首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RON GOLDBERY 《Sedimentology》1979,26(2):229-251
Petrographical and mineralogical studies of the Lower Jurassic sequence exposed at Makhtesh Ramon, have shown the domination of a lateritic suite of epiclastic sediments of pisolite conglomerate and laterite arenite composition. Their subsequent modification by epigenetic processes of chemical weathering has given rise to the formation of flint clay, high alumina flint clay, laterite and mottled and variegated claystone. Within the Nahal Ardon area, both the transported laterite accumulates and the autochthonous lithologies occur interbedded within the same section. In all, a total of ten lithofacies have been defined and mapping of the various units, grouped into allochthonous and autochthonous classes, has established the existence of lateral facies changes between Nahal Ardon, where the sequence rests on a broad undulatory Triassic basement, and the zone to the west where it occurs as infillings of Triassic solution cavities, sink holes and irregular depressions. Vertical profile studies of the lithofacies indicate that the vertical range of ground water movements increased westwards from Nahal Ardon and resulted in the transported laterite accumulates being subjected to varying degrees of chemical weathering. The observed lateral facies changes are a direct consequence of this. Within the ‘karstic’ zone, the laterite accumulates in addition to the overlying younger carbonate lithologies have been converted to flint clay and demonstrate the intraformational genesis of the flint clay, whereby vertical ground water movements are related to recharge of aquifer zones within the underlying Triassic Mohilla Formation.  相似文献   

2.
Bauxite is the ultimate fine-grained products of chemical weathering,and thus it is closely linked with the intense chemical weathering. Based on variations of parent rock and weathering processes,the weathering products can be subdivided into laterite and terra rossa,of which the former is formed by weathering of aluminosilicates and the latter is produced by the weathering of carbonates. During the intense chemical weathering,minerals in original subaerial sediments(parent rocks)would suffer a series of processes(dissolution,hydrolyzation,hydration,carbonation,and oxidation)and be destroyed or transformed,leading to formation of new minerals. In the favorable environment,continuously intense chemical weathering would cause the loss of most mobile elements(e.g., K,Na,Ca,Mg,Si)and the enrichment of Al,resulting in the formation of bauxite. Although sedimentary bauxites are closely linked with the weathering curst,they show obvious differences in formation processes. Sedimentary bauxites are composed of intense chemical weathering products that are transported from outside of the basin and re-deposited in the basin,while most weathering crusts are transformed from saprolite and/or deluvium in-situ,and they can only form low-grade bauxites. Sedimentary environments also differ in bauxite ore layers and bauxitic claystone layers. Bauxite ore layers are formed in the subaerial environment and controlled by the leaching process of groundwater in the vadose zone. Based on the analysis of bauxitization,this study proposes to use multiple parameters,such as provenance,sedimentation and mineralization,to build the new classification of Chinese bauxite deposits. In this classification,lateritic and karstic types of bauxite deposits are autochthonous or parautochthonous saprolite and/or deluvium,while sedimentary type is dominated by heterochthonous provenance.  相似文献   

3.
Bauxite deposits of the Fria district, Guinea, have been exploited since 1960. These lateritic bauxites, located on the upper parts of plateaus, result from weathering of paleozoic schists. The ores are composed of gibbsite associated with pyrophyllite, Al-substituted gœthite, and kaolinite. Pyrophyllite and Al-substituted gœthite may contain up to 9% of the total Al2O3 content of the bauxite; this cannot be recovered through the Bayer process because these phases are insoluble in the leaching solutions. Kaolinite is soluble under Bayer leaching but this dissolution induces precipitation of sodium aluminosilicates, which apart from loss of further alumina results in decreasing efficiency of the process through scale formation. Detailed knowledge of the distribution of the different ore types and their mineralogical composition is necessary for efficient processing.  相似文献   

4.
In the present study the origin of clay deposits occurring in an inland platform, in central Portugal, was investigated by their mineralogical and chemical composition. The clay deposits, exploited for ceramic industry are composed of silt-clay facies, the Monteira Member and the Arroça Member, which are assigned to the Coja Formation (Paleogene) and the Campelo Formation (Miocene), respectively. These clayey facies show almost compositional homogeneity, especially concerning texture. The mineralogical composition of the Monteira Member displays slightly higher content in smectite and interstratified clay minerals, which is supported by the chemical composition of samples analyzed. Both members present similar REE patterns, displaying an intense weathering record and little variation in the source area composition. Minor element geochemistry suggests low content in heavy minerals and transition metals. REE patterns and ratios of geochemical parameters support the dominant metasedimentary provenance, with a granite source contribution and also mature recycled sediments of continental origin. The study results’ suggest that the clays of these two members have the same source in terms of lithology and recycled sediments from the Hesperian massif. During the deposition of the Arroça Member, a major remobilization of the Monteira Member is suggested, explaining the geochemical similarity of both facies.  相似文献   

5.
铝土矿是化学风化作用的细粒终极产物,与强烈的化学风化作用密切相关。根据母岩的类别及作用过程,风化作用进一步分为铝硅酸盐岩强化学风化形成的红土化作用和碳酸盐岩强化学风化形成的钙红土化作用。在强烈的化学风化过程中,地表的原始沉积物(母岩)的原生矿物发生溶蚀、水解、水化、碳酸化、氧化,破坏原始的矿物结构,形成新的细粒矿物(主要是黏土质矿物)。在适合的地质条件下,持续的强烈化学风化作用会造成大部分活动的元素(如K、Na、Ca、Mg、Si)的流失与Al的残留富集从而形成铝土矿。现在观察到的沉积型铝土矿,虽然与古风化壳具有密切联系,但沉积型铝土矿多数是由沉积过程搬运到沉积盆地中所形成的强化学风化产物的沉积层,与古风化壳的残坡积层具有显著差别,只有少数工业价值不大(品位低、品质差)的残坡积相铝土矿。铝土矿含矿岩系的沉积环境与铝土矿(尤其是高品位、高品质的铝土矿)的成矿环境不尽相同。铝土矿主要形成于暴露于大气中的陆表环境(而非水下环境),由地下水淋滤作用形成(在渗流带由活动元素流失、Al等稳定元素残留富集而成)。本研究在铝土矿成矿作用分析等基础上,提出了以铝土矿沉积物等物源和沉积、成矿作用为依据的中国铝土矿床分类方案,包括原地或准原地残坡积物成因的红土型和喀斯特型,和异地物源沉积成因的沉积型。  相似文献   

6.
铝土矿地质与成因研究进展   总被引:9,自引:0,他引:9  
王庆飞 《地质与勘探》2012,48(3):430-448
[摘 要]我国铝土矿矿产时空分布广,类型多样,铝土矿地质与成因研究对促进铝土矿地质学发展有重要意义。本文从铝土矿矿床分类、铝土矿的矿体形态与内部结构、矿体层序、物质组成、物质来源、成矿环境和成因机制等方面,综述了国内外铝土矿地质学的研究进展,阐释了我国铝土矿的部分特征,提出了近年我国铝土矿研究的部分新方法与观点;应用铝土矿中碎屑锆石U-Pb 和Lu-Hf 同位素特征, 判识了多个喀斯特型铝土矿集中区的物质来源,提出多数喀斯特型铝土矿多具有异源特征,与区域重大地质事件具有成因联系,是洋陆俯冲、大陆漂移以及集中风化等多因耦合的结果。提出了我国喀斯特型铝土矿迁移机制,认为华北板内铝土矿(山西、河南) 成因机制主体为“离子结晶与碎屑沉积冶综合成因;而华南铝土矿(贵州、广西)成因机制主体为“离子结晶冶成因。  相似文献   

7.
Nickel laterites and bauxites, including their proposed parent rocks from the Mesozoic of Greece, have been investigated by means of mineralogical and geochemical methods. The results are discussed in order to recognize the genetic sequence which comprises: pre-lateritic alteration and reworking of ophiolites and associated rocks, lateritic in-situ weathering, reworking and redeposition of the alteration products in an epicontinental transition environment, and post-depositional events affecting the mineralogical and geochemical properties.The ultramafic massifs of the Euboea and Locris area, i.e. the parent rocks of the Ni---Fe deposits, are primarily harzburgites which represent the erosional outliers of a probable “complete” ophiolitic nappe that were transformed to a monomineralic lizarditite. Xenoliths of basic and sedimentary rocks are included in the serpentine matrix of the basal tectonic melange. Lateritic Ni---Fe deposits resting as in-situ alterites on ophiolites or as mechanically reworked laterite detritus, either on serpentinite or karstified limestone, are mainly derived from serpentinites. The ore deposits in the Locris area have been affected by a strong supergene epigenetic overprint, mainly resulting in a downward Ni redistribution and enrichment. A continuous transition from karstic Ni---Fe deposits towards bauxitic material in a southern direction is interpreted as sedimentary admixture of weathering products of different origin.The three bauxite horizons B1, B2 and B3 and their satellite horizons are intercalated in epicontinental shallow-water limestones within an Upper Jurassic to Middle Cretaceous sequence. A karstic surface (unconformity) forms the substratum of these bauxite horizons.Similar to nickel laterites on karst, the detrital parent material was transported from a terrestrial hinterland by widely ramified river systems into a brackish lagoonal or marine environment from a northeastern to southwestern direction. Colloidal matter, fine muds and coarse material were deposited on a karst topography in mechanical traps by successive debris flows during cycles of emersion and marine regressions.Diagenesis resulted in (a) leaching of silica and iron under partly reducing conditions, and (b) recrystallization of iron minerals and neoformation of Al minerals, i.e. boehmite and/or diaspore. During tectonic subsidence and early marine transgression a strong supergene-epigenetic downward mobilization of Fe, Mn and associated elements took place. They were reprecipitated near the footwall in chemical traps.Bauxites of all horizons originate from serpentinites as well as from metamorphic and magmatic rocks. This is indicated by a high content of siderophile elements and lithic components. The sequences of regression and transgression and their erosional, sedimentary and geochemical processes are interpreted as cyclic events.  相似文献   

8.
RON GOLDBERY 《Sedimentology》1982,29(5):669-690
The Lower Jurassic sequence exposed at Makhtesh Ramon, in the south-western Negev of Israel, comprises cyclic fluviatile sediments derived almost exclusively from the reworking of an older laterite terrain. A succession of palaeosols, having the characteristics of modern, red-brown earths, has developed during periods of sub-aerial exposure upon the fine grained overbank sediments. A marked seasonal palaeoclimate with accompanying poor sub-surface drainage conditions, and some stagnation of ground water, is reflected by the distribution and mottling patterns of the iron minerals (with varying degrees of hydration), precipitation of illuviated carbonate and sulphate minerals and the development of soil microrelief. A complex history of pedogenesis and ground water alteration is shown by the rapid lateral facies change within this sequence, into one dominated by high-alumina flint clay and bauxite. Relict pedogenetic and sedimentological textural features of the combined palaeosol/fluviatile sequence, have been identified and mapped within the flint clay/bauxite lithologies. These features include irregular voids, produced by solution of pedogenic sulphate nodules, slickensided curviplanar surfaces of soil microrelief, and depositional bedding. The field relationships of these relicts indicate the overprinting of a younger, chemical weathering event giving rise to the high-alumina flint clay and bauxites. The geometric shape of the upper bounding surface of the ‘bauxite’ alteration zone, is irregular and has an ‘intrusive’ character with respect to the younger, overlying, unaltered sediments. This, together with abrupt changes in mottling patterns near the contact zone and subtle changes in mineralogy from a bauxitic assemblage at depth to one containing mixed-layer clay minerals and carbonates nearer the contact, leads to the conclusion that the later stages of chemical weathering occurred within a confined system, where ground water movements were induced by intake of underlying aquifers.  相似文献   

9.
At the Matauri Bay halloysite deposit, economically valuable halloysite-rich clays are hosted by a sanidine rhyolite dome (Ar–Ar dated at 10.1?±?0.03?Ma). The rhyolite dome intrudes an older basalt and is overlain by alluvial sediments and a younger basalt (4.0?±?0.7?Ma). A blanket-like, halloysite-rich zone is restricted to depths of 10–30?m from the present day erosion surface. Primary sanidine and plagioclase phenocrysts in rhyolite are completely leached out in the halloysite-rich zone but are only partially leached out at greater depth. Halloysite was formed by hydrolysis and cation leaching of sanidine and plagioclase phenocrysts and groundmass glass in the rhyolite, resulting in loss of K, Ca, Na and Si and enrichment in OH (LOI 6–10%) and Al2O3 (20–30%) relative to least-altered rhyolite with 1.8% LOI and 14.5% Al2O3. Oxygen and hydrogen isotope data indicate the halloysite is supergene rather than hydrothermal in origin, which is consistent with the absence of pyrite, alunite and other acid-sulphate type hydrothermal minerals, and with the blanket-like alteration profile. The dominance of halloysite over kaolinite was favoured by water-saturated weathering conditions during the late Miocene-Pliocene subtropical weathering regime in Northland.  相似文献   

10.
Four outcrops of Lower Cretaceous (Barremian) karst bauxites located in Teruel (NE Spain) were analysed. The deposits show a heterogeneous-chaotic lithostructure consisting of pisolitic bauxite blocks embedded in lateritic red clays filling karst cavities. The research has focused on the geochemical study of major, minor, and trace elements (including some critical to industry) of both the bauxites and clays. The objective was to investigate the bauxite precursor material and to characterize the system’s geochemical evolution. Geochemical analyses were carried out by inductively-coupled plasma optical emission and mass spectroscopy. An absolute weathering index has been calculated to estimate element mobility, assuming Ti as an immobile element and the Upper Continental Crust (UCC) as parent material. Further, selected samples were observed by field emission scanning electron microscopy. The data indicate that both the bauxites and red clays originated by intense chemical weathering from more mafic argillaceous sediments than the UCC. Ongoing weathering caused the bauxitization of the upper parts of the original profile, preventing the lower parts from being bauxitized, thus producing the ferrallitized clays underlying the pisolitic bauxites. Subsequent karst reactivation gave rise to the current lithostructure. Ferrallitization is related to Fe, Sc, and V enrichment. On the other hand, although bauxites are relatively enriched in some elements compared to clays, the more intense chemical weathering associated with bauxitization led to chemical homogenization and widespread element depletion. During the bauxitization, Al, Ti, Zr, Cr, and probably Hf and the critical element Nb behaved as more immobile elements in the system. Bauxitization also enhanced homogenization and depletion of the REE, which is more pronounced for the LREE. HREE trends seem to be partly related to the concentration of Ti oxides in the bauxites, whereas P-bearing phases, more frequent in the clays, control the LREE. Subsequent to bauxitization, partial kaolinization of the bauxite took place related to the circulation of acid solutions that also caused the karst reactivation. These late processes caused some Al depletion in the bauxites and enhanced Fe loss together with V and, to a lesser extent, Ge.  相似文献   

11.
In the framework of the German R&D joint project CLEAN (CO2 large-scale enhanced gas recovery in the Altmark natural gas field), Rotliegend reservoir sandstones of the Altensalzwedel block in the Altmark area (Saxony-Anhalt, central Germany) have been studied to characterise litho- and diagenetic facies, mineral content, geochemical composition, and petrophysical properties. These sands have been deposited in a playa environment dominated by aeolian dunes, dry to wet sand flats and fluvial channel fills. The sediments exhibit distinct mineralogical, geochemical, and petrophysical features related to litho- and diagenetic facies types. In sandstones of the damp to wet sandflats, their pristine red colours are preserved and porosity and permeability are only low. Rocks of the aeolian environment and most of the channel fill deposits are preferentially bleached and exhibit moderate to high porosity and permeability. Although geochemical element whole rock content in these rocks is very similar, element correlations are different. Variations in porosity and permeability are mainly due to calcite and anhydrite dissolution and differences in clay coatings with Fe-bearing illitic-chloritic composition exposed to the pore space. Moreover, mineral dissolution patterns as well as compositions (of clays and carbonate) and morphotypes of authigenic minerals (chlorite, illite) are different in red and bleached rocks. Comparison of the geochemical composition and mineralogical features of diagenetically altered sandstones and samples exposed to CO2-bearing fluids in laboratory batch experiments exhibit similar character. Experiments prove an increase in wettability and water binding capacity during CO2 impact.  相似文献   

12.
赣北鄱阳湖地区土塘剖面发育第四纪红土,自下而上可分为强网纹红土层、弱网纹红土层、微网纹红土层、均质红土层和下蜀黄土层。基于常量元素、粒度分析数据以及前人年代框架,初探土塘剖面化学风化特征及其古气候意义。(1)土塘剖面粒度组分均一,常量元素含量相近,风化淋溶强烈。(2)土塘剖面各地层间化学风化强度存在差异:下蜀黄土层为初期的去Na、Ca阶段;均质红土层为中期的去K阶段;微网纹红土层由去K阶段向去Si阶段过渡;网纹红土层已完全进入晚期去Si阶段。剖面常量元素的相对迁移能力为:Na2O>MnO2>CaO>P2O5>MgO>K2O>SiO2>Al2O3>TiO2>Fe2O3。(3)中更新世以来赣北鄱阳湖地区气候总体上由暖湿趋于干冷,期间伴随多个明显的干湿旋回佐证强烈的淋溶与干湿交替作用是网纹红土发育的重要驱动因子。  相似文献   

13.
Clay minerals formed through chemical weathering have long been implicated in the burial of organic matter (OM), but because diagenesis and metamorphism commonly obscure the signature of weathering-derived clays in Precambrian rocks, clay mineralogy and its role in OM burial through much of geologic time remains incompletely understood. Here we have analyzed the mineralogy, geochemistry and total organic carbon (TOC) of organic rich shales deposited in late Archean to early Cambrian sedimentary basins. Across all samples we have quantified the contribution of 1M and 1Md illite polytypes, clay minerals formed by diagenetic transformation of smectite and/or kaolinite-rich weathering products. This mineralogical signal, together with corrected paleo-weathering indices, indicates that late Archean and Mesoproterozoic samples were moderately to intensely weathered. However, in late Neoproterozoic basins, 2M1 illite/mica dominates clay mineralogy and paleo-weathering indices sharply decrease, consistent with an influx of chemically immature and relatively unweathered sediment. A late Neoproterozoic switch to micaceous clays is inconsistent with hypotheses for oxygen history that require an increased flux of weathering-derived clays (i.e., smectite or kaolinite) across the Precambrian-Cambrian boundary. Compared to previous studies, our XRD data display the same variation in Schultz Ratio across the late Neoproterozoic, but we show the cause to be micaceous clay and not pedogenic clay; paleo-weathering signals cannot be recovered from bulk mineralogy without this distinction. We find little evidence to support a link between these mineralogical variations and organic carbon in our samples and conclude that modal clay mineralogy cannot by itself explain an Ediacaran increase in atmospheric oxygen driven by enhanced OM burial.  相似文献   

14.
桂西地区铝土矿为典型喀斯特型,包括二叠系沉积型和第四系堆积型两亚类。堆积型铝土矿是沉积型铝土矿经抬升、破碎、风化,最后堆积于喀斯特洼地中形成。以平果教美铝土矿为研究对象,探索堆积型铝土矿形成过程中矿物的变化与元素迁移。沉积型矿石的矿物组成包括硬水铝石、鲕绿泥石、锐钛矿及少量针铁矿、金红石和高岭石;堆积型矿石的矿物组成主要为硬水铝石、锐钛矿、高岭石及少量三水铝石和鲕绿泥石。转化过程中堆积型矿石中的硬水铝石含量明显增加,鲕绿泥石含量明显减少。沉积型铝土矿的主要化学组成为Al2O3、SiO2、FeO和TiO2;堆积型为Al2O3、SiO2、TiO2和Fe2O3。两类矿石中元素Zr 、Ba、Nb、V含量均较高,稀土总量变化大,富集轻稀土。质量平衡计算表明堆积型铝土矿形成过程中Al、Ba、Sr、Y等元素增加,而Si、Fe、Ti、Nb、V、Ce等元素减少,其余元素变化不明显。  相似文献   

15.
黏土矿物古气候意义研究的现状与展望   总被引:6,自引:1,他引:5  
系统地分析了利用海洋沉积物、古土壤、湖盆沉积物中黏土矿物进行古气候环境研究的现状、存在问题和发展趋势。海洋沉积物的物源范围广,影响因素复杂,其中的碎屑黏土矿物所指示的古气候参数只能用于解释母源区的气候变化,而只有自生黏土矿物才能指示沉积区的气候;古土壤形成于特定的地质背景条件下,尤其是发育于火山物质母岩之上的风化自生黏土矿物,可以准确地指示该区的古气候条件;湖盆沉积物的物源范围小,沉积物中的黏土矿物可以更有效地运用于古气候环境的分析。对于沉积物中黏土矿物来源的分析,可以借助晶体中cv空位和tv空位的精细结构特征进行判断;在风化改造的红土剖面研究中,因强烈的化学风化、淋滤和迁移,黏土矿物方法具有独特的优势。风化过程中形成的一些亚种或过渡性黏土矿物,以及同生沉积过程中形成的黏土矿物,对气候环境的变化更加敏感,应加强这方面的研究。此外,在造山带的气候环境演化研究中,自生黏土矿物稳定同位素可以更可靠地指示气候环境的变化。  相似文献   

16.
鄂尔多斯盆地合水地区长8储层成岩作用与有利成岩相带   总被引:4,自引:0,他引:4  
综合运用物性分析、高压压汞、铸体薄片、电镜扫描技术对鄂尔多斯盆地合水地区长8储层的成岩作用及有利成岩相带进行了分析研究。结果表明:研究区长8储层物性较差,孔喉整体细小,岩性以细-中粒长石岩屑砂岩为主,碎屑成分复杂,成分成熟度低,结构成熟度低到中等。压实作用使储集层的原始孔隙空间损失,胶结作用不仅破坏了部分原生孔隙,而且使部分次生溶孔遭到破坏,溶解作用使储层物性得到了改善。依据成岩作用对物性的影响,划分出5种成岩相,优质储层与成岩相的关系密切,绿泥石胶结-长石溶蚀相物性、含油性最好,绿泥石胶结相次之,它们成为储层发育的有利成岩相带。  相似文献   

17.
A set of samples from the Camarillas Formation (Barremian, Weald facies) in the Galve Sub-basin (Central Iberian Chain, north-east Spain) was studied to determine the origin of the abundant kaolinitic clays and their relationship to the sedimentary environment, palaeoclimate and diagenetic processes. The samples were examined by X-ray diffraction and scanning and transmission electron microscopy, with special emphasis on clay-mineral characterization. The analysed materials are a mixture of detrital (quartz, micas, and K-feldspars) and authigenic phases (kaolinite, Fe-oxides, gibbsite, dickite, and calcite). Therefore, the mineralogy of the rocks reflects the source area, the sedimentary conditions, and the diagenetic evolution. The most abundant authigenic phases are kaolinites. The combination of XRD and electron microscopy shows that the kaolinites are well crystallized and have as high a degree of ordering as those formed by weathering in palaeosols; this clay formed the rock matrix, intergrowths with muscovite, and vermicular booklets that replaced detrital silicates as a consequence of intense dissolution processes. The diagenetic processes have recrystallized kaolinites in the sandstones, producing larger crystallinity indices and dickite. In contrast, kaolinites from the claystones and siltstones probably reflect formation by weathering. The kaolinitization process described, associated with the crystallization of gibbsite and iron oxides, is in agreement with the relatively warm and humid conditions described for the Iberian Range basin in the early Barremian.  相似文献   

18.
鄂尔多斯盆地富县地区延长组成岩相特征及控制因素   总被引:1,自引:0,他引:1  
通过野外剖面、岩心观察、薄片鉴定,结合扫描电镜与能谱分析等测试手段,在充分认识富县地区长6、长8油层组储层特征、成岩作用基础上,研究长6、长8油层组成岩相类型.主要成岩相包括有泥岩强烈压实相、砂岩压实(压溶)相、砂岩剩余原生粒间孔隙-次生溶蚀孔隙相、砂岩次生溶蚀孔隙相和微裂缝相等5种类型.结合沉积环境及沉积相平面展布特征,阐述了成岩相平面分布,结合储层发育特征主控因素深入研究成岩相特征主控因素,表明沉积环境为成岩相特征提供了物质基础,沉积物在后期成岩演化过程中受成岩作用控制,即成岩相为沉积物在成岩演化后的具体体现.  相似文献   

19.
Chemico-mineralogical attributes of authigenic clays associated with the altered volcanic tuffs that occur in the Palaeoproterozoic Porcellanite Formation contain evidences of hydrothermal alteration and diagenetic processes in a marine environment. Previous sedimentological and geochemical studies on Porcellanite Formation were restricted to the Chopan area, but, the details related to provenance, nature and source of volcanism archived in these clays have not been ascertained. In order to understand these aspects, present study on these authigenic clays were carried out. Clay minerals represent dominance of illite with subordinate amount of montmorillonite. Moreover, low abundance of kaolinite is also noticed. The illite fibers and plates associated with the kaolinite indicate illitization. The kaolinite to illite transformation is favoured by incorporation of K+ ions, derived from the K-feldspar dissolution and its overgrowth. Major oxide contents of these clays and their ratios when plotted over diagrams marked with standard illite, kaolinite, smectite and chlorite compositional fields show clustering within or close to the illite field. Thermodynamic components calculated for these clays when plotted over AR23+AlSi3O10(OH)2 − R23+Si4O10(OH)2 − AR2+R3+Si4O10(OH)2 ternary diagram, data plots lie within the illite, mixed layer I/S and smectite fields. Binary major oxide data plots between bulk rock and authigenic clay compositions showed felsic affinity. Montmorillonite and illite predominated in the eastern and western marginal areas of the Vindhyan Basin, respectively. However, former resulted from the hydrothermal alteration of volcanic glass associated with the ferruginous breccia and altered tuffs and remnants of the volcanic vents, whereas, later is associated with the tuffaceous beds. Owing to the adsorption, Ba, Rb and Sr is enriched in clays comparing to the bulk rock composition. Low (< 15 ppm) Sc values suggested major contribution from the felsic component. Also, low Rb/Sr and Th/U values revealed moderate insitu weathering. The dominance of K-feldspar alteration and insitu weathering is also evident from clustering of clay data plots in the A-CN-K ternary diagram. Pronounced negative Eu anomaly together with higher LREE/HREE values associated with these clay minerals implied proximity to source and their possible derivation from the silicified felsic tuffs available in the provenance.  相似文献   

20.
The present study aims to shed light on the mechanism of formation of the Oligo-Miocene oolitic ironstones of Haddat Ash Sham area, Saudi Arabia. These ironstones are enclosed within the middle part of the Oligo-Miocene siliciclastic succession of the western part of the Arabian Shield, western Saudi Arabia. The ironstone beds were formed during marine incursion and creation of short-lived starved time periods of high organic matter activities, ferrous iron, and low clastic input. The depositional and diagenetic processes involved in the formation of Haddat Ash Sham ironstones are summarized here as follows: (1) the deposition of detrital components (i.e., amorphous iron-bearing clays admixed with silt and sand-sized quartz grains) and their distribution by the waves and current actions in areas of different water depths (bars and inter-bar areas); (2) the deposition of the iron-bearing clays in slightly reducing transgressive conditions (dysaerobic zone) led to the authigenesis of green marine chamositic clays of variable mineralogical and chemical compositions according to the predominated depositional environments; and (3) in the upper parts of the depositional cycles, the iron-bearing clays become admixed with detrital quartz grains which resulted in the formation of silty and sandy ironstones of low iron content. The diagenetic processes led to the oxidation of the green chamositic clays and formation of amorphous Fe-oxyhydroxides, ferrihydrites, goethite, and hematite. These iron mineral phases are related to each other and show progressive steps of transformation during the diagenetic processes. The iron ooids represent in situ formed irregular domains formed during the diagenetic crystallization and dehydration of the amorphous iron oxyhdroxides resulted from the diagenetic oxidation of green chamositic clays. This is supported by the absence of detrital cores of the iron ooids, the gradational contact between the iron ooids and the enclosing matrix and also by the presence of many ooids of unclear and ill-defined internal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号