首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some aspects for efficient computation of the tidal perturbation due to the ellipticity effects of the Earth, the luni-solar potential on an Earth-orbiting satellite and the perturbations of the satellite's radial, transverse and normal position components due to the effects of the Earth's gravitational and ocean tide fields are presented. A straightforward method for computing the spectrum of the geopotential and the tidal-induced perturbations of the orbit elements and the radial, transverse and normal components is described.  相似文献   

2.
It is well known that in artifical satellite theory special techniques must be employed to construct a formal solution whenever the orbital inclination is sufficiently close to the critical value cos–1 (1/5). In this article the authors investigate the consequences of introducing certain relativistic effects into the motion of a satellite about an oblate primary. Particular attention is paid to the critical inclination(s), and for such critical motions an appropriate method of solution is formulated.  相似文献   

3.
We describe a collection of results obtained by numerical integration of orbits in the main problem of artificial satellite theory (theJ 2 problem). The periodic orbits have been classified according to their stability and the Poincaré surfaces of section computed for different values ofJ 2 andH (whereH is thez-component of angular momentum). The problem was scaled down to a fixed value (–1/2) of the energy constant. It is found that the pseudo-circular periodic solution plays a fundamental role. They are the equivalent of the Poincaré first-kind solutions in the three-body problem. The integration of the variational equations shows that these pseudo-circular solutions are stable, except in a very narrow band near the critical inclincation. This results in a sequence of bifurcations near the critical inclination, refining therefore some known results on the critical inclination, for instance by Izsak (1963), Jupp (1975, 1980) and Cushman (1983). We also verify that the double pitchfork bifurcation around the critical inclination exists for large values ofJ 2, as large as |J 2|=0.2. Other secondary (higher-order) bifurcations are also described. The equations of motion were integrated in rotating meridian coordinates.  相似文献   

4.
In this paper we consider the reduction of the equations of motion for non-planar perturbed two body problems into linear form. It is seen that this can be easily accomplished for any element of the class of radial intermediaries to the satellite problem proposed by Deprit in 1981, since they have a functional dependence suitable for linearization. The transformation is worked out by using an adequate set of redundant variables. Four harmonic oscillators are obtained, of which two are coupled through gyroscopic terms. Their constant frequencies contain the secular contribution of the main problem of artificial satellite theory up to the order of the considered intermediary. Therefore, this result may well be interesting in relation to the study and prediction of accurate long-term solutions to satellite problems.  相似文献   

5.
We present a new implementation of the recurrent power series (RPS) method which we have developed for the integration of the system of N satellites orbiting a point-mass planet. This implementation is proved to be more efficient than previously developed implementations of the same method. Furthermore, its comparison with two of the most popular numerical integration methods: the 10th-order Gauss–Jackson backward difference method and the Runge–Kutta–NystrRKN12(10)17M shows that the RPS method is more than one order of magnitude better in accuracy than the other two. Various test problems with one up to four satellites are used, with initial conditions obtained from ephemerides of the saturnian satellite system. For each of the three methods we find the values of the user-specified parameters (such as the method's step-size (h or tolerance (TOL)) that minimize the global error in the satellites' coordinates while keeping the computer time within reasonable limits. While the optimal values of the step-sizes for the methods GJ and RKN are all very small (less than T/100, the ones that are suitable for the RPS method are within the range: T/13<h<T/6 (T being the period of the innermost satellite of the problem). Comparing the results obtained by the three methods for these step-sizes and for the various test problems we observe the superiority of the RPS method over GJ in terms of accuracy and over RKN both in accuracy and in speed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
We consider the main problem in satellite theory restricted to the polar plane. For suitable values of the energy the system has two unstable periodic orbits. We classify the trajectories in terms of their ultimate behavior with respect these periodic orbits in: oscillating, asymptotic and capture orbits. We study the energy level set and the existence and properties of the mentioned types of motion.  相似文献   

7.
The classical problem of the critical inclination in artificial satellite theory has been extended to the case when a satellite may have an arbitrary, significant mass and the rotation momentum vector is tilted with respect to the symmetry axis of the planet. If the planet’s potential is restricted to the second zonal harmonic, according to the assumptions of the main problem of the satellite theory, two various phenomena can be observed: a critical inclination that asymptotically tends to the well known negligible mass limit, and a critical tilt that can be attributed to the effect of transforming the gravity field harmonics to a different reference frame. Stability of this particular solution of the two rigid bodies problem is studied analytically using a simple pendulum approximation.  相似文献   

8.
In the zonal problem of a satellite around the Earth, we continue numerically natural families of periodic orbits with the polar component of the angular momentum as the parameter. We found three families; two of them are made of orbits with linear stability while the third one is made of unstable orbits. Except in a neighborhood of the critical inclination, the stable periodic (or frozen) orbits have very small eccentricities even for large inclinations.  相似文献   

9.
We investigate the stability of the periodic motion of a satellite, a rigid body, relative to the center of mass in a central Newtonian gravitational field in an elliptical orbit. The orbital eccentricity is assumed to be low. In a circular orbit, this periodic motion transforms into the well-known motion called hyperboloidal precession (the symmetry axis of the satellite occupies a fixed position in the plane perpendicular to the radius vector of the center of mass relative to the attractive center and describes a hyperboloidal surface in absolute space, with the satellite rotating around the symmetry axis at a constant angular velocity). We consider the case where the parameters of the problem are close to their values at which a multiple parametric resonance takes place (the frequencies of the small oscillations of the satellite’s symmetry axis are related by several second-order resonance relations). We have found the instability and stability regions in the first (linear) approximation at low eccentricities.  相似文献   

10.
In the analytical approach to the main problem in satellite theory, the consideration of the physical parameters imposes a lower bound for normalized Hamiltonian. We show that there is no elliptic frozen orbits, at critical inclination, when we consider small values of H, the third component of the angular momentum. The argument used suggests that it might be applied also to more realistic zonal and tesseral models. Moreover, for almost polar orbits, when H may be taken as another small parameter, a different approach that will simplify the ephemerides generators is proposed.  相似文献   

11.
The effects of small changes in the initial conditions of the Pythagorean three-body problem are investigated by computer simulations. This problem consists of three interacting bodies with masses 3, 4 and 5 placed with zero velocities at the apices of a triangle with sides 3, 4 and 5. The final outcome of this motion is that two bodies form a binary and the third body escapes. We attempt to establish regions of the initial positions which give regular and chaotic motions. The vicinity of a small neighbourhood around the standard initial position of each body defines a regular region. Other regular regions also exist. Inside these regions the parameters of the triple systems describing the final outcome change continuously with the initial positions. Outside the regular regions the variations of the parameters are abrupt when the initial conditions change smoothly. Escape takes place after a close triple approach which is very sensitive to the initial conditions. Time-reversed solutions are employed to ensure reliable numerical results and distinguish between predictable and non-predictable motions. Close triple approaches often result in non-predictability, even when using regularization; this introduces fundamental difficulties in establishing chaotic regions.  相似文献   

12.
Developed in this paper is a new approach to an analytic satellite theory which is based on Deprit's elimination of the parallax. The first step in the theory is the elimination of the parallax canonical transformation which eliminates the short period terms in the perturbations to within a factor of (1/r)2. A new approach is then taken. The perigee terms are eliminated while retaining the short period terms in (1/r)2. A Delaunay normalization of the short period terms in the (1/x)2 factor is then constructed to complete the theory.  相似文献   

13.
The SMF algorithms were recently developed by the authors as a multistep generalization of the ScheifeleG-functions one-step method. Like the last, the proposed codes integrate harmonic oscillations without truncation error and the perturbing parameter appears as a factor of that error when integrating perturbed oscillations. Therefore they seemed to be convenient for the accurate integration of orbital problems after the application of linearizing transformations, such as KS or BF. In this paper we present several numerical experiments concerning the propagation of Earth satellite orbits, that illustrate the performance of the the SMF method. In general, it provides greater accuracy than the usual standard algorithms for similar computational cost.  相似文献   

14.
The effects of small external dissipative and disturbing forces on the non-linear planar oscillation of a cable connected satellites system in the central gravitational field of earth have been studied. Typical non-linear oscillation's phenomena arizing from the aforesaid external forces are shown to take place. The presence of these forces enables the application of asymptotic methods of the theory of non-linear oscillations due to Bogoliubov and Mitropolsky to the equation characterizing the non-linear oscillation of the system.  相似文献   

15.
We discuss the use of a recently discovered exact two-body leapfrog for accurate symplectic integration of perturbed two-body motion and for the computation of the state-transition matrix. We pay special attention to artificial satellite orbit determination and describe in detail the evaluation of the perturbing acceleration. Inclusion of air drag and other non-canonical forces are also discussed. The main advantage of this new formulation is conceptual simplicity, for easy programming and high accuracy for orbits with large eccentricity. The method has been evaluated in real artificial satellite orbit determinations.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

16.
There exist several widely used methods that give a qualitative estimation of the accuracy of the results in the numerical solution of theN-body problem. The reverse and closure tests are examined here critically. The author has developed a method for the estimation of global errors propagated in the numerical solution of ordinary and partial differential equations that has proven to be rather efficient in numerous cases (see P. E. Zadunaisky [17]). Applications of the method to several cases of theN-body problem are presently made and the advantages and limitations of the method are shown in a set of examples.  相似文献   

17.
The main goal of this paper is to give an approximation to initial conditions for ejection-collision orbits with the more massive primary, in the planar elliptic restricted three body problem when the mass parameter µ and the eccentricity e are small enough. The proof is based on a regularization of variables and a perturbation of the two body problem.This work was partially supported by DGICYT grant number PB90-0695.  相似文献   

18.
We consider an elliptic restricted four-body system including three primaries and a massless particle. The orbits of the primaries are elliptic, and the massless particle moves under the mutual gravitational attraction. From the dynamic equations, a quasi-integral is obtained, which is similar to the Jacobi integral in the circular restricted three-body problem (CRTBP). The energy constant \(C\) determines the topology of zero velocity surfaces, which bifurcate at the equilibrium point. We define the concept of Hill stability in this problem, and a criterion for stability is deduced. If the actual energy constant \(C_{\mathrm{ac}}\ ( {>} 0 ) \) is bigger than or equal to the critical energy constant \(C_{\mathrm{cr}}\), the particle will be Hill stable. The critical energy constant is determined by the mass and orbits of the primaries. The criterion provides a way to capture an asteroid into the Earth–Moon system.  相似文献   

19.
We consider two-layer (Fe-FeS core+silicate mantle) and three-layer (Fe-FeS core+silicate mantle+crust) models of the Galilean satellite Io. Two parameters are known from observations for the equilibrium figure of the satellite, the mean density ρ0 and the Love number k2. Previously, the Radau-Darwin formula was used to determine the mean moment of inertia. Using formulas of the Figure Theory, we calculated the principal moments of inertia A, B, and C and the mean moment of inertia I for the two-and three-layer models of Io using ρ0 and k2 as the boundary conditions. We concluded that when modeling the internal structure of Io, it is better to use the observed value of k2 than the moment of inertia I derived from k2 using the Radau-Darwin formula. For the models under consideration, we calculated the Chandlerian wobble periods of Io. For the three-layer model, this period is approximately 460 days.  相似文献   

20.
康熙 《天文学进展》2011,29(1):1-18
对银河系内卫星星系进行全面的"人口普查"具有重要的意义。目前已经发现了二十几个卫星星系,其光度范围分布很广,最暗的矮星系比球状星体还暗。叙述了卫星星系的光度分布、空间分布和动力学性质。总结了观测和理论研究进展,并讨论了星流和伽玛射线在研究银河系结构和暗物质性质方面的贡献。表明了卫星星系的统计分布能用来很好地限制冷暗物质理论和星系形成的相关物理过程,同时指出当前研究的局限性和可能的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号