首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
叶寿仁 《湖泊科学》2004,16(Z1):11-15
太湖流域北抵长江,南邻钱塘江,东濒大海,面积3.69×104km2,人口 3887万.流域内河流纵横交错, 河网如织,湖泊星罗棋布.素有'苏湖熟,天下足'和"赋出天下,江南居什九"之说,是历朝历代重要的税赋之地.2003年全流域国内生产总值15100亿元,占全国的13%;财政收入4123亿元,占全国的19%;城镇化率达66.5%,是我国经济最发达、城市化程度最高的地区之一由于太湖流域重要的经济社会地位,因此历朝历代对太湖流域治理都极为重视六朝相继建都南京,将太湖流域作为重要经济区域,做了不少有名的水利工程,如开挖江南运河、頓塘等河道,修建鉴湖、练湖等灌溉工程;隋唐五代,兴筑大量塘坝,修建吴江塘路,拓浚整治河道,发展农业灌溉;北北宋时期,治理吴凇江,浚治支河、支港;元明清时期,基本是继承宋代疏导为主的治水方针,致力于下游排水出路整治,开挖范家浜, 冲出黄浦江;民国时期,战乱频繁,社会动荡,水利设施长期失修,削弱了抵御洪涝灾害的能力.新中国成立后,各级政府高度重视水利建设,流域内各地大规模兴建水库塘坝,拓浚整治河道,修建改造圩堤涵闸,新修排灌系统,区域防洪、除涝和供水能力有了很大的提高,水利建设成就斐然,为经济社会发展创造了条件.  相似文献   

2.
Hibbs BJ  Darling BK 《Ground water》2005,43(5):750-763
Intermontane basins in the Trans-Pecos region of westernmost Texas and northern Chihuahua, Mexico, are target areas for disposal of interstate municipal sludge and have been identified as possible disposal sites for low-level radioactive waste. Understanding ground water movement within and between these basins is needed to assess potential contaminant fate and movement. Four associated basin aquifers are evaluated and classified; the Red Light Draw Aquifer, the Northwest Eagle Flat Aquifer, the Southeast Eagle Flat Aquifer, and the El Cuervo Aquifer. Encompassed on all but one side by mountains and local divides, the Red Light Draw Aquifer has the Rio Grande as an outlet for both surface drainage and ground water discharge. The river juxtaposed against its southern edge, the basin is classified as a topographically open, through-flowing basin. The Northwest Eagle Flat Aquifer is classified as a topographically closed and drained basin because surface drainage is to the interior of the basin and ground water discharge occurs by interbasin ground water flow. Mountains and ground water divides encompass this basin aquifer on all sides; yet, depth to ground water in the interior of the basin is commonly >500 feet. Negligible ground water discharge within the basin indicates that ground water discharges from the basin by vertical flow and underflow to a surrounding basin or basins. The most likely mode of discharge is by vertical, cross-formational flow to underlying Permian rocks that are more porous and permeable and subsequent flow along regional flowpaths beneath local ground water divides. The Southeast Eagle Flat Aquifer is classified as a topographically open and drained basin because surface drainage and ground water discharge are to the adjacent Wildhorse Flat area. Opposite the Eagle Flat and Red Light Draw aquifers is the El Cuervo Aquifer of northern Chihuahua, Mexico. The El Cuervo Aquifer has interior drainage to Laguna El Cuervo, which is a phreatic playa that also serves as a focal point of ground water discharge. Our evidence suggests that El Cuervo Aquifer may lose a smaller portion of its discharge by interbasin ground water flow to Indian Hot Springs, near the Rio Grande. Thus, El Cuervo Aquifer is a topographically closed basin that is either partially drained if a component of its ground water discharge reaches Indian Hot Springs or undrained if all its natural ground water discharge is to Laguna El Cuervo.  相似文献   

3.
We use input-output analysis of nitrogen flows between various sources-sectors and natural waters in the Swedish Norrström drainage basin for investigating and bounding the implication range of some uncertainty sources for results of subsurface nitrogen accumulation-depletion in this basin. We quantify different possible base and extreme assumptions of nitrogen discharges and transport pathways from agriculture to surface and groundwater in the basin. The results are robust in showing considerable nitrogen accumulation-depletion flow interactions taking place between the basin’s mobile water and accumulated nitrogen pools in soils, sediments and/or relatively immobile subsurface water zones for all different scenario assumptions. Similar scenario robustness is also found in resulting relative contributions of different active nitrogen source-sectors to nitrogen flows in natural water systems. In the Norrström basin, and possibly more generally, nitrogen accumulation-depletion flows to and from accumulated legacies for the future or from the past appear therefore to be more important for water quality than current nitrogen discharges from active source-sectors.  相似文献   

4.
The regional specifics of water use in the transboundary basin of the Ural R. are studied. The diverse problems of dependable water use in the region are caused by the interaction of natural and anthropogenic factors. Considering the space and time variations of river runoff, a possible approach to solving water use problem is runoff regulation. To effectively solve the problem of water use requires the search for an organizational and legal form of institutional interaction within the transboundary basin of the Ural R.  相似文献   

5.
Consideration of environmental flows in river basin management poses great challenges. Environmental flows are interpreted as the natural or regulated releases of water needed in a river to maintain specified valued features of the river ecosystems. This has never been considered explicitly in water resources management of a river basin. An attempt is, therefore, made here to reflect the perception and implications of environmental flows in water resources management. Assessment approaches are reviewed in the context of flow characteristics of a river system and recommendations are put forward on what is to be done to adopt this new concept in practice.  相似文献   

6.
崔伟中 《湖泊科学》2004,16(Z1):77-82
流域管理是以水资源的自然流域特性和多功能属性为基础的管理制度,它的目标是使有限的水资源实现优化配置和发挥最大效益.流域管理的问题直接关系到以水资源的可持续利用支持经济社会的可持续发展的大局.通过分析我国流域管理存在的问题,借鉴国外成功的流域管理经验,提出要进一步明确流域管理和行政区域管理的事权,加快流域管理相应的法律法规建设,加大流域管理的支撑保障能力建设,充分发挥流域管理机构科学规划决策、有效配置调控和有力监督控制的作用,进一步探索适合不同流域的管理模式,加大构建公共参与和民主协商机制力度,探索建立流域水资源管理可持续利用的市场机制.  相似文献   

7.
Studying the processes responsible for the distribution of water resources in a river basin over space and time is of great importance for spatial planning. In this study a multi-agent simulation approach is applied for exploring the influence of alternative reservoir operation strategies on water use distribution in the semi-arid Jaguaribe basin in case of decreasing rainfall. Water use distribution is analyzed both for one specific subbasin – our study area – and for the river basin level. Agents in this study are farmers that adapt to local variations in water availability. In this way both natural and human influences on water availability are taken into account. This study shows that a decrease in rainfall and runoff in the Jaguaribe basin leads to a transition of water use from the dry season to the wet season. The dry season water use decreases because of reduced water availability in the dry season. This mainly is the result of reduced rainfall and runoff in the wet season and the consequent increased water use for irrigation in the wet season. A decrease in rainfall and runoff also leads to a relative transition of water use from downstream to upstream at the basin scale. Strategic reservoir operation enables local water managers to offset the effect of decreasing rainfall and runoff with regards to water use at the subbasin level, at the cost of further decreasing water availability at the basin level.  相似文献   

8.
《水文科学杂志》2013,58(1):90-100
Abstract

In the past 50 years, influenced by global climate change, the East Asian summer monsoon intensity (SMI) changed significantly, leading to a response by the water cycle of the Yellow River basin. The variation in SMI has three stages: (1) 1951–1963, SMI increased; (2) 1963–1965, SMI declined sharply, a feature that may be regarded as an abrupt change; and (3) 1965–2000, SMI remained at low levels and showed a tendency to decline slowly. The decreased SMI led to a reduction in water vapour transfer from the ocean to the Yellow River basin, and thus precipitation decreased and the natural river runoff of the Yellow River also decreased. Due to the increase in population and therefore in irrigated land area, the ratio of net water diversion to natural river runoff increased continuously. Comparison of the ratio of net water diversion to natural river runoff before and after the abrupt change in SMI indicates some discontinuity in the response of the man-induced lateral branch of the water cycle to the abrupt change in SMI. The frequently occurring flow desiccation in the lower Yellow River can be regarded as a response of the water cycle system to the decreasing summer monsoon intensity and increasing population. When the ratio of net water diversion exceeded the ratio of natural runoff of the low-flow season to the annual total natural runoff, flow desiccation in the lower Yellow River would occur. When the ratio of net water diversion is 0.3 larger than the ratio of the natural runoff of the low-flow season to the annual total natural runoff, an abrupt increase in the number of flow desiccation events is likely to occur.  相似文献   

9.
The Tagus River basin is an ultimately important water source for hydropower production, urban and agricultural water supply in Spain and Portugal. Growing electricity and water supply demands, over‐regulation of the river and construction of new dams, as well as large inter‐basin and intra‐basin water transfers aggravated by strong natural variability of climate in the catchment, have already imposed significant pressures on the river. The substantial reduction of discharge is observed already now, and projected climatic change is expected to alter the water budget of the catchment further.In this study, we address the effects of projected climate change on the water resources availability in the Tagus River basin and influence of potential changes on hydropower generation of the three important reservoirs in the basin. The catchment‐scale, process‐based eco‐hydrological model soil and water integrated model was set up, calibrated and validated for the entire Tagus River basin, taking into account 15 large reservoirs in the catchment. The future climate projections were selected from those generated within the Inter‐Sectoral Impact Model Intercomparison Project. They include five bias‐corrected climatic datasets for the region, obtained from global circulation model runs under two emissions scenario – moderate and extreme ones – and covered the whole century. The results show a strong agreement among model runs in projecting substantial decrease of discharge of the Tagus River discharge and, consequently, a strong decrease in hydropower production under both future climate scenarios. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Global wanning resulting from increasing greenhouse gases in the atmosphere and the local climate changes that follow affect local hydrospheric and biospheric environments. These include lakes that serve surrounding populations as a fresh water resource or provide regional navigation. Although there may well be steady water-quality alterations in the lakes with time, many of these are very much climate-change dependent. During cool and wet periods, there may be water-level rises that may cause economic losses to agriculture and human activities along the lake shores. Such rises become nuisances especially in the case of shoreline settlements and low-lying agricultural land. Lake Van, in eastern Turkey currently faces such problems due to water-level rises. The lake is unique for at least two reasons. First, it is a closed basin with no natural or artificial outlet and second, its waters contain high concentrations of soda which prevent the use of its water as a drinking or agricultural water source. Consequently, the water level fluctuations are entirely dependent on the natural variability of the hydrological cycle and any climatic change affects the drainage basin. In the past, the lake-level fluctuations appear to have been rather systematic and unrepresentable by mathematical equations. Herein, monthly polygonal climate diagrams are constructed to show the relation between lake level and some meteorological variables, as indications of significant and possible climatic changes. This procedure is applied to Lake Van, eastern Turkey, and relevant interpretations are presented.  相似文献   

11.
流域植被覆盖状况对于水源地生态环境保护具有重要的指示作用.当前的水质目标管理不仅要着眼于湖库水质参数控制,更应该从整个流域的角度维系生态平衡.在此背景下,依托长时间序列MODIS遥感数据对千岛湖流域2001-2013年植被覆盖状况进行监测,采用最小二乘法趋势分析和Mann-Kendall显著性检验方法分析了千岛湖流域植被的空间分布特征、时间变化特征与长期变化趋势.研究表明该方法能够有效地监测流域植被覆盖的时空动态变化:1)从空间分布上来看,千岛湖流域植被覆盖状况整体较好,但同时也发现受人为干扰较大的地域如河、湖附近的城镇建设用地、农业用地以及园地,其NDVI值明显低于自然林地;2)从时间变化特征上看,2001-2013年千岛湖流域植被年际NDVI在0.69~0.73之间波动,且近年来有增长趋势,年内季节性NDVI动态分析表明高时间分辨率的MODIS数据能够用来区分常绿植被与落叶植被的物候特征,以分析不同植被类型对流域氮、磷流失的风险差异;3)从变化趋势上看,2001-2013年植被覆盖状况改善的区域远大于退化的区域,其中改善区域约占流域面积的55.90%,呈现出一定退化状态的区域约占29.60%(严重退化区域仅占3.97%),而相对稳定不变区域约占14.51%.经与气温与降水等气候因子进行相关性分析表明,植被NDVI与气温呈显著正相关,而降水则不敏感,说明气温是研究区植被生长的主导气候因子.同时发现,人类活动对局部植被变化影响较大.研究结果可为流域水资源与生态环境保护提供空间数据支撑.  相似文献   

12.
During the operations of purging and disposal of sediments of a reservoir it is necessary to know the values of turbidity in the river downstream in natural condition,in the absence of dams or river training works.The paper shows that under these conditions the ratio of the average values of sediment discharge to the annual maximum value of water discharge is a function of the average annual turbidity.Turbidity can be considered as representative synthetic index of the climatic conditions,the lithological features and the land cover of the basin,and the geometric characteristics of the river network.The proposed relationship of sediment discharge as a function of water discharge were validated on the basis of data collected from different Italian regions that have very different morphological,geo-lithological and rainfall features and that are characterised by a basin area changing between a few dozen and thousands of square kilometres.The results can be considered satisfying.  相似文献   

13.
The Hungarian Basin is a large depression. The deep multilayer flow-system of this basin represents a thermal circulation in equilibrium under natural conditions.The terrestrial heat-flow of the basin can be considered balanced, therefore, any geothermal anomaly is of convective origin. Negative geothermal anomaly and low salinity of the water characterize the recharge area and positive anomaly and high salinity the discharge belt. All is proved by geothermal, hydrochemical and hydrodynamic maps of the thermal water aquifer. Deep flow through thick and highly permeable deposits of the main recharge area cause strong negative anomaly and very low salinity. Extreme anomalies are of tectonic origin.  相似文献   

14.
15.
Ground water is a vital, but underappreciated, natural resource in the Great Lakes basin. It meets many human needs and contributes significantly to the hydrology of the Great Lakes and the health of ecosystems. This paper provides an overview of ground water in the Great Lakes and the institutional and legal setting that governs the use, protection, diversion, and removal of water from the basin and proposes a citizen-centered vision for management of ground water in the 21st century.  相似文献   

16.
Significant changes have been observed in the hydrology of Central Rift Valley (CRV) lakes in Ethiopia, East Africa as a result of both natural processes and human activities during the past three decades. This study applied an integrated approach (remote sensing, hydrologic modelling, and statistical analysis) to understand the relative effects of natural processes and human activities over a sparsely gauged CRV basin. Lake storage estimates were calculated from a hydrologic model constructed without inputs from human impacts such as water abstraction and compared with satellite‐based (observed) lake storage measurements to characterize the magnitude of human‐induced impacts. A non‐parametric Mann–Kendall test was used to detect the presence of climatic trends (e.g. a decreasing or increasing trends in precipitation), while the Standard Precipitation Index (SPI) analysis was used to assess the long‐term, inter‐annual climate variability within the basin. Results indicate human activities (e.g. abstraction) significantly contributed to the changes in the hydrology of the lakes, while no statistically significant climatic trend was seen in the basin, however inter‐annual natural climate variability, extreme dryness, and prolonged drought has negatively affected the lakes. The relative contributions of natural and human‐induced impacts on the lakes were quantified and evaluated by comparing hydrographs of the CRV lakes. Lake Abiyata has lost ~6.5 m in total lake height between 1985 and 2006, 70% (~4.5 m) of the loss has been attributed to human‐induced causes, whereas the remaining 30% is related to natural climate variability. The relative impact analysis utilized in this study could potentially be used to better plan and create effective water‐management practices in the basin and demonstrates the utility of this integrated methodology for similar studies assessing the relative natural and human‐induced impacts on lakes in data sparse areas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The processes that occur in wetlands and natural lakes are often overlooked and not fully incorporated in the conceptual development of many hydrological models of basin runoff. These processes can exert a considerable influence on downstream flow regimes and are critical in understanding the general patterns of runoff generation at the basin scale. This is certainly the case for many river basins of southern Africa which contain large wetlands and natural lakes and for which downstream flow regimes are altered through attenuation, storage and slow release processes that occur within the water bodies. Initial hydrological modelling studies conducted in some of these areas identified the need to explicitly account for wetland storage processes in the conceptual development of models. This study presents an attempt to incorporate wetland processes into an existing hydrological model, with the aim of reducing model structural uncertainties and improving model simulations where the impacts of wetlands or natural lakes on stream flow are evident. The approach is based on relatively flexible functions that account for the input–storage–output relationships between the river channel and the wetland. The simulation results suggest that incorporating lake and wetland storage processes into modelling can provide improved representation (the right results for the right reason) of the hydrological behaviour of some large river basins, as well as reducing some of the uncertainties in the quantification of the original model parameters used for generating the basin runoff. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
季江  胡文英 《湖泊科学》1994,6(2):115-123
详细阐述了马湖的地理位置、湖盆形态、流域水系特征及湖区自然概况。从研究水资源的角度出发,实测了水下地形,并进行了湖水的水量平衡分析计算。分析湖水的理化特性,包括:水色、透明度、温度、溶解性气体、pH值、营养物质、矿化度和水型等,并根据其水资源特点,提出了开发和综合利用的措施。  相似文献   

19.
琼东南盆地油气地质显示盆地内具有生物成因和热成因天然气的巨大生成能力和远景. 地震剖面显示盆地内发育有泥底辟和气烟囱、沟通泥底辟和气烟囱与海底的断裂及可能正在活动的天然气冷泉,这些特征非常有利于天然气水合物的发育. 通过天然气水合物热力学稳定域预测,确定了琼东南盆地天然气水合物的平面和剖面分布特征. 生物成因甲烷水合物分布于水深大于约600m的海底,稳定带最大厚度约314m;热成因天然气水合物分布于水深大于约450m的海区,稳定带最大厚度约410m. 盆地内天然气水合物远景总量约10×109m3,水合物天然气远景为1.6×1012m3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号