首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Experimental studies on the interactions between artificial seawater (ASW) and fresh rhyolite, perlite and weakly altered dacitic tuff containing a small amount of smectite suggest changing cation transfer during smectite-forming processes. Initially, dissolution of K from the rocks accompanies incorporation of Mg and Ca from ASW during both earlier (devitrification stage) and later smectite formation, whereas Ca incorporated with early smectite formation redissolves with progressive reaction. Barium mobility increases toward the later smectite-forming reactions. Therefore, the large amounts of barite, anhydrite and gypsum in Kuroko ore deposits are considered to have precipitated from hydrothermal solutions derived from the interaction with previously altered felsic rocks during late smectite formation, rather than by the reaction with fresh felsic rocks.Editorial handling: D. Lentz  相似文献   

2.
Stoichiometry of smectite dissolution reaction   总被引:1,自引:0,他引:1  
The dissolution stoichiometry of smectite-rich bentonites SAz-1, STx-1 and SWy-1 was studied at 50°C and pH 2 and 3 using flow-through reactors. In addition to smectite, these samples contain considerable amounts of silica phases (quartz, cristobalite and/or amorphous silica). As a result, the molar Al/Si ratios of the bulk samples are significantly lower than those of the pure smectite.Smectite dissolution was highly incongruent during the first few hundred to few thousand hours of the experiments. Release rates of Si, Mg, Ca and Na underwent a distinct transition from an initial period of rapid release to significantly lower release rate at steady state. A reversed trend was observed for release of Al, which gradually increased from very low starting release rate to higher release rate at steady state. At steady state the ratio of released Al to released Si was found to be constant and independent of the experimental conditions. We suggest that this ratio represents the Al/Si ratio of the smectite itself, and it is not influenced by the presence of accessory phases in the sample.The rapid release of calcium, sodium and magnesium from the interlayer sites is explained by ion-exchange reactions, whereas the fast release of silicon is explained by dissolution of amorphous silica. We interpret the initial slow release of Al as the result of inhibition of smectite dissolution due to coating or cementation of the smectite aggregates by amorphous silica. As the silica is dissolved, the aggregates fall apart and more smectite surfaces are exposed, resulting in an increase in the smectite dissolution rate. Thereafter, the system approaches steady state, in which the major tetrahedral and octahedral cations of smectite are released congruently.  相似文献   

3.
The smectite-to-chlorite conversion is investigated through long-duration experiments (up to 9 years) conducted at 300 °C. The starting products were the Wyoming bentonite MX80 (79 % smectite), metallic iron and magnetite in contact with a Na–Ca chloride solution. The predominant minerals in the run products were an iron-rich chlorite (chamosite like) and interstratified clays interpreted to be chlorite/smectite and/or corrensite/smectite, accompanied by euhedral crystals of quartz, albite and zeolite. The formation of pure corrensite was not observed in the long-duration experiments. The conversion of smectite into chlorite over time appears to take place in several steps and through several successive mechanisms: a solid-state transformation, significant dissolution of the smectite and direct precipitation from the solution, which is over-saturated with respect to chlorite, allowing the formation of a chamosite-like mineral. The reaction mechanisms are confirmed by X-ray patterns and data obtained on the experimental solutions (pH, contents of Si, Mg, Na and Ca). Because of the availability of some nutrients in the solution, total dissolution of the starting smectite does not lead to 100 % crystallization of chlorite but to a mixture of two dominant clays: chamosite and interstratified chlorite/smectite and/or corrensite/smectite poor in smectite. The role of Fe/(Fe + Mg) in the experimental medium is highlighted by chemical data obtained on newly formed clay particles alongside previously published data. The newly formed iron-rich chlorite has the same composition as that predicted by the geothermometer for diagenetic to low-grade metamorphic conditions, and the quartz + Fe-chlorite + albite experimental assemblage in the 9-year experiment is close to that fixed by water–rock equilibrium.  相似文献   

4.
The sediments of the Bauer Deep, an open ocean basin situated on the northwest Nazca Plate in the southeast Pacific, constitute a regional metalliferous deposit dominated by authigenic smectite.Two 2-metre long cores from the Bauer Deep were examined to investigate the nature and origin of the smectite.Infra-red and Mossbauer spectroscopy and wet chemical analysis (LiBO2 fusion) of isolated smectite, indicate the mineral is a Mg-rich, Al-rich nontronite. Oxygen isotopic compositions for isolated smectite are uniform and translate to a non-hydrothermal temperature of formation of about 3°C. SEM observations show an abundance of well-preserved biogenic opal in surface and near surface sediment but postburial dissolution and transformation of this phase to smectite is evident at depth.Smectite formation is the result of interaction between iron oxyhydroxide, ponded in the Bauer Deep following a hydrothermal origin at the adjacent East Pacific Rise, and biogenic opal. A reaction mechanism is proposed.Regional factors control smectite formation. In particular, formation is inhibited in areas of CaCO3 accumulation (topographic elevations) but favoured in areas of oxyhydroxide and opal ponding (topographic depressions).  相似文献   

5.
蒙皂石伊利石化反应机理和框架性行为模式   总被引:1,自引:0,他引:1       下载免费PDF全文
邬金华  许仕策 《地质科学》1999,34(4):498-505
对珠江口盆地两口钻井95个泥质岩样粘土矿物X衍射分析资料的定量研究表明,若反应是以消耗蒙皂石为代价形成伊利石,则反应符合溶解-沉淀机理,但除此以外,蒙皂石还可以净溶解或新增伊利石层的方式加大I/S比。蒙皂石在渐进成岩过程中的框架性行为模式具有三级控制,按顺序分别由温度、基本离子成分和动力学因素控制特定温度段内蒙皂石行为过程的起始和终结、行为过程的方式和行为过程的速率和程度。渐进成岩过程中I/S比的变化主要与第三级控制有关,而游离状蒙皂石和伊-蒙混层粘土的含量变化则是第二三两级共同控制的结果。  相似文献   

6.
《Applied Geochemistry》1998,13(1):95-104
X-ray diffraction, scanning electron microscopy and O-isotope geochemistry have been used to investigate the origin and possible controls on polymorphic transformation of kaolin minerals filling veins in Cretaceous shales from the Gibraltar Strait area (southern Spain).The mineralogy of the enclosing shales indicates that kaolin minerals formed from smectite dissolution, a process that silmultaneously originated I/S mixed-layers and quartz. Kaolinite and dickite δ18O values suggest that an increase in the water isotopic composition, from Cretaceous sea water values (−1%) to values of about 3%, occurred parallel to smectite dissolution, the intensity of this process being the main factor controlling the isotopic composition of kaolin minerals. The minimum formation temperature ranges from 62°C for kaolinite to 86–96°C for dickite, indicating that the depth of burial was the main control on polymorph formation. This temperature range agrees with that deduced for illite/smectite ordering. The passage from kaolinite- to dickite-rich veins was accompanied, as deduced from SEM examination, by a morphologic evolution characterized by the division of large vermiculae, dominant in kaolinite samples, and the formation of short stacks and platy crystals, which are predominant in dickite. The mechanism of dickite formation, however, remains uncertain.  相似文献   

7.
There is convincing evidence from field data that smectite clay undergoes conversion primarily to illite and chlorite if it is fully water-saturated and heated. The conversion may take place through mixed-layer formation with increasing illite/smectite ratio at higher temperatures and pressures. This process requires dehydration of the interlamellar space, for which either an external pressure or drying are needed. An alternative mechanism that takes place without dehydration, is dissolution of smectite and neoformation of illite. Both processes imply reorganization of the smectite crystal lattice for which the activation energy is fairly high, meaning that the conversion is negligible at temperatures lower than about 60°C. At elevated temperatures the conversion rate is controlled by the access to potassium for either mechanism.

An ongoing detailed investigation of this subject has led to a tentative model for the smectite-to-illite conversion in natural sediments and in canister-embedding clay in high-level radioactive waste (HLW) repositories.  相似文献   


8.
Iron-rich smectite is commonly described in the diagenetic fraction of deep-sea sediment, as millimeter to centimeter aggregates dispersed in the sediment, or as a coating on sedimentary particles or nodules. This study examines several factors to elucidate formation mechanisms of a particular iron-rich smectite and its potential transformation to glauconite. The study combines a detailed mineralogical investigation on natural samples and a chemical modeling approach to assess mineralogical reactions and pathways.Transmission electron microscopy (TEM) observations and analytical electron microscopy (TEM-AEM) analyses were conducted on microtomed samples of millimeter- to centimeter-long green grains. These grains are widespread in pelagic calcareous sediment from the Costa Rica margin. They are composed of pyrites that are partially dissolved and are surrounded by amorphous or very poorly crystallized iron-rich particles. Iron-rich montmorillonite grows from an amorphous precursor and its formation requires the input of Si, O, Mg, K, Na and Ca; our results suggest that these inputs are supported by the dissolution of sedimentary phases such as volcanic glasses, siliceous fossils and silicates.Thermodynamic modeling of fluid-sediment interactions was conducted with the geochemical computer code PhreeqC, using mineralogical and pore fluid compositions from sediment samples and calculated estimates for thermodynamic constants of smectites that are not maintained by the computer code. Simulations confirm the possibility that the green grains are the product of pyrite alteration by seawater under oxidizing conditions. The extent of smectite production is controlled by the kinetics of pyrite dissolution and fluid migration. The absence of aluminum in the Costa Rica margin system explains the formation of an iron-rich montmorillonite instead of glauconite, whereas the presence of calcite that buffers the system explains the formation of an iron-rich montmorillonite instead of iron oxides.  相似文献   

9.
周自立 《沉积学报》1988,6(1):13-20
本文应用扫描电子显微镜及偏光显微镜,研究重矿物阶状石榴石表面的显微结构,确定它是自生成因的铁铝石榴石。根据阶状石榴石在各探井剖面中的纵向分布规律及特征变化,可以推断它的形成与埋藏深度或地温关系密切。通过计算确定,阶状石榴石初始形成的温度为92±5℃,可作为成岩矿物地温计。这对评价新探区的生油岩及储集岩均有实际意义。  相似文献   

10.
The present work aimed to determine the mineralogical composition of Ypresian series and to clarify the influence of the dissolution of siliceous frustules on the genesis of fibrous clay minerals. The specimens sampled from CPG trench are mainly constituted of silica-rich rocks at Mides area located at the western part of Gafsa-Metlaoui basin. The samples were investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM) in order to determine texture of constituents. The data obtained indicate that the bulk rock samples are mainly made up of opal CT and clay minerals. The latter consists of palygorskite-sepiolite minerals associated with smectite and few amount of illite. The trend of mineralogical composition indicates that fibrous clay minerals are more concentrated at the upper part. SEM observations indicated that palygorskite mineral appears as thread-like facies, which surround foliated texture of smectite in the lower part of the Mides section, although with the low Mg activity confirmed by the absence of dolomite. But, at the upper part of the Mides section, SEM observations revealed the occurrence of siliceous frustules, which have numerous dissolved areas and replacement of carbonate tests by silica. The dissolution saturated the depositional environment with silica which is required for the formation of palygorskite and sepiolite minerals, in addition to high Mg activity confirmed by the presence of dolomite in the bulk rock, which is required basically for the formation of sepiolite. Although the genesis mode of palygorskite and sepiolite is similar with very little difference, the genesis of sepiolite needs a high alkalinity than the formation of palygorskite.  相似文献   

11.
Siderite (FeCO3) is a widespread minor diagenetic mineral in clastic sedimentary basins. Although eodiagenetic authigenesis of siderite is well-known, siderite formed during burial diagenesis shows habits and chemical compositions that are poorly understood. This study tests the hypothesis that diagenetic siderite cements in sandstones in the Scotian Basin, offshore eastern Canada, show systematic variability in chemistry and habit that is a response to recrystallization and changing composition of basinal fluids. Mineral textures were determined from backscattered electron images, and chemistry mostly from electron microprobe analyses. Five chemical types of siderite are identified using k-means cluster analysis, based on the amount of substitution of Ca, Mg and Mn for Fe. Eodiagenetic microcrystalline coated grains, concretions and intraclasts in sandstones are principally Fe-rich siderite and locally have recrystallised to blocky equant crystals. Mesodiagenetic Mg-rich siderite partly replaced these equant crystals and also framework mica and K-feldspar grains, showing textural evidence for coupled dissolution–reprecipitation. Slender Mg-rich siderite rhombs (lozenges, bladed or wheat-seed siderite) have precipitated before and after the formation of quartz overgrowths in geochemical microenvironments. Magnesium substitution reflects Mg-rich formation waters resulting from smectite to illite conversion. Equivalent Ca-rich siderite occurs where sandstones overlie a Jurassic carbonate bank. Late Mn-rich siderite has complex textures resembling those of Mississippi-Valley type ores, with spheroidal rims, a honeycomb-like mesh and concentric infill around secondary pores. It also occurs in veins or replacing intraclasts, post-dating late ferroan-calcite cements in sandstones that show strong dissolution by hot basinal brines. The Ca, Mg and Mn content of diagenetic siderite, coupled with textural evidence for recrystallization, can thus be used to track changes in ambient formation fluids. Siderite habits and chemistry described from the Scotian Basin are found in many clastic basins, suggesting that the observed recrystallization textures and variation in chemical type are of broad application.  相似文献   

12.
Reactive surface area is one of the key parameters for studying the kinetics of mineral dissolution. The common practice in experimental kinetics is to normalize the dissolution rate to the surface area measured by the BET method. The relationship between BET surface area and the reactive surface area is not trivial in minerals such as smectites, which possess both internal and external surface areas, and in which the dissolution is controlled by the chemical attack on the edge surface. The present study examines two proxies for the reactive surface area of the Clay Mineral Society reference smectite SAz-1: BET surface area and the edge surface area measured using AFM.Since smectites are very microporous, their BET surface area is strongly influenced by the degassing procedure. It is demonstrated that outgassing the smectite powder at 135°C in a 15 mL min−1 N2 gas flow for at least 24 hours minimizes contribution from micropores to less than 11% of the BET surface area.Following dissolution experiments in solutions with a low electrolyte concentration, the BET surface area increased from 34 ± 2 m2 g−1 in raw SAz-1 to 127 ± 13 m2 g−1 in SAz-1 sample recovered from dissolution experiments. This increase in BET surface area is explained by a decrease in the average size of the smectite aggregates, and by an increase in microporosity due to the depletion in the major interlayer cation, i.e., Ca2+. As the BET surface area of the raw smectite sample includes considerably less microporosity compared to the BET surface area of the smectite recovered from dissolution experiments, the former is a better approximation of the external surface area of the dried sample powder.AFM measurements show that there is no correlation between the specific external surface area of the sample and its specific edge surface area. This observation is explained by the platy morphology of the smectite particle in which the specific external surface area depends linearly on the height reciprocal, whereas the specific edge surface area is independent of the particles height and depends linearly on the sum of the reciprocals of the length of the axes. Therefore, there is no reason to expect a correlation between the BET and the edge surface area. Our results show that the edge surface area (4.9 ± 0.7 m2 g−1) of the smectite particles cannot be predicted based on its external surface area (136 ± 20 m2 g−1). Therefore, the BET surface area cannot serve as a proxy for the reactive surface area. We suggest using AFM measurements of the specific edge surface area as an alternative proxy for the reactive surface area of smectite.  相似文献   

13.
《Applied Geochemistry》1998,13(7):905-916
Experiments measuring kaolinite and smectite dissolution rates were carried out using batch reactors at 35° and 80°C. No potential catalysts or inhibitors were present in solution. Each reactor was charged with 1 g of clay of the ≤2 μm fraction and 80, 160 or 240 ml of 0.1–4 M KOH solution. An untreated but sized kaolinite from St. Austell and two treated industrial smectites were used in the experiments. One smectite is a nearly pure montmorillonite, while the second has a significant component of beidellitic charge (35%). The change in solution composition and mineralogy was monitored as a function of time. Initially, the 3 clays dissolved congruently. No new formed phases were observed by XRD and SEM during the pure dissolution stage. The kaolinite dissolution is characterized by a linear release of silica and Al as a function of the log of time. This relationship can be explained by a reaction affinity effect which is controlled by the octahedral layer dissolution. Far from equilibrium, dissolution rates are proportional to a0.56±0.12OH at 35°C and to a0.81±0.12OH at 80°C. The activation energy of kaolinite dissolution increases from 33±8 kJ/mol in 0.1 M KOH solutions to 51±8 kJ/mol in 3 M KOH solutions. In contrast to kaolinite, the smectites dissolve at much lower rates and independently of the aqueous silica or Al concentrations. The proportionality of the smectite dissolution rate constant at 35 and 80°C was a0.15±0.06OH. The activation energy of dissolution appears to be independent of pH for smectite and is found to be 52±4 kJ/mol. The differences in behavior between the two kinds of minerals can be explained by structural differences. The hydrolysis of the tetrahedral and the octahedral layer appears as parallel reactions for kaolinite dissolution and as serial reactions for smectite dissolution. The rate limiting step is the dissolution of the octahedral layer in the case of kaolinite, and the tetrahedral layer in the case of smectite.  相似文献   

14.
The main goal of this paper is to propose a new rate law describing the combined effect of pH (1 to 4.5) and temperature (25 to 70 °C) on smectite dissolution rate, under far from equilibrium conditions, as a step towards establishing the full rate law of smectite dissolution under acidic conditions. Dissolution experiments were carried out using non-stirred flow-through reactors fully immersed in a thermostatic water bath held at a constant temperature of 25.0°C, 50.0°C or 70.0°C ± 0.1°C. Smectite dissolution rates were obtained based on the release of silicon and aluminum at steady state. The results show good agreement between these two estimates of smectite dissolution rate. Low Al/Si ratios were obtained in experiments that were conducted at pH ≥4. These low Al/Si ratios are explained by precipitation of gibbsite and/or diaspore.Dissolution rate increases with temperature and decreases with increasing pH. Dissolution rates of experiments in which ΔGr ≤ −21 kcal mol −1, are not affected by deviation from equilibrium. Dissolution rates in most experiments are not affected by the addition of up to 0.3 M NaNO3 to the input solution.A simple model is used to describe the combined effect of pH and temperature on smectite dissolution rate. According to this model, dissolution rate is linearly proportional to the concentration of adsorbed protons on the mineral surface, and proton adsorption is described using a Langmuir adsorption isotherm. All experimental results at pH <4 were fitted to the model using a multiple non-linear regression. The resulting rate law is:
(A1)  相似文献   

15.
Palygorskite is a fibrous, magnesium‐bearing clay mineral commonly associated with Late Mesozoic and Early Cenozoic dolomites. The presence of palygorskite is thought to be indicative of warm, alkaline fluids rich in Si, Al and Mg. Palygorskite has been interpreted to form in peritidal diagenetic environments, either as a replacement of detrital smectite clay during a dissolution–precipitation reaction or solid‐state transformation, or as a direct precipitate from solution. Despite a lack of evidence, most diagenetic studies involving these two minerals posit that dolomite and palygorskite form concurrently. Here, petrological evidence is presented from the Umm er Radhuma Formation (Palaeocene–Eocene) in the subsurface of central Qatar for an alternative pathway for palygorskite formation. The Umm er Radhuma is comprised of dolomitized subtidal to peritidal carbonate cycles that are commonly capped by centimetre‐scale beds rich in palygorskite. Thin section, scanning electron microscopy and elemental analyses demonstrate that palygorskite fibres formed on both the outermost surfaces of dissolved euhedral dolomite crystals and within partially to completely dissolved dolomite crystal cores. These observations suggest that dolomite and palygorskite formed sequentially, and support a model by which the release of Mg2+ ions and the buffering of solution pH during dolomite dissolution promote the formation of palygorskite. This new diagenetic model explains the co‐occurrence of palygorskite and dolomite in the rock record, and provides valuable insight into the specific diagenetic conditions under which these minerals may form.  相似文献   

16.
The Upper Red Formation (URF) comprises over 1–5 km of late Miocene siliciclastic sediments in the Central Iran Basin. The formation is dominated by volcaniclastic conglomerates and arenites. The prevailing arid conditions during most of the basin's history resulted in deposition of predominantly organic‐poor, red sediments with gypsum and zeolites. This investigation concentrates on the mineralogy and geochemistry of the URF in the southern and northern margins of the basin where the formation was buried to depths of 2.4 and 6.6 km, respectively. Fine fraction mineral separates from the southern margin consist of nearly pure smectite and zeolites at a depth of 400 m and smectite with minor quartz and calcite at 1800 m. Shallow samples (1350 m) from the northern section are rich in smectite, illite/smectite with some discrete illite and chlorite. This assemblage is progressively replaced by discrete illite and chlorite with increasing burial depth so that only these two minerals are found at depths greater than 4300 m. The initial alteration process involved replacement of glass and volcanic lithics by smectite and zeolites in both margins of the basin. Increased depth of burial in the northern margin resulted in the progressive isochemical alteration of smectite to discrete illite and chlorite. Diagenesis of clay assemblages occurred essentially in a closed system. Solute products of glass hydrolysis reactions were retained in highly alkaline, saline ground waters from which zeolites, carbonates and oxides precipitated as cements. It is unlikely that these sediments were ever significantly leached by meteoric waters or by organic acids generated during burial diagenesis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The Lower Palaeozoic low-grade metamorphic rocks of the Brabant Massif are largely buried below a thick cover of post-Palaeozoic strata. Along the top of the subcrop, they comprise remnants of Cretaceous to Tertiary weathering profiles that represent the lower part of thick saprolites. The alteration of the chlorite- and muscovite-dominated Palaeozoic rocks was characterized by the destruction of chlorite, accompanied by the formation of kaolinite and iron oxides and/or iron hydroxides. The first product of chlorite weathering seems to have been regularly interstratified chlorite-vermiculite or chlorite-smectite, which is now represented by interstratified chlorite-muscovite with regular ordering. Outside the thin transitional zones in which this mineral occurs, the rubefied intervals show only little variation in composition, which is due to the replacement of chlorite by kaolinite over short vertical distances and the stability of muscovite throughout the preserved parts of the saprolite. The rubefied rocks do have a somewhat different composition along the top of some profiles, which is related to an interaction with groundwater after burial, resulting in smectite formation, feldspar weathering and iron dissolution. Groundwater interaction is also responsible for the occurrence of weathering without rubefaction, outside the areas with saprolite remnants, which resulted in vermiculite, smectite and kaolinite formation. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
海拉尔盆地乌尔逊-贝尔凹陷下白垩统发育火山熔岩-正常碎屑沉积岩之间的过渡岩石类型,其成岩作用类型与正常沉积岩相比具有特殊性.采用显微镜下描述与扫描电镜分析相结合的方法对研究区成岩作用类型进行了研究,并总结出成岩作用序列.结果显示火山碎屑岩的成岩作用类型包括熔结作用、机械渗滤作用、压实作用、脱玻化作用、重结晶作用、胶结作用、自生矿物转化和溶蚀溶解作用.其中,熔结作用、脱玻化作用以及凝灰质的溶蚀溶解作用是火山碎屑岩所特有的成岩作用类型.研究区具有成因联系的成岩共生组合主要有4类,分别是:(1)微晶石英和微晶方解石;(2)石英的溶解与结晶;(3)自生白云母、蒙皂石、伊利石和绿泥石;(4)沸石与自生长石.成岩序列可以分为熔结作用阶段、机械渗滤作用阶段、脱玻化作用阶段、凝灰质溶蚀溶解作用阶段、粘土矿物混层阶段、自生白云母阶段、沸石胶结阶段、颗粒强烈胶结阶段以及铁白云发育阶段.研究区下白垩统处于早成岩B期至晚成岩B期,主要为晚成岩A期.   相似文献   

19.
The fluid flow history during diagenesis of sandstones in the Upper Permian Black Jack Formation of the Gunnedah Basin has been investigated through integrated petrographic observations, fluid inclusion investigations and stable isotope analyses. The early precipitation of mixed-layer illite/smectite, siderite, calcite, ankerite and kaolin proceeded at the presence of Late Permian connate meteoric waters at temperatures of up to 60℃. These evolved connate pore waters were also parental to quartz, which formed at temperatures of up to 87℃. The phase of maximum burial was characterized by development of filamentous illite and late calcite at temperatures of up to -90℃. Subsequent uplifting and cooling led to deep meteoric influx from surface, which in turn resulted in dissolution of labile grains and carbonate cements, and formation of second generation of kaolin. Dawsonite was the last diagenetic mineral precipitated and its formation is genetically related to deep-seated mamagtic sourced CO2.  相似文献   

20.
Clay mineralogy and major-element geochemistry of 35 surface sediment samples collected in 21 major to moderate rivers of Luzon, Philippines are used to evaluate the present chemical weathering process. The clay mineral assemblage consists mainly of smectite (average 86%) with minor kaolinite (9%) and chlorite (5%) and very scarce illite (1%), and does not show strong island-wide differences. The major element results of both bulk and clay-fraction sediments indicate that the formation of clay minerals is accompanied by leaching of Ca and Na first and of Fe and Mn thereafter during the chemical weathering process. A low-moderate chemical weathering degree of bulk sediments and a moderate-intensive degree of clay-fraction sediments are obtained in Luzon rivers based on proxies of chemical index of alteration (CIA) and smectite crystallinity. It is suggested that the majority of andesitic–basaltic volcanic and sedimentary rocks along with the tectonically active geological setting and sub-tropical East Asian monsoon climate are responsible for the predominance of smectite in the clay mineral assemblage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号