首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We trace source variations of active margin granitoids which crystallised intermittently over ~300 Ma in varying kinematic regimes, by combining zircon Lu-Hf isotopic data from Early Palaeozoic to Early Jurassic igneous and metaigneous rocks in the Mérida Andes, Venezuela and the Santander Massif, Colombia, with new whole rock Rb/Sr and Sm-Nd isotopic data, and quartz O isotopic data. These new data are unique in South America because they were obtained from discrete magmatic and metamorphic zircon populations, providing a high temporal resolution dataset, and compare several isotopic systems on the same samples. Collectively, these data provide valuable insight into the evolution of the isotopic structure of the continental crust in long-lived active margins.Phanerozoic active margin-related granitoids in the Mérida Andes and the Santander Massif yield zircon Lu-Hf model ages ranging between 0.77 Ga and 1.57 Ga which clearly define temporal trends that can be correlated with changes in tectonic regimes. The oldest Lu-Hf model ages of >1.3 Ga are restricted to granitoids which formed during Barrovian metamorphism and crustal thickening between ~499 Ma and ~473 Ma. These granitoids yield high initial 87Sr/86Sr ratios, suggesting that evolved, Rb-rich middle to upper crust was the major source of melt. Granitoids and rhyolites which crystallised during subsequent extension between ~472 Ma and ~452 Ma yield younger Lu-Hf model ages of 0.80 Ga–1.3 Ga and low initial 87Sr/86Sr ratios, suggesting that they were derived from much more juvenile, Rb-poor sources such as mafic lower crust and mantle-derived melts. The rapid change in magmatic sources at ~472 Ma can be attributed either to reduced crustal assimilation during extension, or a short pulse of crustal growth by addition of juvenile material to the continental crust. Between ~472 Ma and ~196 Ma Lu-Hf model ages remain mostly constant between ~1.0 and ~1.2 Ga. The large scatter and the absence of definite trends in initial 87Sr/86Sr ratios suggest that both mafic, Rb-poor, and evolved Rb-rich sources were important precursors of active margin magmas in Colombia and Venezuela throughout the Palaeozoic to the Early Jurassic.Previous studies have shown that the genesis of arc magmas may be stimulated by heat advection to the crust during the underplating of mantle derived melt, but the absence of permanent younging trends in Lu-Hf model ages from ~472 Ma to ~196 Ma suggests that very little new crust was generated during this period in the studied region. An overwhelming majority of the analysed igneous rocks yield zircon Lu-Hf model ages of >1 Ga which may be accounted for by documented local crustal end members of 1 Ga–1.6 Ga, and do not require contributions from the depleted mantle. Therefore, recycling of ~1 Ga and older crust was a dominant process in the north-western corner of Gondwana between ~472 Ma and ~196 Ma.This study shows that whole rock Sm-Nd and zircon Lu-Hf data can be interpreted similarly regarding the age of the source regions, whereas Rb-Sr and O isotope data from the same rocks yield valuable information regarding the geochemical nature of the source.  相似文献   

2.
刘建辉  刘福来  丁正江  刘平华  王舫 《岩石学报》2014,30(10):2941-2950
古老陆壳物质的发现与鉴别是探索地球早期陆壳形成与演化历史的重要内容之一,锆石U-Pb年龄结合Hf同位素研究是该研究的重要手段。本文通过对胶北地体内一个长英质副片麻岩中的锆石开展系统的原位U-Pb定年和微量、稀土元素分析,获得了多个太古宙早期的锆石。根据这些锆石的阴极发光图像、Th/U比值及稀土元素球粒陨石标准化配分模式,它们具有典型岩浆锆石的特征,其中2个分析点给出了3413Ma和3400Ma(~3.4Ga)的锆石U-Pb年龄,7个分析点给出3547±19Ma(MSWD=1.16)的锆石U-Pb年龄,指示太古宙早期的陆壳岩浆事件;结合华北克拉通其它地区的类似研究结果,暗示华北克拉通可能曾经存在比现今出露面积更大的太古宙早期的古老陆壳。这些古老锆石的Hf同位素分析显示,它们的εHf(t)值在-6.19~0.95之间,平均为-2.54,两阶段Hf模式年龄在3737~4353Ma之间,平均值为~4.1Ga,远大于锆石的U-Pb年龄,指示华北克拉通存在~4.1Ga的地壳增生作用及古老陆壳(3.55Ga)的再循环。  相似文献   

3.
The ultrahigh‐pressure (UHP) eclogite in the Dabie orogen preserves petrological evidence for the existence of hydrous silicate melts that formed during continental subduction‐zone metamorphism. This is indicated by occurrence of multiphase solid (MS) inclusions in garnet that primarily consist of K‐feldspar + quartz ± epidote/allanite. All the MS inclusions are euhedral to subhedral in morphology and surrounded with radial cracks in the host garnet. Their trace element compositions were analysed by two different approaches of laser sampling. The mass budget method was used to estimate the trace element abundances of MS inclusions from their mixtures with the host garnet. The results are compared with the direct sampling of MS inclusions, providing a first‐order approximation to the trace element composition of MS inclusions. The MS inclusions exhibit consistent enrichment of LILE, Sr and Pb, but depletion of HFSE in the primitive mantle‐normalized spidergram. Such arc‐like patterns of trace element distribution are common for continental crustal rocks. The melts have variably high K, Rb and Sr abundances, suggesting that breakdown of phengite is a basic cause for partial melting of the UHP eclogite. These MS inclusions also exhibit consistently low HFSE and Y contents, suggesting partial melting of the eclogite in the stability fields of rutile and garnet. Consequently, the trace element composition of MS inclusions provides a proxy for that of hydrous silicate melts derived from dehydration melting of the UHP eclogite during continental collision.  相似文献   

4.
A central target in Earth sciences is to understand the processes controlling the stabilization and destruction of Archean continents. The North China craton (NCC) has in part lost its dense crustal root after the Mesozoic, and thus it is a key region to test models of crust–mantle differentiation and subsequent evolution of the continental crust. However, the timing and mechanisms responsible for its crustal thickening and reworking have been long debated. Here we report the Early Cretaceous Yinan (eastern NCC) adakitic granites, for which major/trace elemental models demonstrate that they are complementary to the analogy of the documented eclogitic relicts within the NCC. Based on their Late Archean inherited zircons, depleted mantle Nd model ages of ∼2.8 Ga, large negative εNd(t) values (−36.7 to −25.3) and strongly radiogenic initial 87Sr/86Sr ratios (0.7178–0.7264), we suggest that the Yinan adakitic granites were potentially formed by the dehydration melting of a thickened Archean mica-bearing mafic lower crust during the Early Cretaceous (ca. 124 Ma), corresponding to a major period (117–132 Ma) of the NCC Mesozoic intrusive magmatism. Combined previous results, it is shown that the thickening and reworking of the North China Archean lower crust occurred largely as two short-lived episodes at 155–180 Ma and 117–132 Ma, rather than a gradual, secular event. These correlated temporally with the superfast-spreading Pacific plate during the Mesozoic. The synchroneity of these events suggests rapid plate motion of the Pacific plate driving the episodic NCC crustal thickening and reworking, resulting in dense eclogitic residues that became gravitationally unstable. The onset of lithospheric delamination occurred when upwelling asthenosphere heated the base of lower crust to form coeval felsic magmas with or without involvement of juvenile mantle material. Collectively, the circum-Pacific massive crustal production could be attributed to the unusually rapid motion of Pacific at 155–180 Ma and 117–132 Ma.  相似文献   

5.
U–Pb dating and oxygen and Lu–Hf isotope analyses are applied to ~ 400 detrital zircon grains from the Neoproterozoic–Cambrian Kahar, Bayandor and Zaigun sandstones. The results reveal the evolutionary history of the Central Iranian continental crust in the northern margin of Gondwana during the Neoproterozoic–Cambrian. The U–Pb dating produces major peaks of crystallization ages at 0.5–0.7 Ga and minor peaks around the Tonian, Paleoproterozoic and Neoarchean. The zircon population in the Zaigun sandstone is dominated by long-transported grains and exhibits slightly different zircon distribution patterns than those from the older Kahar and Bayandor units. The zircon population ages and Hf isotopes of the Zaigun sample are very similar to the Neoproterozoic–Early Palaeozoic siliciclastic units in the Arabian Nubian shield (ANS) and Turkey, which suggests the late to post–Pan-African unroofing of the Afro–Arabia realm as the main process for detritus accumulation in Central Iran during the early Palaeozoic. A significant proportion of the Tonian-aged zircons (~ 64%) in the Kahar and Bayandor samples show positive εHf(t) values, whereas those with late Cryogenian–Ediacaran ages have high δ18O and variable εHf(t) values (~− 30‰ to + 17‰), suggesting that the crustal evolution of provenance of the Tonian-aged zircons commenced in an island arc setting and continued in an active continental margin. All the samples contain pre-Neoproterozoic zircons that are ca 1.9–2.3 Ga or 2.5–3.2 Ga, which are much older than the known Neoproterozoic igneous rocks in Iran and are more consistent with pre-Neoproterozoic igneous-metamorphic rocks in the eastern ANS and northern Africa. These ages support the eastern sector of the Afro–Arabia margin as a provenance for the detrital zircons in the oldest sedimentary sequences of Iran during the late Neoproterozoic–Cambrian. The Hf model ages of zircons with mantle-like δ18O values suggest that a significant amount of continental crust in the provenance of the detrital zircons was generated at around 1.0–2.0 and 3.0–3.5 Ga, likely by mantle-derived mafic magmas, and subsequently reworked during crustal differentiation into younger, more felsic crust with varying crustal residence times.  相似文献   

6.
The North China Craton (NCC) represents one of only a few cratonic nuclei on the globe with a geological history extending back to the Eoarchean. However, extensive ca. 2.5 Ga crustal reworking has destroyed a considerable portion of the pre-existing crustal record, hindering the investigation of tectonothermal evolution prior to 2.5 Ga. The Huoqiu Complex (HQC), located at the southeastern margin of the NCC, preserves the vestiges of crustal components that survived the ca. 2.5 Ga tectonothermal events, which provide the opportunity to investigate the Meso- to Neoarchean episodic crustal evolution of the NCC. Here we present results from in-situ detrital zircon U–Pb dating and Hf isotope analyses on zircons from three paragneisses in three drill cores that cut through the basement of the HQC. In combination with published data, the concordant age spectra of the detrital zircons in the paragneisses yield 207Pb/206Pb ages of 2343–3997 Ma that cluster into two principal age populations with peaks at 3015 and 2755 Ma. One zircon grain dated at 3997 ± 8 Ma with 98% concordance provides new evidence for 4.0 Ga components in the NCC. The εHf(t) values of all zircons range from − 5.2 to + 6.5, with most of the spots (n = 31 of 47) showing positive values, indicating at least two episodes of juvenile continental crustal growth at 3.01 Ga and 2.75 Ga. The older episode is recorded only in few ancient cratons, suggesting limited crustal accretion occurred globally at a time of subdued mantle-derived magmatism. In contrast, the younger episode is coincident with a global rise in magmatic activity in the early Neoarchean. The geochemical and geochronological data suggest that the 3.01 Ga juvenile crust was likely generated in an island-arc subduction system, whereas the 2.75 Ga crustal rocks were probably formed during magmatic underplating and subsequent partial melting of lower crustal mafic rocks. Consequently, a tectonic transition is suggested from a compressive to an extensional setting along the southeastern margin of the NCC between 3.01 and 2.75 Ga. This sequence of events heralds a shift, from a mixture of net crustal growth and crustal reworking during multiple short-lived magmatic pulses, to fragmentation and dispersal of the early continental nucleus within 260 Ma.  相似文献   

7.
Zircon crystals precipitated from granitoid magmas contain a robust record of the age and chemistry of continental magmatism spanning some 4.375 Ga of Earth history, a record that charts initiation of plate tectonics. However, constraining when exactly plate tectonics began to dominate crustal growth processes is challenging as the geochemical signatures of individual rocks may reflect local subduction processes rather than global plate tectonics. Here we apply counting statistics to a global database of coupled U–Pb and Hf isotope analyses on magmatic zircon grains from continental igneous and sedimentary rocks to quantify changes in the compositions of their source rocks. The analysis reveals a globally significant change in the sources of granitoid magmas between 3.2 and 2.7 Ga. These secular changes in zircon chemistry are driven by a coupling of the deep (depleted mantle) and shallow (crustal) Earth reservoirs, consistent with a geodynamic regime dominated by Wilson cycle style plate tectonics.  相似文献   

8.
Models of the volume of continental crust through Earth history vary significantly due to a range of assumptions and data sets; estimates for 3 Ga range from <10% to >120% of present day volume. We argue that continental area and thickness varied independently and increased at different rates and over different periods, in response to different tectonic processes, through Earth history. Crustal area increased steadily on a pre-plate tectonic Earth, prior to ca. 3 Ga. By 3 Ga the area of continental crust appears to have reached a dynamic equilibrium of around 40% of the Earth's surface, and this was maintained in the plate tectonic world throughout the last 3 billion years. New continental crust was relatively thin and mafic from ca. 4–3 Ga but started to increase substantially with the inferred onset of plate tectonics at ca. 3 Ga, which also led to the sustained development of Earth's bimodal hypsometry. Integration of thickness and area data suggests continental volume increased from 4.5 Ga to 1.8 Ga, and that it remained relatively constant through Earth's middle age (1.8–0.8 Ga). Since the Neoproterozoic, the estimated crustal thickness, and by implication the volume of the continental crust, appears to have decreased by as much as 15%. This decrease indicates that crust was destroyed more rapidly than it was generated. This is perhaps associated with the commencement of cold subduction, represented by low dT/dP metamorphic assemblages, resulting in higher rates of destruction of the continental crust through increased sediment subduction and subduction erosion.  相似文献   

9.
The thickness and geothermal gradient of Archean continental crust are critical factors for understanding the geodynamic processes in Earth's early continental crust. Archean tonalite-trondhjemite-granodiorite (TTG) gneisses provide one of the potential indicators of paleo-crustal thickness and geothermal gradient because crust-derived TTG melts are generally thought to originate from partial melting of mafic rocks at the crustal root. In the Western Shandong Province (WSP) of the North China Craton (NCC), two episodes of Neoarchean TTG magmatism are recognized at ~2.70 Ga and ~2.55 Ga which were sourced from partial melting of juvenile crustal components. The ~2.70 Ga TTG gneisses show highly fractionated rare earth element (REE) patterns (average (La/Yb)N = 39), whereas the ~2.55 Ga TTG gneisses have relatively less fractionated REE patterns (average (La/Yb)N = 18). Petrogenetic evaluation suggest that the magmatic precursors of the TTG gneisses of both episodes originated from partial melting of juvenile crustal materials at different crustal depths with residual mineral phases of Grt, Cpx, Amp, Pl and Ilm. Together with the garnet proportion in the residue, the P–T pseudosections of equilibrium mineral assemblages, and the temperature calculated from Titanium-in-zircon thermometer, we estimate the Neoarchean crustal thicknesses as 44–51 km with geothermal gradients of 17 to 20 °C/km for the ~2.70 Ga TTG gneisses whereas the ~2.55 Ga TTG gneisses show lesser crustal thicknesses of 35–43 km with geothermal gradients of 19 to 26 °C/km, with an approximately 10 km difference in crustal thickness. Our estimates on the thicknesses and geothermal gradients of the Neoarchean crust are similar to those (~41 km, ~20 °C/km) of the modern average continental crust, indicating that a modern-style plate tectonic regime may have played an important role in the formation and evolution of the Neoarchean continental crust in the NCC.  相似文献   

10.
Multi-isotope study including whole-rock Nd–Sr, single zircon Hf, and SIMS δ18O analyses of zircons sheds light on magma sources in the northernmost Arabian–Nubian Shield (ANS) during ~820–570 Ma. Reconnaissance initial Nd and Sr isotope data for the older rocks (~820–740 Ma) reaffirms previous estimates that early crustal evolution in this part of the shield involved some crustal contamination by pre-ANS material. Prominent isotope provinciality is displayed by post-collisional calc-alkaline and alkaline igneous rocks of ~635–570 Ma across a NW-SE transect across basement of the Sinai Peninsula (Egypt) and southern Israel. Silicic rocks of the NW-region are characterized by lower εNd(T)–εHf(T) and higher Sri and δ18O compared with rocks of the SE-region, and the transition between the regions is gradual. Within each region isotope ratios are independent of the extent of magma fractionation, and zircon cores and rims yield similar δ18O values. Comparison with southern segments of the ANS shows that the source for most ~635–570 Ma rocks can be modeled as the isotopically aged lower-intermediate crust in the ANS core (SE-region) and its northern, more contaminated ANS margins (NW-region). Nevertheless, Nd–Sr isotope enrichment of the lithospheric mantle is indicated by some basic magmas of the NW-region displaying the most enriched Nd–Sr isotope compositions. Comparison of Nd and Hf depleted mantle model ages for rocks of the SE-region may indicate that crustal formation events in the ANS geographical core took place at 1.1–1.2 Ga and were followed by crustal differentiation starting at ~0.9 Ga.  相似文献   

11.
The Myggbukta caldera complex and a swarm of basic dykes constitute the latest Tertiary magmatism in the Hold with Hope region, East Greenland. The Sr and Nd isotope ratios of these rocks show coherent variations which extend to high 87Sr/86Sr and low 143Nd/144Nd values and require a contribution from continental lithosphere. Broad correlations with major element differentiation indices suggest that the continental component was incorporated during magmatic differentiation thereby favouring a crustal contamination process. Trace element concentrations are strongly correlated with isotopic compositions but display ranges for many incompatible elements which extend beyond likely crustal contaminant compositions. This is readily modelled by AFC processes in which the dominant cause of trace element enrichment is the concentration effect of fractional crystallisation rather than the composition of the contaminant. The simplest such models still require unrealistically high degrees of fractional crystallisation to explain the ten-fold enrichment of some trace elements. This can be overcome if the primary magmas entering the crust already had highly variable trace element compositions. Such variability is readily achieved if melts from different parts of the melting column escape without thorough homogenization. An AFC model which incorporates variability in parental magma composition is then able to simulate the range of compositions observed at Hold with Hope. This carries the implication that the variations observed are more readily attributed to changes in uncontaminated parental magma than to variations in the composition or amount of contaminant. Received: 5 March 1998 / Accepted: 16 June 1998  相似文献   

12.
《Gondwana Research》2013,24(4):1484-1490
Evidence for the earliest known terrestrial crust comes predominantly from Jack Hills in Western Australia, where hafnium isotopic results from > 3.8 Ga detrital zircons indicate crustal precursors as old as ~ 4.4–4.5 Ga. We present evidence from magmatic cores in > 3.9 Ga xenocrystic zircons from a felsic volcanic rock in the North Qinling Orogenic Belt, China, of similar Hf crustal model ages up to 4.45 Ga. These lie on the same Lu/Hf trajectory as the least disturbed Jack Hills and Apollo 14 zircons, therefore providing only the second example of the earliest known generation of continental crust on Earth. In addition, the rims of two zircon grains record later growth at 3.7 Ga and, when combined with the fact that the grains are incorporated in Paleozoic volcanic rocks, imply long-lived crustal residence within the basement of the North China Craton. These results therefore establish the wider distribution and survival of the most ancient crustal material on the Earth and highlight the possibility for the further discovery of ancient crustal remnants.  相似文献   

13.
Rates of generation and growth of the continental crust   总被引:4,自引:1,他引:3  
Models for when and how the continental crust was formed are constrained by estimates in the rates o crustal growth. The record of events preserved in the continental crust is heterogeneous in time with distinctive peaks and troughs of ages for igneous crystallisation, metamorphism, continental margin and mineralisation. For the most part these are global signatures, and the peaks of ages tend to b associated with periods of increased reworking of pre-existing crust, reflected in the Hf isotope ratios o zircons and their elevated oxygen isotope ratios. Increased crustal reworking is attributed to periods o crustal thickening associated with compressional tectonics and the development of supercontinents Magma types similar to those from recent within-plate and subduction related settings appear to hav been generated in different areas at broadly similar times before ~3.0 Ga. It can be difficult to put th results of such detailed case studies into a more global context, but one approach is to consider when plate tectonics became the dominant mechanism involved in the generation of juvenile continental crust The development of crustal growth models for the continental crust are discussed, and a number o models based on different data sets indicate that 65%-70% of the present volume of the continental crus was generated by 3 Ga. Such estimates may represent minimum values, but since ~3 Ga there has been reduction in the rates of growth of the continental crust. This reduction is linked to an increase in th rates at which continental crust is recycled back into the mantle, and not to a reduction in the rates a which continental crust was generated. Plate tectonics results in both the generation of new crust and it destruction along destructive plate margins. Thus, the reduction in the rate of continental crustal growth at ~3 Ga is taken to reflect the period in which plate tectonics became the dominant mechanism b which new continental crust was generated.  相似文献   

14.
The assembly and long-term evolution of the Eastern Block of the North China Craton are poorly constrained. Here we use bulk rock geochronological and geochemical data from mafic meta-igneous rocks (hornblendites, amphibolites and a metagabbro) of the Liaohe Group to reconstruct the Neoarchean to Paleoproterozoic history of the Jiao-Liao-Ji Belt, located between the Longgang and Nangrim blocks that together form the Eastern Block of the North China Craton. The mafic/ultramafic meta-igneous rocks have intrusive or tectonic contacts with the Liaoji granitic rocks (~2.2–2.0 Ga), which form the basement of the Jiao-Liao-Ji Belt. The major and trace element data indicate that the protoliths had calc-alkaline composition and formed along an active continental margin subduction zone. The mafic rocks form a whole-rock 176Lu/177Hf isochron with an age of 2.25 ± 0.31 Ga, overlapping with UPb zircon ages for mafic and granitic rocks from the Jiao-Liao-Ji Belt and consistent with being the emplacement age of the mafic protoliths along the active continental margin. In contrast, the whole-rock 147Sm/144Nd isochron age of 2.83 ± 0.18 Ga is likely to reflect the average age of the lithospheric mantle source from which the mafic/ultramafic protoliths were extracted. Together with geological evidence, we propose that the southwestern portion of the Longgang Block was an active continental margin since at least the early Paleoproteorozic. Literature age data from metamorphic zircons show that peak granulite metamorphism took place at ~1.96–1.88 Ga, resulting from the collisional event that fused the Longgang and Nangrim blocks into the Eastern Block of the North China Craton. Our bulk-rock 207Pb/206Pb age of 1824 ± 19 Ma and our 87Rb/86Sr age of 1671 ± 58 Ma reflect retrograde (cooling) stages during the exhumation of the Jiao-Liao-Ji Belt after the orogenesis.  相似文献   

15.
The Lomagundi (-Jatuli) event, characterized by extremely high positive global inorganic carbon isotope excursion at about 2.2 billion years ago, is pivotal in investigating the causes and consequences of great oxygenation event, inventory and sequestration of carbon on the Earth’s surface, evolution of life, and more profoundly tectonic control on Earth’s environment. However, the reasons that caused the isotopic excursion are not resolved yet. Herein, we report the discovery of meta-carbonate rocks with distinct positive carbon isotopic excursion from the Paleoproterozoic continental collision zone of the Kongling Complex, South China Craton. The δ13CV-PDB values for meta-carbonate rocks show positive values in the range from +5.5‰ to +11.6‰, whereas the δ13CV-PDB values of associated graphite deposits range from ?25.8‰ to ?9.5‰. Zircon U-Pb-Hf isotopes from zircon-bearing meta-carbonate sample yielded weighted average 207Pb/206Pb age of 2001.3 ± 9.5 Ma, with corresponding εHf(t) range from ?7.05 to ?3.16, comparable to the values of local 2.9–2.6 Ga basement rocks. Geochemical characteristics of meta-carbonate rocks, such as their rare earth element patterns and the trace element parameters of La, Ce, Eu, and Gd anomalies and Y/Ho ratio, suggest that the carbonate deposition took place in passive continental margin in association with large volumes of organic carbon. The extensive graphite deposits from Kongling Complex in South China Craton, their equivalents in the North China Craton and elsewhere across the globe prove that the burial of 12C-enriched organic carbon has eventually resulted in the global enrichment of 13C in the atmospheric CO2, which is recorded in the marine carbonate rocks. Isotopic mass balance estimates indicate that more than half of the organic carbon was buried during the oceanic closure. Hence, the observed global shift could be directly related to the continent collision event in greater China, thus resolving the long-standing paradox of the Lomagundi global positive carbon isotope excursion. Moreover, the present results suggest that orogenesis play a significant role in sequestration of carbon into the continental crust.  相似文献   

16.
A worldwide database of over 13,800 integrated U–Pb and Hf-isotope analyses of zircon, derived largely from detrital sources, has been used to examine processes of crustal evolution on a global scale, and to test existing models for the growth of continental crust through time. In this study we introduce a new approach to quantitatively estimating the proportion of juvenile material added to the crust at any given time during its evolution. This estimate is then used to model the crustal growth rate over the 4.56 Ga of Earth's history. The modelling suggests that there was little episodicity in the production of new crust, as opposed to peaks in magmatic ages. The distribution of age-Hf isotope data from zircons worldwide implies that at least 60% of the existing continental crust separated from the mantle before 2.5 Ga. However, taking into consideration new evidence coming from geophysical data, the formation of most continental crust early in Earth's history (at least 70% before 2.5 Ga) is even more probable. Thus, crustal reworking has dominated over net juvenile additions to the continental crust, at least since the end of the Archean. Moreover, the juvenile proportion of newly formed crust decreases stepwise through time: it is about 70% in the 4.0–2.2 Ga time interval, about 50% in the 1.8–0.6 Ga time interval, and possibly less than 50% after 0.6 Ga. These changes may be related to the formation of supercontinents.  相似文献   

17.
The western Anatolian volcanic province formed during Eocene to Recent times is one of the major volcanic belts in the Aegean–western Anatolian region. We present new chemical (whole-rock major and trace elements, and Sr, Nd, Pb and O isotopes) and new Ar/Ar age data from the Miocene volcanic rocks in the NE–SW-trending Neogene basins that formed on the northern part of the Menderes Massif during its exhumation as a core complex. The early-middle Miocene volcanic rocks are classified as high-K calc-alkaline (HKVR), shoshonitic (SHVR) and ultrapotassic (UKVR), with the Late Miocene basalts being transitional between the early-middle Miocene volcanics and the Na-alkaline Quaternary Kula volcanics (QKV). The early-middle Miocene volcanic rocks are strongly enriched in large ion lithophile elements (LILE), have high 87Sr/86Sr(i) (0.70631–0.71001), low 143Nd/144Nd(i) (0.512145–0.512488) and high Pb isotope ratios (206Pb/204Pb = 18.838–19.148; 207Pb/204Pb = 15.672–15.725; 208Pb/204Pb = 38.904–39.172). The high field strength element (HFSE) ratios of the most primitive early-middle Miocene volcanic rocks indicate that they were derived from a mantle source with a primitive mantle (PM)-like composition. The HFSE ratios of the late Miocene basalts and QKV, on the other hand, indicate an OIB-like mantle origin—a hypothesis that is supported by their trace element patterns and isotopic compositions. The HFSE ratios of the early-middle Miocene volcanic rocks also indicate that their mantle source was distinct from those of the Eocene volcanic rocks located further north, and of the other volcanic provinces in the region. The mantle source of the SHVR and UKVR was influenced by (1) trace element and isotopic enrichment by subduction-related metasomatic events and (2) trace element enrichment by “multi-stage melting and melt percolation” processes in the lithospheric mantle. The contemporaneous SHVR and UKVR show little effect of upper crustal contamination. Trace element ratios of the HKVR indicate that they were derived mainly from lower continental crustal melts which then mixed with mantle-derived lavas (~20–40%). The HKVR then underwent differentiation from andesites to rhyolites via nearly pure fractional crystallization processes in the upper crust, such that have undergone a two-stage petrogenetic evolution.  相似文献   

18.
The Parashi granitoid of northeasternmost Colombia intrudes the Upper Cretaceous to Lower Paleocene accretionary complex formed by the collision of the Caribbean arc and the continental margin of South America. This granitoid presently separated of the continental margin includes a major quartzdiorite body with andesite to dacite dikes and mafic enclaves. Zircon U–Pb LA-MC-ICP-MS and K–Ar geochronology on the quartzdiorite and the dikes suggest that crystallization extended from ca. 47 to 51 Ma. Major and trace elements are characterized by a medium-K, immature continental arc signature and high Al2O3, Na2O and Ba–Sr contents. Initial 87Sr/86Sr isotopic values range between 0.7050 and 0.7054, with 143Nd/144Nd = 0.51235–0.51253, εNd and εHf values from −0.81 to −4.40 and −4.4 and −5.2. Major and trace element ratios and isotopic modeling suggest that sedimentary and/or quartzofeldspathic crustal sources were mixed with a mafic melt input. The petrotectonic and geological constraints derived from this granitoid suggest that Parashi plutonism records an immature, oblique subduction-zone setting in which the presence of a high-temperature mantle realm and strong plate coupling associated to upper crust subduction caused the partial fusion of a previously tectonically underplated mafic crust and associated metasediments exposed in the continental margin. The limited temporal expression of this magmatism and the transition to a regional magmatic hiatus are related to a subsequent change to strongly and slow oblique tectonics in the Caribbean–South America plate interactions and the underflow of a relatively thick slab of Caribbean oceanic crust.  相似文献   

19.
The Afar Depression offers a rare opportunity to study the geodynamic evolution of a rift system from continental rifting to sea floor spreading. This study presents geochemical data for crustal and mantle xenoliths and their alkaline host basalts from the region. The basalts have enriched REE patterns, OIB-like trace element characteristics, and a limited range in isotopic composition (87Sr/86Sr = 0.70336–0.70356, ε Nd = +6.6 to +7.0, and ε Hf = +10.0 to +10.7). In terms of trace elements and Sr–Nd isotopes, they are similar to basalts from the Hanish and Zubair islands in the southern Red Sea and are thus interpreted to be melts from the Afar mantle. The gabbroic crustal xenoliths vary widely in isotope composition (87Sr/86Sr = 0.70437–0.70791, ε Nd = −8.1 to +2.5, and ε Hf = −10.5 to +4.9), and their trace element characteristics match those of Neoproterozoic rocks from the Arabian–Nubian Shield and modern arc rocks, suggesting that the lower crust beneath the Afar Depression contains Neoproterozoic mafic igneous rocks. Ultramafic mantle xenoliths from Assab contain primary assemblages of fresh ol + opx + cpx + sp ± pl, with no alteration or hydrous minerals. They equilibrated at 870–1,040°C and follow a steep geothermal gradient consistent with the tectonic environment of the Afar Depression. The systematic variations in major and trace elements among the Assab mantle xenoliths together with their isotopic compositions suggest that these rocks are not mantle residues but rather series of layered cumulate sills that crystallized from a relatively enriched picritic melt related to the Afar plume that was emplaced before the eruption of the host basalts.  相似文献   

20.
Palaeoproterozoic intermediate to potassic felsic volcanism in volcano‐sedimentary sequences could either have occurred in continental rift or at convergent magmatic arc tectonic settings. The Vinjamuru domain of the Krishna Province in Andhra Pradesh, SE India, contains such felsic and intermediate metavolcanic rocks, whose geochemistry constrains their probable tectonic setting and which were dated by the zircon Pb evaporation method in order to constrain their time of formation. These rocks consist of interlayered quartz–garnet–biotite schist, quartz–hematite–baryte–sericite schist as well as cherty quartzite, and represent a calc‐alkaline volcanic sequence of andesitic to rhyolitic rocks that underwent amphibolite‐facies metamorphism at ~1.61 Ga. Zircons from four felsic metavolcanic rock samples yielded youngest mean 207Pb/206Pb ages between 1771 and 1791 Ma, whereas the youngest zircon age for a meta‐andesite is 1868 Ma. A ~2.43 Ga zircon xenocryst reflects incorporation of Neoarchaean basement gneisses. Their calc‐alkaline trends, higher LILE, enriched chondrite‐normalized LREE pattern and negative Nb and Ti anomalies on primitive mantle‐normalized diagrams, suggest formation in a continental magmatic arc tectonic setting. Whereas the intermediate rocks may have been derived from mantle‐source parental arc magmas by fractionation and crustal contamination, the rhyolitic rocks had crustal parental magmas. The Vinjamuru Palaeoproterozoic volcanic eruption implies an event of convergent tectonism at the southeastern margin of the Eastern Dharwar Craton at ~1.78 Ga forming one of the major crustal domains of the Krishna Province. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号