首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
利用长江流域147个气象观测站1961—2000年观测数据,对两个多模式集合CMIP3和CMIP5在长江流域气温模拟效果进行了评估,并进一步利用CMIP5输出结果预估2011—2050年长江流域气温时空变化。结果表明:两个多模式集合对长江流域气温具有一定的模拟能力,相对于CMIP3,CMIP5对实验期后20 a的年均气温变化的模拟效果更好,对年均气温变化倾向率的空间分布更加接近实测。预估表明:长江流域年均气温在3种RCPs情景下呈显著增加趋势,长江中下游变暖幅度要高于长江上游,到2050年,全流域气温都增加1.0℃以上。  相似文献   

2.
选用华中地区1961—2014年逐日气象观测资料、1961—2100年12个CMIP6模式统计降尺度和偏差订正结果,评估CMIP6模式在区域的气温和降水量时空分布模拟结果,选出6个气温模式、4个降水量模式。基于优选模式集合的平均结果,分别分析未来SSP1-2.6、SSP2-4.5、SSP5-8.5三种情景下2021—2100年华中地区不同时期气温和降水量的变化趋势。结果表明:多模式集合平均结果的气温年际变率模拟好于降水量,降水量空间模拟好于气温。三种情景下区域气温、降水量均为增加趋势,气温增速分别为0.13℃/10 a、0.30℃/10 a、0.62℃/10 a,降水量增速分别为16.2 mm/10 a、12.3 mm/10 a、19.3 mm/10 a。未来2021—2100年三种情景下华中地区降水量多为南部减小北部增大,气温近期、中期为西部降低、中东部升高,远期除湖北西部山区降低外,其他地区均为升高趋势。  相似文献   

3.
本文利用26个CMIP6全球气候模式,研究了21世纪末东南亚极端降水事件的变化,通过分解水汽收支方程分析降水变化的动力和热力效应。结果表明,21世纪末(2071—2100年)相对历史参考期(1985—2014年),东南亚大部分地区的气候态降水、极端降水事件的发生频率和强度均显著增加。除大于10 mm降水日数(R10mm)外,其他极端降水指数在SSP5-8.5情景下的变化幅度比SSP2-4.5情景更大。其中强降水量贡献率(R95pTOT)的增长幅度最大,在SSP2-4.5(SSP5-8.5)情景下增加22%(41%)。极端降水变化对气候变暖的响应存在明显的区域性差异。加里曼丹岛将出现更短时集中的极端降水。苏门答腊岛南部的极端降水频率略有减小,且可能发生较强的持续性干旱事件。进一步分析水汽收支方程可知,SSP2-4.5(SSP5-8.5)情景下,热力作用项对P-E(降水减蒸发)的变化贡献为65%(64%),并且模式间一致性更高。而动力作用项对P-E的变化呈抵消趋势,贡献为35%(36%)。这说明相比大尺度环流变化,大气比湿变化引起的水汽辐合是未来东南亚降水量增多的主要因子。  相似文献   

4.
实现我国2060年“碳中和”目标,需要大力发展包括风能在内的清洁能源,然而气候变化给未来风资源利用带来较大的不确定性。本文利用人工神经网络(Artificial Neural Network,ANN)算法对16个CMIP6气候模式风速数据进行逐一订正,在此基础上预估21世纪30、60年代以及21世纪末这3个不同年代在低(SSP1-2.6)和高(SSP5-8.5)排放情景下中国风功率较当代的变化。结果表明,ANN算法使CMIP6气候模式均方根误差平均降低(39.93%±9.57%),并使多模式集合平均与观测的相关系数从0.56增加到0.83,更好地再现了中国当代风速的空间分布和季节变化。在此基础上,预估的21世纪60年代(2050—2064年)风功率密度在两种情景下分别减少了(1.01±0.94) W·m-2(2.62%±2.27%)和(1.11±1.45) W·m-2(1.90%±2.51%)。时间上,春季作为风能密度最大的季节,两种排放情景下风功率分别减少了(1.16±1.14) W·m-2和(1.43±1.58) W·m-2。空间上,中国东南部风功率密度在SSP1-2.6情景下降(0.56±0.53) W·m-2,而SSP5-8.5情景下上升(0.40±0.29) W·m-2。近期(2025—2039年)全国平均风功率密度在两种情景下分别减少了(0.52±0.83) W·m-2和(0.54±1.02) W·m-2,而长期(2085—2099年)风功率密度分别减小了(0.98±1.17) W·m-2和(1.83±1.17) W·m-2。利用极度梯度提升(XGB)算法订正CMIP6数据的预估变化量级偏小但趋势一致,表明随着全球变暖幅度的增加,我国风功率降低的趋势将更加显著。  相似文献   

5.
基于地面气象站观测资料,采用偏差订正后的国际耦合模式比较计划第六阶段(CMIP6)中情景齐全的5个气候模式,评估气候模式对1995-2014年黄河上游降水的模拟能力,并预估了 7个SSP-RCP情景下黄河上游2021-2040年(近期)、2041-2060年(中期)、2081-2100年(末期)的降水变化趋势.结果表明...  相似文献   

6.
利用泰勒图客观地评估了贵州省在参照时段1986—2005年8个CMIP5模式试验结果对气温的模拟能力,并采用在等权重系数条件下的集合平均结果计算了贵州省21世纪不同阶段不同情景下未来极端气温指数.研究表明:8个模式的集合平均的模拟效果能较好地模拟用于计算极端气温指数的基础数据,包括日平均气温、日最低气温和日最高气温.根据集合平均的结果,不同RCPs排放情景下21世纪贵州省相对于基准期大于25℃的高温日数(SU)、最低气温的最低值(TNN)和生长季长度(GSL)均表现为增加的趋势,而小于0℃的霜冻日数(FD)则呈现减少的趋势,排放越高,增加或减少的趋势越明显.RCP8.5、RCP4.5和RCP2.6情景下2006—2099年贵州省极端气温指数相对于1986—2005年SU、TNN、FD和GSL的变化速率分别为8.06~1.30 d/(10 a)、0.49~0.07℃/(10 a)、-4.99~-0.97 d/(10 a)和3.33~0.04 d/(10 a).  相似文献   

7.
采用水量平衡模型和Penman公式分别计算了珠江流域七个子流域1961—2000年实际蒸散发(I_(ETa))和潜在蒸散发(I_(ETp)),并对供水条件变化下I_(ETa)与I_(ETp)的关系进行了定量化分析,对各子流域I_(ETa)和I_(ETp)关系的理论从属性进行判定,主要结论如下:1)珠江流域年实际蒸散发量远低于潜在蒸散发量,多数子流域I_(ETa)值不到I_(ETp)值的1/2。7个流域面积加权平均I_(ETa)为681.4 mm/a,I_(ETp)为1 560.8 mm/a。从蒸散发的变异性来看,则实际蒸散发I_(ETa)的变异性明显要高于潜在蒸散发I_(ETp)。2)东江、西江、北江、柳江和盘江等5个流域实际蒸散发I_(ETa)都与降水量呈现正相关关系,韩江、郁江两个流域I_(ETa)随降水变化的变化趋势不明显。各子流域的潜在蒸散发I_(ETp)与降水量呈现显著负相关关系。7个子流域平均情况下,随着降水量的增加,I_(ETa)呈现明显的增加趋势,而I_(ETp)呈现明显的下降趋势。3)通过对降水量P与实际蒸散发I_(ETa)及潜在蒸散发I_(ETp)的联合回归方程P-IET回归系数的T检验,判定韩江、柳江和盘江等三个子流域以及七流域面积加权平均I_(ETa)与P和I_(ETp)与P的关系满足理论意义上的严格互补相关;东江、西江、北江等三个流域I_(ETa)与P和I_(ETp)与P的关系满足"非对称"互补相关。4)基于极端干旱和极端湿润的边界条件,推导出非对称条件下的实际蒸散发互补相关理论模型。  相似文献   

8.
多年冻土区土壤蒸散发对气候变化的敏感性分析   总被引:1,自引:0,他引:1  
由于不同区域蒸散发对气候变化的敏感性各不相同,为摸清多年冻土活动层陆面过程中冻土-气候变化-水文循环之间的相互关系,选择青藏高原风火山区域的典型多年冻土区,依据气象站观测资料,应用Penman-Monteith公式计算了典型多年冻土区土壤蒸散发和蒸散发气候敏感系数,分析了多年冻土区土壤蒸散发对气候变化的敏感性。结果表明:多年冻土区土壤蒸散量对相对湿度的敏感性最高(-1. 291),其次为风速(0. 658),对空气温度的敏感性最低(0. 248);土壤完全融化的植被生长期,蒸散发对各气象因子的敏感性最高,土壤完全冻结的植被枯萎期,蒸散发对各气象因子的敏感性都最低;年内尺度,蒸散发对气温、相对湿度和风速的敏感性均在8月最高,在1月或12月最低;蒸散发对气温和相对湿度的敏感性变化与植物生长变化过程高度一致,而蒸散发对风速的敏感性则较为复杂,与土壤的冻融过程相关,分别在土壤逐渐融化的植物生长前期和土壤完全融化的植物生长期敏感性较高。  相似文献   

9.
李宛鸿  徐影 《高原气象》2023,42(2):305-319
利用第六次国际耦合模式比较计划(CMIP6)28个全球气候模式模拟的历史和多SSP排放情景下的模拟结果以及国家气候中心制作的CN05.1格点化的观测数据,在评估28个全球气候模式对青藏高原极端气温相关指数模拟效果的基础上,预估了多个SSP情景下青藏高原未来极端气温指数的变化趋势。评估结果表明多模式集合平均模拟结果更稳定,且能模拟出极端气温指数的时间分布以及空间分布特征,但与观测相比,不同指数存在不同偏差。预估结果表明,相对于1995-2014年,青藏高原上日最高气温最高值(TXx)、日最低气温最低值(TNn)、暖昼指数(TX90p)未来呈上升趋势,霜冻日数(FD)、冰冻日数(ID)、冷夜指数(TN10p)呈减少趋势,其中高原极端低温比极端高温增温明显,暖昼指数在高原西南部增加明显,霜冻日数、冰冻日数、冷夜指数在高原东南部减少明显。SSP1-1.9情景下,极端气温指数在21世纪的变化幅度较小,随着辐射强迫增大,指数的变化趋势也增大。SSP1-2.6情景下,2030年前中国实现碳达峰时,青藏高原地区TXx、 TNn、 TX90p增长分别不超过1.12℃、0.84℃、 8.4%, FD、 I...  相似文献   

10.
文章利用CMIP5全球气候模式和RegCM4区域气候模式模拟的内蒙古降水量和平均气温的逐月数据,分别将2个气候模式1961-2005年的模拟结果与实际观测值进行对比,综合评估2个气候模式对内蒙古降水量和平均气温的模拟能力,并预估分析3种RCPs情景下2021-2100年内蒙古未来降水量和平均气温的可能变化特征.结果显示...  相似文献   

11.
2050年前长江流域地表水资源变化趋势   总被引:3,自引:0,他引:3  
 利用ECHAM5/MPI-OM气候模式预估2001-2050年长江流域不同排放情景(SRES-A2,A1B,B1)下径流深的变化,分析了长江流域地表水资源量的时空变化特征。结果表明:3种排放情景下长江流域多年平均地表水资源量相差不大,但不同排放情景下年际变化特征较为复杂,且变化趋势有所不同。其中,A2高排放情景下地表水资源量呈缓慢减小的趋势,A1B中等排放情景下变化趋势不明显,B1低排放情景下呈相对最为显著的增加趋势。地表水资源量年代际变化波动幅度也较大,2001-2030年3种情景下地表水资源量总体呈现下降特征,但从2030年起,则均表现出不同程度的增加,最高增幅达7.47%,其中尤以夏季和冬季增加显著。模式预估长江流域未来水资源量仍保持目前水平,水资源空间分布不均匀特征仍较为突出。  相似文献   

12.
利用ECHAM5/MPI-OM气候模式预估2001-2050年长江流域不同排放情景(SRES-A2,A1B,B1)下径流深的变化,分析了长江流域地表水资源量的时空变化特征。结果表明:3种排放情景下长江流域多年平均地表水资源量相差不大,但不同排放情景下年际变化特征较为复杂,且变化趋势有所不同。其中,A2高排放情景下地表水资源量呈缓慢减小的趋势,A1B中等排放情景下变化趋势不明显,B1低排放情景下呈相对最为显著的增加趋势。地表水资源量年代际变化波动幅度也较大,2001-2030年3种情景下地表水资源量总体呈现下降特征,但从2030年起,则均表现出不同程度的增加,最高增幅达7.47%,其中尤以夏季和冬季增加显著。模式预估长江流域未来水资源量仍保持目前水平,水资源空间分布不均匀特征仍较为突出。  相似文献   

13.
刘松楠  汪君 《大气科学学报》2020,43(6):1031-1041
根据DELWARE温度和降水数据、GLDAS蒸散发数据和湄公河干流9个水文站的实测径流,采用回归分析、均值T检验和低通滤波,分析了该流域气候和径流在1950-2017年间的变化情况,经分析表明流域内气候和径流在研究时段内有较大变化,而且在不同的月份呈现不同的变化特征。流域年平均温度整体呈增加趋势,2008年后的平均温度相对2008年前平均温度有显著增加;流域年平均降水的变化幅度不大;流域平均蒸散发在12月-次年2月呈下降趋势,其他月份呈增加趋势,2008-2017年月平均蒸散发与1950-2007年月平均蒸散发相比大幅提升,尤其是在6-10月;湄公河流域年径流没有显著变化,但径流在12月-次年4月呈上升趋势,7-10月呈下降趋势,其中,上升趋势比下降趋势显著,1-4月径流上升趋势在2008年之后更为显著;最小径流在2008年后有显著增加趋势,最大径流在2008年后呈下降趋势;年流量逆转次数自20世纪90年代起有明显升高趋势。通过比较温度、降水、蒸散发和径流在不同时间段的变化情况,可以看出径流在2008年后变化趋势和气候自然变化关系不显著,但可能跟大坝蓄水能力显著提高等人为活动有较大关系。  相似文献   

14.
2011—2050年长江流域气候变化预估问题的探讨   总被引:2,自引:0,他引:2       下载免费PDF全文
利用长江流域1961—2008年观测气象资料,对IPCC 第四次评估报告中12个全球气候模式及所有模式集合平均进行比较验证,结果表明:MIUB_ECHO_G模式对该地区降水模拟能力较强,NCAR_CCSM3模式对温度模拟效果较好。进一步利用MIUB_ECHO_G模式和NCAR_CCSM3模式结果在SRES-A2、-A1B、-B1 3种排放情景下的降水和温度数据,分析2011—2050年3种排放情景下长江流域降水和温度变化特征。结果表明,2011—2050年长江流域降水变化趋势不明显,温度呈增加趋势,增幅在2℃内。  相似文献   

15.
长江流域1961-2000年蒸发量变化趋势研究   总被引:34,自引:3,他引:34       下载免费PDF全文
利用长江流域115个气象站点1961-2000年的观测数据,计算了各站点的参照蒸发量和实际蒸发量,并进行了20 cm蒸发皿蒸发量、参照蒸发量和实际蒸发量时空变化趋势分析。结果表明,近40 a来,长江流域蒸发皿蒸发量、参照蒸发量和实际蒸发量的年平均变化均呈现显著下降趋势。就季节平均变化而言,春季和秋季,三者的变化趋势都不明显,而夏季三者均具有显著的下降趋势,冬季蒸发皿蒸发量和参照蒸发量均显著下降,实际蒸发量却明显上升。蒸发量的变化趋势具有空间分布差异,长江流域中下游地区蒸发量的变化趋势明显比上游地区显著,尤其表现在夏季。尽管近20余年长江流域气温不断升高,但太阳净辐射和风速的显著下降,可能是导致蒸发量持续降低的主要原因。  相似文献   

16.
黄河上游是黄河流域最重要的水源涵养地和产流区,对黄河流域的水资源安全、生态环境和粮食安全有决定性的意义。近年来在西北地区气候暖湿化的背景下,黄河上游气候生态水文等问题受到了各方的高度关注。本文利用卫星遥感数据、格点融合数据和水文监测数据,分析了黄河上游气候的多尺度变化特征及其对植被和径流量的影响。结果表明:1)1980-2018年黄河上游暖湿化趋势呈现全区域较一致的气候特征,温度增加率为0.023℃/a,降水增加率为1.09 mm/a,但同时又存在明显的区域差异性,湟水流域至甘肃中部降水增加最显著,宁蒙荒漠地带增温趋势最明显,2000年以来整个黄河上游降水明显增加。2000年后汇流区与流径区的蒸散发明显增加,但源头区南部波动减少。2)当前的暖湿化有利于黄河上游植被生长,1999年以来汇流区和源头区部分区域的植被增加率达到0.04/(10 a);从长期趋势看,源头区、汇流区植被指数与上年降水呈显著正相关关系,而流径区植被指数与当年降水相关性显著;降水对黄河上游流域植被具有明显的改善作用,而温度对其影响较复杂,各区域不同的植被类型是导致降水、温度、蒸散影响存在差异的可能原因。3)1980-2018年唐乃亥站和兰州站的年径流量均呈减少趋势,但1998年以来两站的年径流量明显增加,兰州站年径流量的增加率是唐乃亥站的近3倍。长期趋势表明,唐乃亥站年径流量与当年降水呈显著正相关关系,兰州站年径流量与当年降水、蒸散的相关系数均明显低于唐乃亥站;从年际波动看,降水是决定年径流量的最主要影响因子,而生态植被、冻土退化、水储量变化及社会活动等因素对径流量的影响也不容忽视。该研究为科学应对黄河上游生态保护及实现黄河流域高质量发展提供了参考依据。  相似文献   

17.
长江流域1960-2004年极端强降水时空变化趋势   总被引:15,自引:0,他引:15  
Recent trends of the rainfall, intensity and frequency of extreme precipitation (EP) over the Yangtze River Basin are analyzed in this paper. Since the mid-1980s the rainfall of EP in the basin has significantly increased, and the most significant increment occurred in the southeast mid-lower reaches, and southwest parts of the basin. Summer witnessed the most remarkable increase in EP amount. Both the intensity and frequency of EP events have contributed to the rising of EP amount, but increase in frequency contributed more to the increasing trend of EP than that in intensity. The average intervals between adjacent two EP events have been shortened. It is also interesting to note that the monthly distribution of EP events in the upper basin has changed, and the maximum frequency is more likely to occur in June rather than in July. The synchronization of the maximum frequency month between the upper and mid-lower reaches might have also increased the risk of heavy floods in the mid-lower reaches of the Yangtze River.  相似文献   

18.
曹丽娟  张冬峰  张勇 《大气科学》2010,34(4):726-736
使用区域气候模式(RegCM3)和大尺度汇流模型(LRM), 研究土地利用/植被覆盖变化对长江流域气候及水文过程的影响。RegCM3嵌套于欧洲数值预报中心 (ECMWF) 再分析资料ERA40, 分别进行了中国区域在实际植被和理想植被分布情况下两个各15年 (1987~2001年) 时间长度的积分试验。随后, RegCM3 两个试验的输出径流结果分别用来驱动LRM, 研究土地利用/植被覆盖变化对长江流域河川径流的影响。研究结果指出, 中国当代土地利用变化对长江流域降水、蒸散发、径流深及河川径流等水文气候要素的改变较大, 对气温的改变并不明显。土地利用变化引起长江干流河川径流量在夏季(6~8月)有所增加, 并且越向下游增加幅度越大, 其中大通站径流量增加接近15%。总体而言, 土地利用改变加剧了长江流域夏季水循环过程, 使得夏季长江中下游地区降水增多, 径流增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号