共查询到20条相似文献,搜索用时 15 毫秒
1.
ROBERT A. DULLER† NIGEL P. MOUNTNEY§ REW J. RUSSELL‡ NIGEL C. CASSIDY† 《Sedimentology》2008,55(4):939-964
The 1918 eruption of the glacially capped Katla volcano, southern Iceland, generated a violent jökulhlaup, or glacial outburst flood, inundating a large area of Mýrdalssandur, the proglacial outwash plain, where it deposited ca 1 km3 of volcaniclastic sediment. The character of the 1918 jökulhlaup is contentious, having been variously categorized as a turbulent water flow, a hyperconcentrated flow or as a debris flow, based on localized outcrop analysis. In this study, outcrop‐based architectural analyses of the 1918 deposits reveal the presence of lenticular and tabular bedsets associated with deposition from quasi‐stationary antidunes and down‐current migrating antidunes, and from regular based bedsets, associated with transient chute‐and‐pool bedforms, all of which are associated with turbulent, transcritical to supercritical water flow conditions. Antidune wavelengths range from 24 to 96 m, corresponding to flow velocities of 6 to 12 m sec?1 and average flow depths of 5 to 19 m. This range of calculated flow velocities is in good agreement with estimates made from eyewitness accounts. Architectural analysis of the 1918 jökulhlaup deposits has led to an improved estimation of flow parameters and flow hydraulics associated with the 1918 jökulhlaup that could not have been achieved through localized outcrop analysis. The observations presented here provide additional sedimentological and architectural criteria for the recognition of deposits associated with transcritical and supercritical water flow conditions. The physical scale of sedimentary architectures associated with the migration of bedforms is largely dependent on the magnitude of the formative flow events or processes; sedimentary analyses must therefore be undertaken at the appropriate physical scale if reliable interpretations, regarding modes of deposition and formative flow hydraulics, are to be made. 相似文献
2.
Matthieu J.B. Cartigny Dario Ventra George Postma Jan H. van Den Berg 《Sedimentology》2014,61(3):712-748
Supercritical‐flow phenomena are fairly common in modern sedimentary environments, yet their recognition and analysis remain difficult in the stratigraphic record. This fact is commonly ascribed to the poor preservation potential of deposits from high‐energy supercritical flows. However, the number of flume data sets on supercritical‐flow dynamics and sedimentary structures is very limited in comparison with available data for subcritical flows, which hampers the recognition and interpretation of such deposits. The results of systematic flume experiments spanning a broad range of supercritical‐flow bedforms (antidunes, chutes‐and‐pools and cyclic steps) developed in mobile sand beds of variable grain sizes are presented. Flow character and related bedform patterns are constrained through time‐series measurements of bed configurations, flow depths, flow velocities and Froude numbers. The results allow the refinement and extension of some widely used bedform stability diagrams in the supercritical‐flow domain, clarifying in particular the morphodynamic relations between antidunes and cyclic steps. The onset of antidunes is controlled by flows exceeding a threshold Froude number. The transition from antidunes to cyclic steps in fine to medium‐grained sand occurs at a threshold mobility parameter. Sedimentary structures associated with supercritical bedforms developed under variable aggradation rates are revealed by means of combining flume results and synthetic stratigraphy. The sedimentary structures are compared with examples from field and other flume studies. Aggradation rate is seen to exert an important control on the geometry of supercritical‐flow structures and should be considered when identifying supercritical bedforms in the sedimentary record. 相似文献
3.
微生物形成的原生沉积构造研究进展综述 总被引:10,自引:8,他引:10
早在上世纪60年代,沉积学家Pettijohn和Potter曾经将形成原生沉积构造的地质作用划分为剥蚀作用、搬运作用、沉积作用和变形作用。在沉积期间和沉积之后到沉积物还未固结之前由上述作用所产生的沉积构造被定义为“原生沉积构造”,包括各种类型的层理、层面上的各种作用痕迹以及各种变形现象。在该分类之中,叠层石被定义为突出沉积面的正生长构造,这种构造由微生物与同沉积胶结作用共同构建而成。上世纪90年代中期至今,随着研究程度的深入,沉积学家们越来越认识到除了叠层石以外,微生物还会形成一种并不突出于底层面的原生沉积构造,并被认为是微生物席或微生物膜与各种物理作用营力共同作用的产物。这些作用营力包括剥蚀作用、搬运作用、沉积作用和变形作用。该类沉积构造被定义为微生物形成的原生沉积构造并被归为第五类原生沉积构造。正如叠层石主要产在前寒武纪以及显生宙未受到后生动物强烈改造的浅水环境中一样,微生物形成的原生沉积构造也主要发育在前寒武纪,以及显生宙的一些未受到后生动物强烈改造的潮坪和潟湖等环境之中。因此,该类沉积构造(第五类原生沉积构造)的研究,对于前寒武纪沉积环境重塑具有重要意义。燕山地区元古界串岭沟组和大红峪组碎屑岩中的变余波痕、皱饰构造和纺锤状裂缝,是碎屑岩中微生物形成的原生沉积构造的代表; 高于庄组第三段非叠层石碳酸盐岩(以灰岩为主)层面上发育大型皱饰构造和变余波痕,是碳酸盐岩中微生物形成的原生沉积构造的代表。这些沉积构造的发现和初步研究,为今后进一步深入研究奠定了良好的基础。 相似文献
4.
高流态尤其是超临界流动的水动力学机制及其床沙底形演化的研究相较于次临界流动具有一定的差距。季节性河流以高流态为主要沉积搬运过程,为超临界流的形成与保存提供了有利条件,是研究超临界流沉积的重要载体。在季节性河流沉积体系研究进展调研基础上,明确了其基本定义、判别标准及沉积特征。通过对内蒙古岱海湖北部典型季节性冲积体系——半滩子河流发育的沉积构造进行研究表明:随着低流态向高流态演化,沙丘底形(Dune)逐步向上部平坦床沙底形(Upper plane bed)过渡,形成了低角度/S型交错层理;在高流态初期,形成了上部平坦床沙成因的平行层理;随着流动强度逐渐增大,流动机制演变为超临界流,平坦床沙逐渐向逆行沙丘(Antidune)过渡,形成了与平行层理伴生的逆行沙丘交错层理;当流动强度进一步增大,携带沉积物的流体发生较强的水力跳跃,形成了流槽与冲坑(Chute-and-Pool)。半滩子河流现代沉积中发育的高流态沉积与区域内气候变化具有明确的响应关系,表明河流沉积中广泛发育的高流态沉积构造指示了强烈季节性变化的气候特征。 相似文献
5.
Martin Hovland Christine Fichler Hkon Ruesltten Hans Konrad Johnsen 《Journal of Geochemical Exploration》2006,89(1-3):157
Deep-rooted enigmatic piercement structures in sedimentary basins, including ‘mud volcanoes’, ‘shale diapirs’, ‘salt diapirs’, and ‘asphalt volcanoes’, range in size from less than 1 km2, surface area, up to 64 km2, and have often an unknown depth of penetration due to incomplete imaging. We propose that they form a family associated with fluid flow. Our argument is based partly on their inferred location (above deep faults) and on the chemical analysis of emitted products, which includes liquid clays, brines and other substances from salt diapirs, and asphalt and light oils from the asphalt volcanoes. We explain these compositions by chemical alteration caused partly by supercritical water, a phase of water existent at high pressure and temperature, locally and temporarily achieved at depths generally beyond 10 km below surface, i.e., at the sediment–crust boundary. Our hypothesis overcomes some of the problems with interpreting fluid flow products, which are otherwise very difficult to explain. In case this hypothesis can be further verified, the family could perhaps be called ‘hydrothermally associated piercement structures’. 相似文献
6.
为了进一步揭示粗糙透水床面明渠水流运动特性,针对垂线流速分布研究存在的问题,根据边界层理论,推导了含有摩阻流速、理论床面流速和原点位移等3个参数的修正对数公式;通过水槽试验,运用激光多普勒测速仪,分别对用直径1 cm玻璃珠构成的粗糙不透水和透水床面明渠水流的垂线流速分布进行了测量。结果表明:推导的修正对数公式与实测符合很好;相同水流条件下,透水床面的摩阻流速要大于不透水床面,各自的阻力系数保持基本不变;理论床面流速是主流平均流速的0.35~0.45倍,且床面相对流速随着雷诺数的增大而略有减小。 相似文献
7.
Open‐framework gravel (OFG) in river deposits is important because of its exceptionally high permeability, resulting from the lack of sediment in the pore spaces between the gravel grains. Fluvial OFG occurs as planar strata and cross strata of varying scale, and is interbedded with sand and sandy gravel. The origin of OFG has been related to: (1) proportion of sand available relative to gravel; (2) separation of sand from gravel during a specific flow stage and sediment transport rate (either high, falling or low); (3) separation of sand from gravel in bedforms superimposed on the backs of larger bedforms; (4) flow separation in the lee of dunes or unit bars. Laboratory flume experiments were undertaken to test and develop these theories for the origin of OFG. Bed sediment size distribution (sandy gravel with a mean diameter of 1·5 mm) was kept constant, but flow depth, flow velocity and aggradation rate were varied. Bedforms produced under these flow conditions were bedload sheets, dunes and unit bars. The fundamental cause of OFG is the sorting of sand from gravel associated with flow separation at the crest of bedforms, and further segregation of grain sizes during avalanching on the steep lee side. Sand in transport near the bed is deposited in the trough of the bedform, whereas bed‐load gravel avalanches down the leeside and overruns the sand in the trough. The effectiveness of this sorting mechanism increases as the height of the bedform increases. Infiltration of sand into the gravel framework is of minor importance in these experiments, and occurs mainly in bedform troughs. The geometry and proportion of OFG in fluvial deposits are influenced by variation in height of bedforms as they migrate, superposition of small bedforms on the backs of larger bedforms, aggradation rate, and changes in sediment supply. If the height of a bedform increases as it migrates downstream, so does the amount of OFG. Changes in the character of OFG on the lee‐side of unit bars depend on grain‐size sorting in the superimposed bedforms (dunes and bedload sheets). Thick deposits of cross‐stratified OFG require high bedforms (dunes, unit bars) and large amounts of aggradation. These conditions might be expected to occur during high falling stages in the deeper parts of river channels adjacent to compound‐bar tails and downstream of confluence scours. Increase in the amount of sand supplied relative to gravel reduces the development of OFG. Such increases in sand supply may be related to falling flow stage and/or upstream erosion of sandy deposits. 相似文献
8.
Micro-organisms producing microbially induced sedimentary structures, particularly epibenthic cyanobacteria, are not facies-dependent and could flourish in any environment if appropriate ecological conditions were provided. Hence, the changes in environmental parameters are the controlling factors on ecological tolerance of the producers. This study on the lower Cambrian successions of the Lalun Formation in Central Iran shows that paralic environments reacted differently to changes in parameters such as river and tide energy, palaeo-topography, the rate of sediment supply and fluctuations in sea-level, even though all were characterized by sandy substrates suitable for the development of microbially induced sedimentary structures. Therefore, the abundance and preservation of microbially induced sedimentary structures varied in the different paralic environments. From a sequence stratigraphic viewpoint, this study demonstrates that erosional discontinuities lacked the conditions required for the substrate stabilization by microbial communities. The distribution, size and type of microbially induced sedimentary structures within high frequency cycles generally follow the trends of changes in vertical facies stacking patterns. Within systems tracts, the pattern, morphological diversity and size of microbially induced sedimentary structures are not dependent on the type of systems tract, but on the type of depositional system developed such as delta, incised valley, coastal plain, estuaries and shoreline to shelf systems. Generally, estuarine and peritidal carbonates record an increase in the development of mat colonization during the transgressive systems tract, owing to decreased sedimentation rate as well as extended shallow water habitats. In contrast, the existence of microbially induced sedimentary structures depends on the pattern of shoreline shift in depositional systems developed during the highstand systems tract, such as open coast tidal flat and delta environments. If a shoreline regression was continuous (depositional trend and stacking pattern are a set of high frequency cycles), a greater increase in the aggradational component than the progradational component would cause intensified destructive processes hindering the development of microbial communities. 相似文献
9.
Abstract Spectacular sedimentary structures recently found in the Molasse Basin (Oligocene–Miocene) in southern Germany were produced by soft‐sediment deformation under highly unusual conditions. These large, apparently wedge‐like structures –‘loading fractures’– cut down into beds of marl and are filled with coarse sand and intraclasts of shale. Wrapping the sides of the structures is a thin, continuous bed of layered dark claystone – the ‘DCB’. The upper and lower layers of this bed are an organic‐rich clay; the middle layer is a laminated quartzite. The precursor of the DCB was a lacustrine gyttja rich in diatom frustules. It was supersaturated in silica as it was buried. Subsequent diffusion of oxygen into this gyttja at a burial depth of only a few metres resulted in the formation of Liesegang laminae of quartz. These laminae grew and amalgamated, forming the layer of laminated quartzite. The sediments overlying the DCB were eventually removed by erosion, probably in a high‐energy marine environment. This erosion cut down to the DCB but was unable to penetrate it. The DCB remained exposed on the sea floor until a sudden depositional event occurred – the deposition of a 2·5 metre thick bed of coarse sand with shale intraclasts. Although the DCB had been able to resist the submarine erosion, it could not support the load of this new bed. The quartzite layer in it therefore fractured, transferring that load down onto the underlying, still‐unconsolidated marl. The intraclast‐rich sands were forced down into this marl, carrying ahead of them the partly broken remains of the DCB. 相似文献
10.
A quantitative approach to sedimentary surface structures contoured by the interplay of microbial colonization and physical dynamics 总被引:4,自引:0,他引:4
In the tidal flats of Mellum Island (southern North Sea), biofilms and microbial mats, generated largely by cyanobacteria, colonize the sedimentary surfaces. Biostabilization effects and biomass enrichment influence erosional and depositional dynamics resulting from tidal flushing and storm surges. The overlapping of both biological and physical forces causes the development of characteristic sedimentary structures. To obtain a quantitative expression of the degree of effectiveness of microbial colonization in the formation of structures in an extended tidal area, a modification index (MOD-I) was developed based on the following values: (i) the proportion of mat-covered area related to a defined investigation area (IA ); (ii) the degree of steepness of slope angles of raised erosional remnants (IS ); and (iii) the degree of microbial levelling of a rippled sedimentary surface (IN ). The MOD-I was calculated for several defined regions within the study area, and both winter and summer situations were considered. The MOD-I values show, first, that the lower intertidal zone is characterized by index values approaching zero. This implies that microbially induced effects in this zone are negligible, even in summer. Second, the upper intertidal zone is characterized by lower index values in winter and relatively high values in summer. This implies a predominantly seasonal control on the biofilm development in this zone. Third, in the lower supratidal zone, the index values are almost identical during both winter and summer. This implies non-seasonal biological effects in this zone. Concomitant empirical studies on the composition of microbial mats and films suggest that the dominant microbial type influences the MOD-I value. 相似文献
11.
DAN MATSUMOTO HAJIME NARUSE SHIGEHIRO FUJINO APICHART SURPHAWAJRUKSAKUL THANAWAT JARUPONGSAKUL NORIHIKO SAKAKURA MASAFUMI MURAYAMA 《Sedimentology》2008,55(6):1559-1570
This study reveals the three‐dimensional morphology and syn‐sedimentary formation processes of a deformation structure termed ‘truncated flame structures’ which is found in a terrestrial tsunami deposit in southern Thailand that formed during the 2004 Indian Ocean Tsunami. The structure was found at the boundary between a lower fine‐grained layer and an upper coarse‐grained layer that are related to two runup events. In order to confirm the morphology of the structure, the authors excavated two trenches and an opencast pit. When viewed in a cross‐section oriented parallel to the direction of the runup current, the deformed boundary has an irregularly bulging profile, similar to that observed in flame structures. The protruding structures are inclined towards the downstream direction of the runup current, and are truncated horizontally along their upper surface by parallel laminations in the overlying layer. When viewed in a cross‐section oriented perpendicular to the current direction, it appears that parts of the upper layer descend into the lower layer as lobate masses. In places, these masses are completely detached from the main part of the upper layer, forming circular or elliptical shapes. The contact between the lower layer and the main part of the upper layer is a planar truncation surface. Opencast excavation of the contact surface revealed that the deformed structures have flat, sinuous horseshoe crests that open in a downstream direction. It is possible for the runup current to generate shear stress such that it deforms the boundary into a truncated flame structure. Moreover, the observations made in this study indicate the syn‐sedimentary development of the structure: deformation and truncation occurred simultaneously in association with the runup current that formed the upper layer. Truncated flame structures can be used as a criterion in identifying the syn‐sedimentary deformation of substrate: the structures are indicative of unidirectional flow with sufficiently high shear velocity to deform unconsolidated substrate. As in the present case, the truncated flame structures may be characteristic of tsunami events that involve strong unidirectional currents on land due to the extraordinarily long wave period of tsunamis, rather than other events such as storm surges or flooding. 相似文献
12.
王晓飞 《沉积与特提斯地质》2013,33(1):49-54
本文涉及的张家界温塘志留系实测剖面位于武陵隆起(属雪峰山隆起)以西。在志留纪之前,张家界东南侧雪峰山局部地区已经隆起成陆。在志留纪期间,随着隆起范围的扩大,对沉积环境产生重要的影响,使其从浅海逐渐向滨岸过渡。在晚志留纪末可能陆地范围扩大至慈利-保靖以西。该区志留系剖面的沉积序列和沉积岩相的演化与武陵隆起的演化过程存在明显的耦合关系。在剖面上缺失上志留统-中下泥盆统地层沉积纪录。 相似文献
13.
14.
湖相深水细粒沉积岩中的软沉积物变形构造主要发育在泥岩和泥晶碳酸盐岩为主的地层中,大部分因为发育规模小(镜下尺度),在岩心观察中很容易被忽略掉。本文以沧东凹陷G108-8井孔店组二段(孔二段)细粒沉积岩为研究对象,通过密集的镜下观察和精细岩心描述,识别出同沉积微断裂、液化岩脉、微褶皱变形、微重荷变形和杂乱变形等多种类型的软沉积物变形构造。研究区深水细粒沉积岩中的软沉积物变形构造总体表现为规模小、垂向无明显重力流砂体伴生、原地成因、沉积纹层发育等特点。从应力调节方式的角度考虑,可以将软沉积物变形构造的形成机制划分为上覆应力卸载、侧向应力挤压和层内应力释放等3种类型,不同的形成机制分别是对不同沉积环境变化的响应。通过湖相深水细粒沉积岩软沉积物变形构造的研究,可以恢复古沉积环境变化、预测重力流方位,对深水细粒沉积岩的油气勘探也具有一定的指导意义。 相似文献
15.
16.
17.
Audrey Recouvreur Natacha Fabregas Thierry Mulder Vincent Hanquiez Kelly Fauquembergue Elsa Tournadour Herv Gillet Jean Borgomano Emmanuelle Poli Jean‐Baptiste Kucharski Stanislas Wilk 《Sedimentology》2021,68(1):266-293
The large acoustic data set acquired during the Carambar cruises is composed of high resolution bathymetry, backscatter data and very‐high resolution seismic lines which allow for an overview of the morphology and sediment transfer processes from the shallow upper slope to the abyssal plain of a modern carbonate system: the north‐eastern slope of the Little Bahama Bank. Surficial distribution of the acoustic facies and echofacies reflects a wide variety of sedimentary processes along and across the slope. The western sector of the Little Bahama Bank is dominated by depositional processes whereas its eastern sector, which is incised in the lower slope by giant canyons, is affected by erosion and bypass processes. Datasets suggest that currents play an important role both in along‐slope sedimentary processes and in the abyssal plain. The Antilles Current appears to affect a large part of the middle and lower slopes. The absence of sizeable present‐day channel/levée complexes or lobes at the mouth of the canyon – revealed by the bathymetric map – indicates that the southward flowing Deep Western Boundary Current influences modern abyssal sediment deposition. Based on depositional processes and indicators of canyon maturity observed in facies distribution, the current study proposes that differential subsidence affects the eastern versus western part of the bank. The morphology of the Great Abaco Canyon and Little Abaco Canyon, which extend parallel to the platform, and the Little Bahama Bank slope appears to be related to the Great Abaco Fracture Zone. 相似文献
18.
The canyon mouth is an important component of submarine‐fan systems and is thought to play a significant role in the transformation of turbidity currents. However, the depositional and erosional structures that characterize canyon mouths have received less attention than other components of submarine‐fan systems. This study investigates the facies organization and geometry of turbidites that are interpreted to have developed at a canyon mouth in the early Pleistocene Kazusa forearc basin on the Boso Peninsula, Japan. The canyon‐mouth deposits have the following distinctive features: (i) The turbidite succession is thinner than both the canyon‐fill and submarine‐fan successions and is represented by amalgamation of sandstones and pebbly sandstones as a result of bypassing of turbidity currents. (ii) Sandstone beds and bedsets show an overall lenticular geometry and are commonly overlain by mud drapes, which are massive and contain fewer bioturbation structures than do the hemipelagic muddy deposits. (iii) The mud drapes have a microstructure characterized by aggregates of clay particles, which show features similar to those of fluid‐mud deposits, and are interpreted to represent deposition from fluid mud developed from turbidity current clouds. (iv) Large‐scale erosional surfaces are infilled with thick‐bedded to very thick‐bedded turbidites, which show lithofacies quite similar to those of the surrounding deposits, and are considered to be equivalent to scours. (v) Concave‐up erosional surfaces, some of which face in the upslope direction, are overlain by backset bedding, which is associated with many mud clasts. (vi) Tractional structures, some of which are equivalent to coarse‐grained sediment waves, were also developed, and were overlain locally by mud drapes, in association with mud drape‐filled scours, cut and fill structures and backset bedding. The combination of these outcrop‐scale erosional and depositional structures, together with the microstructure of the mud drapes, can be used to identify canyon‐mouth deposits in ancient deep‐water successions. 相似文献
19.
近年来,与深水沉积物重力流沉积紧密相关的湖相致密油气与深层油气勘探开发日益受到关注并逐渐成为研究热点;断陷湖盆陡坡带由于受"沟梁对应"的地貌特征影响且受控于边界断层,水下重力流沉积扇体发育,也因此成为湖相致密油气与深层油气勘探的重要目标。以东营凹陷胜坨地区沙四段上亚段(分为纯上次亚段和纯下次亚段)为研究对象,以岩芯,地震,测井,录井资料为基础,对陆相断陷湖盆陡坡带深水重力流沉积特征及沉积模式展开研究。研究结果表明:东营凹陷胜坨地区沙四段上亚段深水沉积体系主要发育砂质滑动-滑塌沉积,砂质碎屑流沉积,底流改造沉积,浊流沉积和深湖泥岩沉积五种类型,根据不同岩相组合特征划分出重力流沟道微相,砂质碎屑流舌状体微相,远端朵叶体微相三种微相类型;沙四段上亚段经历了从低位域到湖侵域再到高位域的转换,纯下次亚段在低位域时期经历了胜北断层幕式活动,是形成该时期深水重力流沉积在三级层序整体上呈退积发育,四级层序内部呈进积发育的主要原因,而纯上次亚段高位域时期相对稳定的构造条件使得该时期在三级层序内呈现退积到加积,四级层序内呈现稳定进积的特征;深水重力流搬运过程中由"流动分离作用"引起的"流体性质转换"可以较好地解释平面上重力流沉积类型随搬运距离由近及远的差异性分布以及"远端砂质碎屑流沉积"的形成。 相似文献
20.
DAN H. SHUGAR RAY KOSTASCHUK JAMES L. BEST† DANIEL R. PARSONS‡ STUART N. LANE§ OSCAR ORFEO¶ RICHARD J. HARDY§ 《Sedimentology》2010,57(1):252-272
The links between large‐scale turbulence and the suspension of sediment over alluvial bedforms have generated considerable interest in the last few decades, with past studies illustrating the origin of such turbulence and its influence on flow resistance, sediment transport and bedform morphology. In this study of turbulence and sediment suspension over large sand dunes in the Río Paraná, Argentina, time series of three‐dimensional velocity, and at‐a‐point suspended sediment concentration and particle‐size, were measured with an acoustic Doppler current profiler and laser in situ scattering transmissometer, respectively. These time series were decomposed using wavelet analysis to investigate the scales of covariation of flow velocity and suspended sediment. The analysis reveals an inverse relationship between streamwise and vertical velocities over the dune crest, where streamwise flow deceleration is linked to the vertical flux of fluid towards the water surface in the form of large turbulent fluid ejections. Regions of high suspended sediment concentration are found to correlate well with such events. The frequencies of these turbulent events have been assessed from wavelet analysis and found to concentrate in two zones that closely match predictions from empirical equations. Such a finding suggests that a combination and interaction of vortex shedding and wake flapping/changing length of the lee‐side separation zone are the principal contributors to the turbulent flow field associated with such large alluvial sand dunes. Wavelet analysis provides insight upon the temporal and spatial evolution of these coherent flow structures, including information on the topology of dune‐related turbulent flow structures. At the flow stage investigated, the turbulent flow events, and their associated high suspended sediment concentrations, are seen to grow with height above the bed until a threshold height (ca 0·45 flow depth) is reached, above which they begin to decay and dissipate. 相似文献