共查询到13条相似文献,搜索用时 78 毫秒
1.
气相色谱法测定地下水中拟除虫菊酯有机氯百菌清等24种农药残留 总被引:1,自引:1,他引:1
拟除虫菊酯类、有机氯、百菌清等农药均属于电负性强化合物,采用气相色谱-电子捕获检测器(GC-ECD)检测具有较高的灵敏度,但由于拟除虫菊酯类农药分子量较大,其灵敏度显著低于有机氯,使得各类化合物进行分类检测的流程长、分析效率低。本文通过优选分析色谱柱和进样口温度等条件,利用气相色谱的色谱柱程序升压功能实现了多类别24种农药残留的快速、准确测定。实验中以正己烷为溶剂进行液液萃取,Florisil固相萃取柱净化,选择有机氯专用色谱柱(RTX-CLPesticides 2)进行分析,GC-ECD仪器在0.5~6000 ng/mL浓度范围内呈线性,方法检出限为1.00~12.00 ng/L,低、中、高三个浓度水平的加标回收率分别为80.3%~116%、79.9%~117%、85.7%~102%,相应的精密度(RSD,n=7)为1.5%~6.8%、1.3%~7.6%、1.1%~6.8%。本方法选用的有机氯专用色谱柱(RTX-CLPesticides 2)对多组分、多类别目标化合物有更好的分辨率,较通用型色谱柱(DB-5MS)更具分析优势;采用的色谱柱程序升压技术解决了拟除虫菊酯类化合物在气相色谱柱中停留时间过长而导致的低灵敏度、峰拖尾等技术难题。此方法灵敏、经济,分析通量高,可有效地同时分析多种类农药残留物质。 相似文献
2.
报告了利用填充玻璃柱,恒温气相色谱法,选用电子捕获检测器,简便、快速地分离测定土壤中八种有机氯农药残留量的实验条件及测定结果。 相似文献
3.
微波萃取-气相色谱/气相色谱-质谱法测定土壤中18种有机氯农药 总被引:1,自引:3,他引:1
采用微波萃取-Florisil固相萃取柱净化分离、气相色谱和气相色谱-质谱相结合的方法测定土壤中的痕量半挥发性有机氯农药。优化了微波萃取和固相萃取柱净化条件,在最优条件下18种有机氯农药(α-HCH、β-HCH、γ-HCH、δ-HCH、七氯、艾氏剂、环氧七氯、硫丹Ⅰ、p,p′-DDE、狄氏剂、异狄氏剂、硫丹Ⅱ、p,p′-DDD、o,p′-DDT、异狄氏剂醛、硫丹硫酸酯、p,p′-DDT、甲氧滴滴涕)的回收率在89.56%~114.22%。对气相色谱和气相色谱-质谱法的仪器检出限、回收率、精密度和方法检出限进行对比,确定了采用气相色谱-质谱定性和气相色谱定量相结合的方法,测定实际土壤样品中的有机氯农药,使得定性和定量的准确度都得到提高。 相似文献
4.
加速溶剂提取-气相色谱法同时测定土壤中的22种有机氯和有机磷农药 总被引:1,自引:0,他引:1
我国环境污染调查评价测试项目中开展了大量有关土壤中有机氯及有机磷农药残留的测定工作,多种有机污染物同时分析测试的方法是研究的新热点。本文以正己烷-丙酮(体积比1:1)为提取剂,采用加速溶剂提取,毛细管柱气相色谱法测定土壤中六氯苯等9种有机氯及敌敌畏等13种有机磷农药残留。方法回收率为79.1%~107.7%,相对标准偏差为3.62%~9.94%(n=7),检出限为0.02~0.45 μg/kg。本方法将两类农药同时提取且实现了各组分的完全分离,拓展了方法的适用范围,与传统的超声提取和索氏提取法相比,提取时间缩短至20 min,提取溶剂体积降至50 mL,缩短了分析时间,降低了成本,精密度和回收率能够满足全国环境污染调查评价的需要。 相似文献
5.
加速溶剂萃取-气相色谱法测定土壤中有机氯农药和多氯联苯 总被引:2,自引:2,他引:2
试验了加速溶剂萃取土壤中有机氯农药和多氯联苯残留的最佳条件。结果表明,采用正己烷-丙酮混合溶剂(体积比1:1)为提取剂,萃取温度100℃,压力为10.3MPa;采用弗罗里硅土固相萃取柱对样品净化,毛细管柱分离,用配有电子捕获检测器的气相色谱进行检测,平均加标回收率为83.6%~109.0%,相对标准偏差(RSD,n=11)为1.11%~5.88%,检出限为0.69~1.85ng/g。方法简单、快捷、经济,适应于土壤中的有机氯农药和多氯联苯的测定。 相似文献
6.
加速溶剂萃取-气相色谱/质谱法同时测定土壤中拟除虫菊酯类等18种农药残留 总被引:2,自引:3,他引:2
采用正己烷-丙酮-磷酸混合溶剂为提取剂,在萃取温度100℃、压力10.3 MPa条件下,用快速溶剂萃取仪提取土壤样品,石墨碳黑氨基固相萃取柱净化,PTV大体积进样,气相色谱-质谱联法同时检测六六六(HCHs)、滴滴涕(DDTs)和10种拟除虫菊酯类农药(联苯菊酯、甲氰菊酯、氯氟氰菊酯、氯菊酯、氯氰菊酯、氟氯氰菊酯、氟氨氰菊酯、氰戊菊酯、氟氰戊菊酯、溴氰菊酯)共18种农药残留。在10~20μg/kg的添加浓度下,目标化合物平均回收率为82.84%~96.33%,相对标准偏差(RSD,n=6)为3.21%~7.34%;在20~40μg/kg的添加浓度下,目标化合物平均回收率为80.55%~103.76%,RSD(n=6)为2.56%~5.78%;在40~80μg/kg的添加浓度下,目标化合物平均回收率81.56%~95.38%,RSD(n=6)为2.19%~5.88%。方法检出限为0.11~3.40μg/kg,实际样品检测的RSD(n=3)为4.94%~8.74%。方法简单快速、灵敏度高、准确度好,可以满足土壤中HCHs、DDTs和拟除虫菊酯类农药残留的实际检测需要。 相似文献
7.
对土壤中14种有机氯农药的超声提取技术和磺化、固相萃取小柱两种净化方法进行系统研究。结果表明,超声提取节省提取时间,提高分析效率;磺化法和固相萃取小柱法都有净化作用,但磺化法使样品中的艾氏剂、狄氏剂和异狄氏剂全部损失;固相萃取小柱净化当丙酮-正己烷淋洗液体积比为1∶9、淋洗液收集8 mL时回收率>90%,干扰最小。方法检出限为0.63~2.59μg/kg,精密度(RSD,n=7)为1.17%~14.66%,基体加标平均回收率为82.78%~106.94%。方法用于生态地球化学调查评价批量土壤样品的实际分析,检测结果满足评价工作需要。 相似文献
8.
土壤中25种有机氯农药和多氯联苯的气相色谱分析方法研究 总被引:1,自引:5,他引:1
研究了土壤中17种有机氯农药和8种多氯联苯组分的气相色谱分析方法。采用加速溶剂萃取技术提取,优化了萃取条件。提取液用固相萃取技术进行净化,采用20 mL含3%(体积分数)甲苯的正己烷-乙酸乙酯(体积比8∶2)进行淋洗,得到很好的净化效果。方法检出限在0.06~0.27μg/kg,线性范围在1.38~55.2 ng/mL,目标化合物的平均添加回收率在65%~97%,相对标准偏差(RSD,n=6)小于17.11%。方法快速、灵敏、准确,适合批量样品的分析。 相似文献
9.
10.
11.
C18固相膜萃取-气相色谱法测定饮用水中12种有机氯农药 总被引:13,自引:10,他引:13
利用C18固相萃取膜提取水样,气相色谱法(电子捕获检测器)测定饮用水中12种有机氯农药。对洗脱液、水样pH值、萃取压力等条件进行了优化选择,并与液-液萃取做了比较。结果表明,与液-液萃取相比,固相膜萃取具有操作简单、富集倍数高、节省溶剂和耗时短等优点,是萃取水中有机氯农药的有效方法。12种有机氯农药的回收率为85.97%~127.7%,相对标准偏差(RSD,n=5)为4.74%~12.2%,方法检出限为0.014~0.047μg/L。 相似文献
12.
加速溶剂萃取-气相色谱法测定谷物中有机氯农药和多氯联苯 总被引:1,自引:0,他引:1
针对大米、小麦、玉米和黄豆等谷物样品中有机氯农药(OCPs)和多氯联苯(PCBs)检测的前处理过程较为复杂,消耗溶剂多,易导致部分挥发性化合物损失而影响分析的准确度,本文优化了加速溶剂萃取(ASE)提取大米、小麦、玉米和黄豆等谷物样品中OCPs和PCBs的条件,比较了凝胶渗透色谱(GPC)和固相萃取柱(SPE)两种净化方式净化样品的效果,采用气相色谱-电子捕获检测器实现了样品中17种OCPs和8种PCBs单体的系统分析.结果表明,选择二氯甲烷-丙酮混合溶剂(体积比1∶1),采用ASE萃取,同时加入弗罗里硅土在线净化,可满足样品提取需求;除了黄豆和黑豆等豆制品样品需采用GPC结合SPE的净化方法外,大米、小麦、玉米等大部分谷物样品采用SPE净化即可满足测定需求.采用弗罗里硅土SPE净化,仅用9 mL正己烷-乙酸乙酯淋洗液(体积比1∶1)即可将所有目标物回收,克服了有机试剂用量大、同时使用多种试剂及试剂毒性大的问题.添加低、高两个浓度水平0.69 μg/kg和5.52μg/kg,OCPs和PCBs单体的平均回收率为71.0% ~ 112.0%,相对标准偏差为3.6%~16.7%(n=7);方法检出限为0.07 ~0.30μg/kg,低于国家标准方法的检出限.该方法净化效率高,操作简单,分析成本较低,适用于大批量谷物样品中多种OCPs和PCBs的快速分析. 相似文献
13.
液-液萃取-气相色谱法测定水中9种有机氯农药 总被引:2,自引:1,他引:2
采用正己烷液-液萃取法提取,气相色谱法-电子捕获检测器测定水中9种有机氯农药。优化了实验条件:添加两种替代物作为分析过程的质量监控;使用浓硫酸磺化法净化去除杂质;采用Rtx-5MS和Rtx-1701柱双柱定性,保证数据准确可靠。9种有机氯农药的方法检出限为0.0017~0.0079μg/L,回收率为74.7%~105.1%,相对标准偏差(RSD,n=7)为4.2%~9.3%,9种农药在0.5~100μg/L内与峰面积呈良好的线性关系。方法检出限低,准确度和精密度高,简便,适用于批量样品的分析。 相似文献