首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用2017年8—10月安宁河谷的激光雨滴谱仪观测数据,对层状云和对流云降水粒子谱的微物理参量、Gamma函数拟合、Z-I拟合关系、降水粒子对数浓度和降水强度贡献率进行了分析。结果表明:层状云雨滴谱较对流云窄,对流云降水粒子总数浓度、降水强度、液态水含量和雷达反射率因子等均显著高于层状云。Gamma函数可以较好地拟合雨滴谱的分布情况,层状云的函数曲线较对流云更加平滑。层状云、对流云降水的Z-I拟合关系均较好,分别为Z=181.90I1.54和Z=175.59I1.54。层状云降水强度贡献率的80%集中在直径不超过2 mm的粒子,而对流云的90%集中在直径超过1 mm的粒子,表明降水粒子尺度较浓度对降水强度的影响更大,大尺度降水粒子对降水强度贡献更大。  相似文献   

2.
安徽滁州夏季一次飑线过程的雨滴谱特征   总被引:1,自引:3,他引:1       下载免费PDF全文
选取2014年7月31日安徽滁州一次飑线过程,使用地基雨滴谱仪资料分析此次过程的雨滴谱特征。根据雷达回波和地面降水强度将这次降水过程划分为对流降水、过渡性降水和层云降水,并以10 mm·h-1为临界值将对流降水进一步划分为对流前沿降水、对流中心降水、对流后沿降水。结果表明:对流中心降水、过渡性降水、层云降水的质量加权直径均比较稳定,平均值分别为1.8 mm, 1.0 mm, 1.7 mm。对流降水的标准化截距相比层云降水更大。对流中心降水各粒径段雨滴数浓度均较高;层云降水小雨滴浓度较低,且有少量大雨滴;过渡性降水由小雨滴组成。当雨水含量相同时,层云降水的质量加权直径相比对流降水更大。当雨强相同时,层云降水的反射率因子相比对流中心降水更大。更为精细的降水类型划分可有效改善Z-I关系。  相似文献   

3.
罗俊颉  贺文彬  李金辉  严采蘩  陈万奎 《气象》2012,38(9):1129-1134
文章给出了陕西省春季(2003年)层状云降水雨滴谱部分特征,这些特征与降水天气系统密切相关。降水产生于混合云,各层系统配置适当,有较厚冷层云和相接的暖层云,雨滴数浓度大可达103m-3,雨滴谱较宽可达0.32 cm。反之数浓度较小(102m-3,谱较窄(0.22 cm)。其中直径0.1 cm以下雨滴谱约占总浓度的80%以上,而对雨强的贡献小于20%。0.1~0.2 cm雨滴是雨强的主要分量,它平均占48%~77%。雨滴谱多数呈非单调下降分布,三参数分布n(Di)=n0Dαe-λD明显优于指数分布n(Di)=n0e-λD。  相似文献   

4.
利用设在伊宁的激光雨滴谱仪获取的2013年4月的降水资料,对层状云和混合云降水粒子谱的微物理参量平均值和Gamma函数拟合结果以及Z-I关系进行对比分析。计算结果表明,伊宁地区春季降水的微物理参量普遍偏小,小滴对降水浓度的贡献达到92%以上,即降水主要以小滴为主。层状云降水的雨强、雨滴数浓度、雨滴的各类微物理特征参量的平均值均大于混合云降水。函数拟合结果表明,混合云降水的雨滴谱宽大于层状云降水的雨滴谱宽,层状云和混合云降水的雨滴谱都比较符合Gamma分布,在小滴段Gamma分布对实际谱都有一定的低估,在大于1 mm的粒径段,拟合结果有一定的偏差。还讨论了雨滴大小因子Λ和形状因子μ之间的关系以及Z-I关系,Λ-μ关系与粒子尺度有关,根据拟合的二项式得到层状云降水粒子的平均直径大于混合云降水的平均直径。  相似文献   

5.
山东三类降水云雨滴谱分布特征的观测研究   总被引:3,自引:1,他引:2       下载免费PDF全文
利用激光雨滴谱仪2009年8月—2010年10月观测获取的滴谱资料,分析了山东省三类云降水雨滴微结构参量特征及滴谱随降水过程的演变特征。按照降水云系不同分别对各微物理参量进行比较,结果表明,各值由大到小排序依次均为积雨云、混合云和层状云。三类云降水过程中雨强与雨滴数浓度和最大直径间存在较好的相关关系;层状云和混合云降水以直径小于2 mm的雨滴为主,而积雨云降水以1~3 mm的雨滴对雨强贡献最大。层状云降水雨滴谱很窄,呈单峰或双峰型;积雨云降水雨滴谱宽,在大滴端呈多峰结构;混合云降水谱宽介于前两者之间。另外,统计得到该地区三类云降水的Z-I关系式,为雷达定量测量降水提供了一定的参考。  相似文献   

6.
通过研究不同云系降水雨滴谱(DSD)的分布特征,可以加深对降水微物理过程的理解,对提高雷达定量降水估计精度有重要意义。分析2016年6—8月安徽淮南降雨过程的Parsivel降水粒子谱仪观测资料,对粒子分布特征、降水强度与粒径的关系、粒子数密度分布与雨强贡献率分布、Z-I关系及M-P分布、Gamma分布拟合进行研究,得到结论如下。1)对流云降水中小于1 mm粒径的粒子数密度占比为73.22%,其对雨强贡献率为34.07%;层状云降水中小于1 mm粒径的粒子数密度占比为84.09%,其对雨强贡献率为58.82%。2)安徽淮南2016年夏季降水Z-I关系可用对流云拟合曲线Z=53.17×I1.65估测,Z-I关系经验公式(Z=300×I1.40)在相同雷达反射率因子下低估了降水。3)对流云降水过程中,Gamma分布拟合比M-P分布拟合更精确,层状云降水过程中,两种拟合方法差别很小。Gamma分布能更准确地表现安徽淮南粒子数密度与直径之间的关系。  相似文献   

7.
利用2015-2017年河南省层状云降水过程的Parsivel(Partical Size and Velocity)激光雨滴谱观测资料,对层状云降水的雨滴数浓度、含水量、雨滴直径等微物理参量特征及不同尺度的降水粒子对雨强的贡献进行了统计分析,并采用2种拟合方法对层状云降水雨滴谱进行了拟合。结果表明:河南省层状云降水的空间结构不均匀,各微物理参量的变化存在着起伏,雨滴数浓度为102个/m3量级,个别达到103个/m3,含水量在10-2~10-1 g/m3,粒子平均直径<0.5 mm左右,统计的不同台站平均最大粒子直径为1~2 mm,雨强平均值不超过1 mm/h。直径为<2 mm的雨滴对雨强的贡献占96.23%,直径小于1 mm的雨滴对数浓度的贡献最大。雨强是由雨滴最大直径、平均直径和数浓度3者共同决定。层状云降水雨滴的谱分布较窄,滴谱曲线比较平滑。降水开始时,谱型为单峰结构;降水处于稳定阶段时,谱型为双峰和单峰相结合的结构。层状云拟合M-P分布和Г分布偏差均出现在直径<1 mm的小雨滴端,对于微小粒子随直径增大而增多导致的曲线弯曲没能表现出来,相对而言Г分布拟合效果明显略优于M-P分布的拟合效果。河南省层状云降水的2种分布形式分别为N(D)=7373.9exp(-3.67D)和N(D)=10492.05D1.62exp(-5.11D)。  相似文献   

8.
张鹏  刘西川  周则明  宋堃  杨平吕 《气象》2021,47(7):843-853
利用南京地区连续两年夏季的实测雨滴谱数据,分析了雨滴谱和降水特征,区分降水类型计算了微波链路衰减系数与雨强的关系(雨衰关系)和雷达反射率因子与雨强(Z-R)的关系,所得关系与ITU-R雨衰模型和常用Z-R关系均有差异,其中对流性降水中的Z-R关系为Z=161.63R1.55,层状云降水中为Z=227.23R1.53.在...  相似文献   

9.
基于2016—2017年河北省中南部暴雨过程的OTT Parsivel激光雨滴谱仪观测资料,对3种类型暴雨过程的降水微结构特征参量、不同尺度降水粒子对雨强的贡献、分雨强下的雨滴谱分布、速度谱等进行分析。结果表明:河北省中南部暴雨不同雨强下雨滴谱基本呈现单峰型分布,低槽冷锋类暴雨雨滴谱谱宽最窄,低涡类暴雨次之,暖切变线类暴雨最宽。不同类型暴雨过程粒子平均直径和峰值直径平均值以低涡类最小,低槽冷锋类次之,暖切变线类最大。雨滴体积中值直径和质量加权平均直径均值以低槽冷锋最小,低涡类次之,暖切变线类最大。河北省中南部暴雨过程主要以直径D 1. 0 mm的小雨滴为主,其中1. 0≤D 3. 0 mm的雨滴雨强对总雨强贡献接近70%,D 4. 0 mm的大雨滴数浓度占总数浓度百分比最小,其雨强对总雨强的贡献也最小。3种类型暴雨分雨强对应雨滴谱多呈单峰型分布,呈双峰分布时对应雨强不同。速度谱上不同类型暴雨雨滴数极大值中心位置一致,且位于经验曲线下方。与目前雷达系统采用的标准Z=300~(I1. 40)关系相比,河北省中南部暴雨过程Z-I关系低估低槽冷锋类暴雨降水,高估低涡类和暖切变线类暴雨降水,其中低涡类暴雨偏差最大。  相似文献   

10.
利用北京市人工影响天气办公室2008年获取的典型积雨云、层状云降水过程雨滴谱资料,通过雨强、雨滴空间浓度、最大雨滴等特征值对比分析了两类降水过程的微物理特征。,个例中积雨云和层状云的谱宽分别是6mm和4mm,但雨滴算数平均直径都是0.96mm,在过程平均空间浓度上积雨云高了近一倍,达到318m^-3而两个例中直径超过1mm的雨滴所占总空间浓度的比例均接近1/4、积雨云强中心和边缘的降水雨滴谱、雨强的差别很大,强中心直径大于4mm的大滴占总雨强的比例达到55%,谱宽达到6mm,而强中心过后的降雨边缘谱宽则小于4mm。稳定的层状云降水的雨滴谱、雨强在时空上存在分布不均匀和大、小滴空间浓度反向变动的特征。  相似文献   

11.
利用乌鲁木齐2018年1-12月雨滴谱仪观测数据,分析了两种类型降水(雨、雨加雪)滴谱的微物理参量,以探究乌鲁木齐不同类型降水的雨滴谱特征,此外,对Nt-R、Z-R等关系也进行了研究。结果表明:(1)两类降水的雨滴谱均为单峰分布,粒子浓度峰值均在低谱段,雨夹雪的滴谱宽度约为0.31~7.50 mm,雨的谱宽为0.31~5.50 mm。(2)雨的平均粒子尺度参数(如质量加权平均直径Dm)和降水强度R均略大于雨夹雪,而雨夹雪的平均总粒子数浓度Nt比雨的大23.7%。(3)文中拟合得到的雨、雨加雪Z-R关系分别为Z=181.7R1.45、Z=205.4R1.27,与传统天气雷达降水估测关系Z=300R1.4对比分析后,发现利用Z=300R1.4进行降水估测时存在低估现象,而对降雨的估测误差更大。  相似文献   

12.
短时强降水和持续性强降水的雨滴谱特征因冷云和暖云过程不同有时会存在较大差异,分析两者雨滴谱特征的差异有助于深入了解不同类型强降水的微物理特征,对提高雷达定量估测降水精度起到一定作用。以2018年6月湖北省一次由西南低涡产生的短时强降水(SHR)和持续性强降水(PHR)过程为例,利用自动站气象站资料、CINRADA/SA多普勒天气雷达产品、DSG5型降水现象仪雨滴谱资料以及ERA5再分析资料,对比分析了SHR和PHR的雨滴谱特征及其拟合的雷达反射率因子(Z)-雨强(R)关系(Z=aRb)的差异。结果表明:(1) SHR过程的对流云降水各粒径(D)平均数浓度高且粒径大,与其内部活跃的冰相过程和暖云层中的雨滴碰并、碰撞-破碎微物理过程相关;PHR过程的层状云降水小粒径(D<2 mm)平均数浓度高而中、大粒径的平均数浓度低。(2)归一化Gamma谱截距参数(lgNw)和质量加权平均直径(Dm)分布显示SHR过程的谱型分布更广,具有较大的Dm和较小的lgNw,对流、层状云降水分离线...  相似文献   

13.
针对山西省2010年5月27日一次层状云降水过程,利用机载DMT探头和Parsivel激光降水粒子谱仪进行探测试验,分析了云微物理特征,并对空中和地面雨滴谱进行比较。结果显示:空中云垂直和水平结构分布不均匀,CDP、CIP探测最大粒子浓度分别为165.20、1.08cm^(-3)。地面雨滴微物理量的平均值说明本次降水是典型的层状云降水,雨强主要由雨滴数密度决定,雨滴微物理参量随时间分布不均匀。建立地面雨强,与雷达反射率因子Z、雨水含量W、雨滴数浓度N、Gamma分布的谱参数眠、A的相关关系,Z-I、W-I,相关性很好,N-I、N_0-I、λ-I,相关性较差。地面平均雨滴谱较空中平均雨滴谱窄、谱型陡。结合粒子图像和雨滴特征量分析空中雨滴谱随高度的分布发现,本次降水是冷云和暖云降水共存。  相似文献   

14.
基于中国气象局龙门云物理野外科学试验基地2DVD(Two-Dimensional Video Disdrometer)雨滴谱观测资料, 分析广东地区2017年5月4日(槽前型飑线)和2017年8月22日(东风型飑线)两次不同飑线系统不同降水类型的雨滴谱特征。根据雨强和雷达反射率随时间变化将降水分成对流降水和层云降水, 同时以20 mm/h为阈值将对流降水划分为对流前沿、对流中心和对流后沿。结果表明, 两次飑线系统在不同降水时期的微物理特征参数变化有所差异。槽前型飑线过程中, 对流降水的粒子分布较为分散, 中等粒径的粒子比重较高, 且对流区前半部分粒子尺寸大于“大陆性”对流特征, 后半部分粒子尺寸小于“海洋性”对流特征; 层云降水的粒子分布较为集中, 小粒径粒子居多。而东风型飑线整个降水时期基本上是由高浓度中小粒径粒子组成, 降水粒子粒径分布较为集中, 对流降水粒子介于“海洋性”和“大陆性”对流区之间。   相似文献   

15.
庐山地区不同海拔高度降水雨滴谱特征分析   总被引:4,自引:0,他引:4  
利用2010年7月30日架设在庐山的0TT-Parsivel激光雨滴谱仪收集的一次对流云降水雨滴谱资料,对不同海拔高度的降水微物理参量进行比较分析,以探讨降水微物理特征在垂直高度上的差异.结果表明,庐山地区夏季对流性降水,具有时间短、强度大的特点,数浓度、雨强和含水量等微物理参量值普遍较大,雨滴最大直径约为10mm.降...  相似文献   

16.
山东一次暴雨过程的云降水微物理特征分析   总被引:4,自引:1,他引:4  
周黎明  王庆  龚佃利  李芳 《气象》2015,41(2):192-199
以2013年7月29日发生在山东的一次暴雨过程为例,利用高空间分辨率的MODIS极轨卫星资料以及布设在章丘的THIES激光雨滴谱仪连续采样获取的降水粒子谱资料,并采用Rosenfeld等提出的云微物理分析方法,对云和降水的微物理特征进行了分析。结果发现,这个暴雨云团由多种不同高度的云系组成,其中对流云团在-10℃以上存在深厚的混合相增长带和冰化增长带,冰化增长起始温度基本都在-20℃左右。系统性层云中存在凝结增长、碰并增长和混合相增长过程,但无冰化增长过程。此降水过程多次出现强度>100 mm·h-1的高雨强值,最大雨滴数浓度达104量级,并存在接近8 mm的特大滴,降水强度与雨滴数浓度和谱宽的关系极为密切;直径>2 mm的雨滴数浓度不足1%,但对降水的贡献却占绝大多数。从雨滴谱谱型分布来看,多峰型结构所占比例最大,单峰型次之,指数型分布出现频率最少。  相似文献   

17.
利用Thies激光雨滴谱仪观测的两次极端雨强暴雨的雨滴谱资料,结合CINRADA/SA多普勒雷达观测资料,分析了极端雨强对流降水雨滴谱和积分参数特征、以及地面雨滴谱的形成机制,主要结论为:(1)两次过程都是受副热带高压外围西南气流与西风槽共同影响,具有高温高湿的特点,有利于强降水的产生。(2)强对流降水(雨强R>20 mm h-1)雨滴谱参数lg Nw、D0与雨强R关系显示,2015年8月3日参数D0随着R增大很快增大,线性拟合线的斜率较大,lg Nw随着R增大逐渐减小,线性拟合线的斜率为负值;2017年7月26日D0和lg Nw与R都是正相关,但D0和lg Nw随着R增大较缓慢地增大,线性拟合线的斜率较小。强对流降水雨滴浓度NT与雨强R之间的关系可以用幂函数拟合,8月3日有较大系数和较小指数,7月26日有较小系数和较大指数。(3)不同雨强的对流降水平均雨滴谱分布显示,8月3日随着雨强...  相似文献   

18.
利用 2019 年 5~10 月布设于三江源地区隆宝高寒湿地的激光雨滴谱仪观测资料,分析高原山区夏秋季层状云降水和对流云降水雨滴微物理特征、平均雨滴谱分布、下落速度及 Z-R 关系。结果表明:三江源隆宝地区夏秋季对流云降水和层状云降水的雨滴微物理特征具有一定程度的相似性,对流云降水雨滴微物理参量略大于层状云降水;层状云降水和对流云降水雨滴谱均呈单峰型分布,雨滴数浓度随着降水粒子直径的增大呈先增加后减少的趋势,M-P 分布和 Gamma 分布对隆宝地区层状云降水和对流云降水的拟合均较好,相对而言,Gamma 分布拟合能更好地反映实际雨滴谱拟合线弯曲特性;隆宝地区不同尺度雨滴粒子下落速度不同,对流云降水粒子落速范围略大于相同尺度上的层状云降水,传统粒子下落速度拟合存在明显的低估现象,观测点的高海拔和较低空气密度是造成观测速度大于其下落速度的主要原因;三江源隆宝地区层状云降水 Z-R 关系为 Z=418R1.90,对流云降水 Z-R 关系为 Z=630R2.12,传统的雷达估测方法会低估该地区降水。  相似文献   

19.
王俊  刘畅 《山东气象》2019,39(2):43-57
利用Thies激光雨滴谱仪观测资料和CINRAD/SA多普勒雷达观测资料,分析了2017年7月18日一次典型中纬度拖曳型飑线过程不同发展阶段雨滴谱和积分参数的演变特征,主要结果为:1)成熟飑线回波包括对流带、过渡区和拖曳层状云区三部分,对流带前侧不断有对流带生成并合并到主对流带中,使得对流带的前沿具有强的反射率因子,并且有多个雨强大值中心。2)垂直穿过飑线对流带,雨强增加阶段有较少的小粒子(直径小于1 mm)和特大粒子(直径大于5 mm),以及较低的雨滴浓度和反射率因子,而雨强减弱阶段有较多的小粒子和特大粒子,以及较高的雨滴浓度和反射率因子;飑线加强阶段,雨滴谱有较大的峰值直径(0.44 mm)、较多的大(直径大于3 mm)和特大粒子,而飑线减弱阶段,雨滴谱有较小的峰值直径(0.19 mm)、较少的大粒子。3)对流带、过渡区和层状云降水雨滴谱的Gamma谱三参数N0、μ、λ随雨强增大有明显的分层特征,相同雨强时,对流云和过渡区降水的三参数比层状云降水的数值大;而飑线不同发展阶段、不同降水类型的λ-μ关系具有一致性,二次多项式可以很好地拟合λ-μ关系。4)归一化雨滴谱参数NW和D0的分布可以用来区分对流云和层状云降水,并给出了新的分离线方程;另外,飑线在发展和减弱阶段的雨滴谱特征有明显差异,表明飑线演变过程降水形成的微物理机制发生变化,前期冷云过程有重要影响,而后期暖云过程起主导作用。  相似文献   

20.
研究降水滴谱特征和谱分布对了解高原降水的微物理特征、雷达定量估测降水以及科学实施人工增雨作业尤为重要。本文选取2018年7月8—9日拉萨夏季一次典型降水过程,利用DSG5型降水现象仪和地面小时降水资料分析了高原夏季对流云和混合云降水的雨滴谱分布特征及〖WTBX〗Z I〖WTBZ〗关系。结果表明:降水现象仪和翻斗雨量计的降水变化趋势较为一致。对流云降水中2.0~3.0 mm的降水粒子对雨强的贡献最大,混合云降水雨强的主要贡献者是1.0~2.0 mm的粒子;混合云降水阶段的雨滴谱数浓度比对流云大一个量级。对流云和混合云降水的雨强与雨滴的质量加权平均直径和数浓度密切相关。拉萨地区雨滴谱适合〖WTBX〗Γ〖WTBZ〗分布,其拟合谱参数与青藏高原其他地区的差异表明高原地区雨滴谱分布存在时空差异;混合云降水谱参数〖WTBX〗N0、μ〖WTBZ〗和〖WTBX〗λ〖WTBZ〗与雨强的变化趋势相反。混合云降水〖WTBX〗Z I〖WTBZ〗关系的系数和指数均小于对流云降水。应用标准〖WTBX〗Z I〖WTBZ〗关系,对流云降水阶段雷达低估降水强度;混合云降水阶段,当雨强<2.3 mm雷达低估降水,否则雷达高估降水。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号