. Because of different un-derstandings on the concept, there are many estimation methods for ecological water requirements[5―7], envi-ronmental flows[8―12], instream flows[13,14], and low flows[15―17]. Most of those methods are identical in the intrinsic contents and a…  相似文献   

19.
20.
The possible use of quantitative characteristics of phytoplankton species diversity for water quality bioindication and for the search for ecologically admissible levels of abiotic factors is examined. Retrospective materials on the Don basin obtained from data of state environmental monitoring of freshwater in Russia are used. The effect produced on the characteristics by the diversity of errors in the calculation of the numbers of phytoplankton cells, the procedure used to assess rank distribution parameters, the adequacy of formal models of rank distributions, the relationship between the uniformity of rank distributions and species diversity, sampling season, water body type, and the geographic location of sampling site is analyzed. The obtained diversity characteristics are in agreement with the available monitoring data. Boundaries of the examined characteristics, corresponding to the well-being ranges of phytoplankton communities, were found. The ecologically admissible levels were calculated for the major abiotic factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号