首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dissolved organic matter (DOM) and dissolved copper-organic complexes were isolated from the estuarine waters of Narragansett Bay, RI, using reverse-phase liquid chromatography (RPLC). Different types of reverse-phase BOND ELUT columns (Analytichem International), including C2, C18 and phenyl-bonded phases, were studied to determine their adsorption efficiency for extracting DOM. Extraction efficiencies followed the order phenyl > C18 > C2, and phenyl − C18 > C2 for DOM and organic copper, respectively. However, comparisons of BOND ELUT and C18 SEP-PAK (Waters Associates) columns indicated that SEP-PAK columns were the most efficient when both DOM and organic copper were considered. Chromatographic profiles of the isolated DOM obtained using high-performance liquid chromatography were similar in elution characteristics and resembled chromatograms typical of fulvic acid. The UV-absorption characteristics of the DOM showed small differences and suggested that the different reverse-phase columns isolated material that was qualitatively similar.Copper-organic complexes isolated using C18 RPLC were studied to examine the dissociation of organically bound copper in seawater as the pH is lowered. Only a small amount of the complexed copper was displaced by the H+ with about 40% of the copper remaining bound at pH 3. However, the chromatographic elution behavior of the DOM and organic copper was significantly altered under acidic conditions as a result of protonation of acidic functional sites on the organic matter.  相似文献   

2.
Extractable organic copper using C18 Sep-Pak cartridges was investigated in seawater after laboratory experiment showed that the (C18 Sep-Pak) cartridges were reliable, in open and coastal waters with normal levels of dissolved organic carbon, for the separation of a specific fraction of organo-copper complexes.Given that the Sep-Pak cartridges retain the hydrophobic fraction of the dissolved organic matter, this extraction technique was applied for studying the characteristics of this particular hydrophobic dissolved organic copper fraction (hDOCu) in the north-western Mediterranean waters. Surface distribution of hDOC is influenced by organic matter input from the river Rhone and its estuary as well as the physical processes affecting the primary productivity such as coastal upwelling. By correlating hDOCu concentrations with total dissolved copper and other hydrochemical data such as salinity and dissolved organic carbon, it was possible to examine the behaviour of hDOCu in the water masses of different sources and ages.Marine organic matter has been shown to have high complexing capacity. Productive superficial and intermediate waters as well as deep waters showed relatively high and comparable complexing capacity indicating that old organic matter may have strong complexing sites.  相似文献   

3.
Metal-organic complexes were isolated from coastal seawater by adsorption onto octadecyl-bonded silica (SEP-PAK cartridges) and injected into a high-performance liquid chromatograph. Trace metals were identified in the eluate by a four-channel non-dispersive atomic fluorescence detector. Organic complexes of copper, zinc, iron, magnesium, nickel and manganese were found to be present but no complexes of chromium or cadmium were detected. The complexes covered a wide range of polarities with no specific complexes being predominant. Interference from the stainless-steel chromatograph was negligible. The technique provides a minimum estimate of the amount of metal organics and it is suggested that a significant fraction of the metal organics present are too polar to be completely retained by the SEP-PAK cartridges. Typical values of the amounts of trace metal isolated by this technique corresponded to concentrations in the original seawater of >65 ngl?1 (Cu), >27 ngl?1 (Fe) and >41 ngl?1 (Zn).  相似文献   

4.
The distribution of molecular masses of organic ligands for copper(II) in oceanic water was investigated. The bulk dissolved organic matter (DOM) was fractionated by ultrafiltration and organic ligands were extracted from the resultant fractions by using immobilized metal ion affinity chromatography (IMAC). Contributions of total organic ligands were 2.0–4.4% of the bulk DOM in surface waters, as determined by the UV absorbance. In the distribution of molecular masses of organic ligands, relative contribution of the fraction with low molecular masses (<1000 Da) was dominant (49–62%), while 26–33% of the total organic ligands was in the 1000–10,000 Da fraction, leaving 10–19% in the >10,000 Da fraction. The distribution of molecular masses of organic ligands shifted to higher molecular masses, as compared with that of the bulk DOM. The fluorescence intensities of organic ligands were shown to be associated with carboxyl contents, based on peak excitation/emission wavelengths and the pH-dependence of fluorescence. Two ligand classes with different conditional stability constants (log KCuL′≈7 and 9) were determined from fluorescence quenching of ligand fractions during copper(II) titration. Organic ligands in low molecular mass fractions were relatively weak and strong ligands occurred in higher molecular mass fractions. It is suggested that the weaker ligand sites would consist of two or more carboxyl groups (log KHL′=4), whereas carboxyl groups (log =2), which are protonated at lower pH, and primary amine may additionally contribute to the formation of more stable copper(II) complexes of the stronger ligand.  相似文献   

5.
Reverse-phase liquid chromatography was used for the isolation of dissolved organic matter and dissolved copper-organic complexes from the estuarine waters of Narragansett Bay, Rhode Island. The procedure isolates 10–30% of the organic matter and up to 50% of the total dissolved copper from various bay samples. Chromatograms obtained by high-performance liquid chromatography of the isolated organic matter showed qualitative differences between sampling stations progressing from the Providence River in the upper bay to the lower bay.  相似文献   

6.
Organic complexes of magnesium, iron, zinc and copper have been isolated from seawater by adsorption onto octadecylsilyl-modified silica (SEP-PAK cartridges). The compounds were fractionated by HPLC and metals were detected in the eluate by atomic fluorescence. The most polar fraction contained a significant proportion of the metal—organics but only a low percentage of the UV-absorbing (254 nm) material. Magnesium—organics of low polarity were found in deep (5000 m), water but the compounds do not seem to be derived from tetrapyrroles. There were large systematic variations in the chromatograms as the column aged and it is thought that free silanol groups were removing metals from the metal—organic complexes. The effect was most pronounced for magnesium. Inorganic metal ions can be adsorbed by columns containing capped or uncapped C18-bonded silica and the adsorption of metals is enhanced by treatment with methanol. The cation exchange capacities of chromatographic packings must be taken into account when metal—organic compounds are analysed by HPLC.  相似文献   

7.
To clarify the nature of organic metal complexes dissolved in seawater, a ligand exchange reaction between ligands of natural origin and an aminopolycarboxylic acid (EDTA) was used to determine the conditional stability constants of organic metal complexes. The results indicate that more than two organic molecules complexed with copper and zinc exist in surface seawater. It is found that the conditional stability constants of these naturally-occurring organic metal complexes are 1–3 orders of magnitude higher than those of EDTA-Cu and EDTA-Zn complexes. These estimates of the conditional stability constants for the dominant species of organic copper and zinc complexes are 1011.8 and 109.3, respectively, at pH 8.1. The results indicate that these naturally-occurring organic metal complexes are stable species and not easily dissociated or displaced with others in the marine environment.  相似文献   

8.
Dissolved organic matter was isolated from coastal and open-ocean surface waters having a wide range of biological productivities, and from seawater of intermediate depths. Approximately 50% of the organic matter was recovered by the use of activated-charcoal chromatography. The organic matter isolated from different types of water masses exhibited varying spectroscopic characteristics, and stable carbon-isotope compositions. The ability of the isolated organic matter to interact with copper ions also varied, but over a relatively narrow range which was not exceeded by more than a factor of two by similarly isolated terrigenous organic matter.  相似文献   

9.
Chemical speciation of particulate metals in seawater was examined theoretically. Mass balance considerations showed that the apparent conditional stability constant, defined for organically binding metals in suspended particles, coincides with the conditional stability constant determined for the corresponding metal-organic complexes dissolved in seawater. This hypothesis suggests that some metals, which are present as organic complexes (e.g. copper), are directly associated with particulate organic matter. Metals, whose free ion is buffered by organic and/or inorganic ligands, may be used as indicators of the presence of particulate organic matter in the marine environment.  相似文献   

10.
A technique for the pH-controlled isolation and separation of dissolved copper—organic substances from large amounts of seawater is described. The method has been applied in two cruises in the Bothnian and Gotland Seas of the Baltic. In both areas the correlation between the amount of isolated dissolved organic material (DOM) and the concentration of organic copper in seawater has been found to be highly significant. Under the conditions established in our experiments, organic copper fractions detected in Baltic waters were in the range of about 5% of total copper. HPLC chromatograms and UV irradiation experiments from DOM extracts strongly indicate the existence of dissolved organic-copper compounds in Baltic waters.  相似文献   

11.
The heterotrophic marine bacterium Vibrio alginolyticus was shown to produce extracellular copper-binding compound (s) when exposed to copper in a seawater medium. Fractionation and analysis of copper, and methionine incorporation in culture supernatant fractions showed that the copper-binding compound coeluted with material which was radiolabeled with 35S methionine. This suggests that the copper-binding compound may be proteinaceous. Analysis of label incorporation from 14C glucose into the fraction containing the copper-binding compound indicated that it was produced actively by the cells during recovery from copper toxicity, and was not present because of non-specific release by lysed bacterial cells. Concentrated supernatants from control and copper-challenged cultures contained two compounds which could be marginally resolved by size exclusion HPLC (26 kD and 28 kD), and which were produced at about a ten-fold higher level in copper-challenged cultures than in controls. These data indicate that the bacteria respond to toxic copper levels by excretion of a ca. 28 kD compound (s), which serves to detoxify copper in the medium by formation of organic copper complexes.The data suggest a potential role for macromolecules excreted by heterotrophic bacteria in control of copper ion activity in seawater. The production of copper-complexing compounds in response to copper represents a mechanism through which bacteria may directly influence the speciation of metal ions in seawater.  相似文献   

12.
Speciation of copper and nickel in the water phase of incubated marine slurries under aerobic conditions was performed with MnO2 and Sep—Pak C18 cartridges. Changes in time during the incubations of concentrations of dissolved organic carbon (DOC), dissolved copper and nickel and inorganic nitrogen were followed. The influence of organic complexation on the dissolved concentrations of copper and nickel was investigated as well as competition between copper and nickel for dissolved organic ligands.Two pools of dissolved organic ligands could be distinguished. With the MnO2 method a relatively strong ligand group was determined that was subjected to degradation. The conditional stability constant for copper with the relatively strong ligand was 1011.1. The conditional stability constant for the relatively strong nickel ligand was difficult to determine due to saturation of the ligand sites; it was found to be around 1010. However, it could not be ascertained whether nickel was reversibly com-plexed with the organic ligands.With Sep—Pak a relatively weak Hgand group was detected that was probably more resistant to degradation. The conditional stability constant of the weaker ligand could not be estimated, an approximation revealed that it was weaker than the ligand group determined with the MnO2 method. For copper the difference between binding strength of the ligand groups was at least 100, for nickel the difference was less.Competition between copper and nickel for the ligands could not be detected. Only during the first day of the experiment, when the system was not in equilibrium was competition suspected. However, the replacement of nickel by copper from the ligand sites was not straightforward and could not be accounted for by our model.The concentration of total dissolved copper during the first week of the experiment was found to be controlled on the one hand by release from the sediment of copper already associated with dissolved organic matter (DOM) and on the other hand by concentration of the strongest ligand. The calculated free copper concentration increased from 10−12 to 10−9mol l−1 due to the oxidation of the strongest ligand. After saturation of the strongest ligand the relatively weak ligand controlled the free copper concentration. A continuing release of copper from the sediment by degradation of particulate organic matter (POM) will not increase the free copper concentration until the ligand sites of the weaker ligands get saturated.The total dissolved nickel concentration seemed only to be determined by the sum of the concentrations of the organic ligands. A degradation of ligands resulted in a decrease of the total dissolved nickel concentration. The calculated free nickel concentration did not change with time.  相似文献   

13.
To assess the significance of naturally occurring dissolved organic matter (DOM) on complexation of transuranic elements in seawater, a series of bioassay experiments was conducted in which the effect of DOM on the accumulation of 241 Am, 237Pu (III–IV), and 237Pu (V–VI) by the marine diatom Thalassiosira pseudonana was measured. EDTA at 0.3μM complexed both metals substantially, resulting in reduced radio-isotope uptake by the diatom; the greatest effect was on Pu (III–IV). In contrast, there was no apparent complexation of either element by equimolar concentrations of marine fulvic (MFA) or humic acids (MHA), naturally occurring photooxidizable DOM (uncharacterized), or diatom exudates, as none of these materials reduced isotope uptake; on the contrary, there were indications that some of this DOM enhanced transuranic bioaccumulation in the diatom slightly. Subsequent experiments showed this enhancement was probably due to complexation of transition metals by the DOM, leading to fewer ambient ions ‘competing’ for binding sites on the cells; 241 Am uptake rates were negatively correlated (r =? 0.846, P < .01) with Σ ASV-labile Cu + Zn + Cd + Pb. These experiments suggest that naturally occurring DOM may not appreciably complex Am or Pu or greatly affect their bioavailability in the sea.  相似文献   

14.
Dissolved organic matter(DOM) from freshwater, mid-salinity, and seawater endmember samples in the Jiulong River Estuary, China were fractionated using cross-flow ultrafiltration with a 10-kDa membrane. The colloidal organic matter(COM; 10 kDa–0.22 μm) retentate, low molecular weight(LMW) DOM(10 kDa) permeate, and bulk samples were analyzed using absorption spectroscopy and three-dimensional fluorescence excitation-emission-matrix spectroscopy. The UV-visible spectra of COM were very similar to those obtained for permeate and bulk samples, decreasing monotonically with increasing wavelength. Most of the chromophoric DOM(CDOM, expressed as the absorption coefficient a355) occurred in the LMW fraction, while the percentage of CDOM in the colloidal fraction was substantially higher in the freshwater endmember(13.4% of the total) than in the seawater endmember(6.8%). The bulk CDOM showed a conservative mixing behavior in the estuary, while there was removal of the COM fraction and a concurrent addition of the permeate fraction in the mid-salinity sample, implying that part of the colloidal CDOM was transformed into LMW CDOM. Two humic-like components(C1: 250, 325/402 nm; and C2: 265, 360/458 nm) and one protein-like component(C3: 275/334 nm) were identified using parallel factor analysis. The contributions of the C1, C2, and C3 components of the COM fraction to the bulk sample were 2.5%–8.7%, 4.8%–12.6%, and 7.4%–14.7%, respectively, revealing that fluorescent DOM occurred mainly in the LMW fraction in the Jiulong River Estuary. The C1 and C2 components in the retentate and permeate samples showed conservative mixing behavior, but the intensity ratio of C2/C1 was higher in the retentate than in the permeate fractions for all salinity samples, showing that the humic component was more enriched in the COM than the fulvic component. The intensity ratio of C3/(C1+C2) was much higher in the retentate than in the permeate fraction for mid-salinity and seawater samples, revealing that the protein-like component was relatively more enriched in COM than the humic-like component. The contribution of the protein-like component(C3) to the total fluorescence in the retentate increased from 14% in the freshwater endmember to 72% for the seawater endmember samples, clearly indicating the variation of dominance by the humic-like component compared to the protein-like component during the estuarine mixing process of COM.  相似文献   

15.
Experiments were conducted using seawater from the Oregon continental shelf to determine: (1) rates of phytoplankton-derived particulate organic matter (POM) and dissolved organic matter (DOM) degradation by natural microbial communities, and (2) whether inorganic nutrients or flagellate grazing limit the bacterial response to, and subsequent degradation of, the DOM. In the initial seawater samples, nutrients were depleted and organic matter concentrations were elevated above concentrations found in upwelled water, indicative of recent bloom conditions. In whole water treatments incubated for 3 d, an average of 24% of the total organic C and 33% of the POC was degraded, with some portion of the POC being converted to DOC. In treatments incubated after POM was removed by filtration, DOC degradation was initially rapid and then proceeded at a slower rate. After 3 d, an average of 41% of the DOC was degraded. Selective degradation of the C-component of both the POM and DOM relative to the N-component was observed. Reductions in flagellate grazing resulted in increases in bacterial abundance and enhanced DOC degradation, while inorganic nutrient amendments had little effect. Overall, these results suggest that a fraction of the phytoplankton-derived POM and DOM can be rapidly degraded, contributing to oxygen consumption on the continental shelf. The long degradation time of a less labile DOC fraction relative to potential offshelf transport mechanisms suggests that Oregon's coastal waters may be a source of DOC to adjacent offshore waters of the North Pacific.  相似文献   

16.
Reversed-phase liquid chromatography/mass spectrometry (LC/MS) is introduced as a new molecular fingerprinting technique for tracing terrigenous dissolved organic matter (DOM) and its photochemical decay in the ocean. DOM along a transect from the mangrove-fringed coast in Northern Brazil to the shelf edge was compared with mangrove-derived porewater DOM exposed to natural sunlight for 2–10 days in a photodegradation experiment. DOM was isolated from all samples via solid-phase extraction (C18) for LC/MS analysis. DOM in the estuary and ocean showed a bimodal mass distribution with two distinct maxima in the lower m/z range from 400 to 1000 Da (intensity-weighted average of 895 Da). Terrigenous porewater DOM from the mangroves was characterized by a broad molecular mass distribution over the detected range from 150 to 2000 Da (intensity-weighted average of 1130 Da). Polar compounds, i.e., those that eluted early in the reversed-phase chromatography, absorbed more UV light and had on average smaller molecular masses than the more apolar compounds.  相似文献   

17.
Dissolved organic matter (DOM) composition and dynamics in temperate shallow coastal bays are not well described although these bays may be important as local sources of organic carbon to ocean waters and are often sites of economically-important fisheries and aquaculture. In this study surface water samples were collected on a monthly to bi-monthly basis over two years from a mid-Atlantic coastal bay (Chincoteague Bay, Virginia and Maryland, USA). Dissolved organic carbon (DOC) concentrations and light absorbance characteristics were measured on sterile-filtered water, and high-molecular weight (> 1 kDa) dissolved OM (DOM) was isolated to determine stable isotope composition and molecular-level characteristics. Our time series encompassed both a drought year (2002) and a year of above-average rainfall (2003). During the dry year, one of our sites developed a very intense bloom of the brown tide organism Aureococcus anophagefferens while during the wet year there were brown tide bloom events at both of our sampling sites. During early spring of the wet year, there were higher concentrations of > 1 kDa DOC; this fraction represented a larger proportion of overall DOC and appeared considerably more allochthonous. Based upon colored dissolved organic matter (CDOM) and high-molecular weight DOM analyses, the development of extensive phytoplankton blooms during our sampling period significantly altered the quality of the DOM. Throughout both years Chincoteague Bay had high DOC concentrations relative to values reported for the coastal ocean. This observation, in conjunction with the observed effects of phytoplankton blooms on DOM composition, indicates that Chincoteague Bay may be a significant local source of “recently-fixed” organic carbon to shelf waters. Estimating inputs of DOC from Chincoteague Bay to the Mid-Atlantic Bight suggests that shallow productive bays should be considered in studies of organic carbon on continental shelves.  相似文献   

18.
The geochemistry of dissolved copper-organic complexes was investigated in the estuarine waters of Narragansett Bay. A transect survey was conducted in August 1980, while one mid-bay station was monitored from March through August of that year. The transect data indicated that most of the copper-organic complexes enter the bay via sewage effluent which is discharged into the Providence River at the head of the bay. Organic copper concentrations in the estuary ranged from 0.12 to 2.30 μg kg?1 and comprised from 14 to 70% of the total dissolved copper. The concentration of copper-organic complexes was not directly related to the amount of dissolved organic matter; and recently generated organic material from phytoplankton production within the bay had a negligible influence on the fraction of dissolved copper which was organically bound.The major source of total copper to the bay is anthropogenic inputs from sewage effluents. Particulate and dissolved copper concentrations ranged from 0.06 to 2.42 and 0.23 to 16.4 μg kg?1, respectively, giving average values of about 40% particulate and 60% dissolved copper. Particulate copper concentrations decreased rapidly from the upper to the lower bay as a result of both removal and dilution. About 75% of the dissolved copper entering the bay is rapidly removed in the Providence River and upper bay, and the remaining portion (which is largely organic copper) follows conservative mixing in the mid to lower bay. The data suggest that copper binding by dissolved organic matter may be an important control on the riverine flux of dissolved copper through estuaries into coastal and oceanic waters.  相似文献   

19.
The chloroform-extractable ‘lipid’ fraction of dissolved organic matter in seawater was analyzed by gravimetry, liquid chromatography, gas chromatography (GC), and gas chromatography—mass spectrometry (GC—MS). Gravimetric concentrations of dissolved lipids in the Gulf of Mexico were in the range of 60–160 μg 1?1 in near-surface waters and 61–116 μg 1?1 in near bottom waters and accounted for ~4% of the dissolved organic carbon. Over a 12-h sampling period and a 5-d sampling period extensive variability in dissolved lipid quantity and quality were observed. The major percentage of extractable weight was collected in the polar liquid chromatographic fraction (55–95%). Gas chromatographic concentrations of the aliphatic fractions were in the range of 0.014-0.187 μg 1?1. Concentrations derived from gas chromatography were consistently lower than gravimetrically-derived concentrations. A number of compounds were tentatively identified by a combination of GC, GC—MS, and authentic standards. The major components of the analyzable dissolved lipids were n-alkanes (C16C32), pristane, phytane, methyl, ethyl and propyl esters of fatty acids. Minor components included olefins and cycloalkanes, aromatics, short-chained acids, and possibly a lactone and an alcohol. All concentrations and compounds were indicative of a fairly pristine environment. The n-alkane distribution appears to be the result of marine and terrestrial inputs superimposed on a chronic low-level background of oil pollution. It is suggested that the fatty acid esters and other fragment molecules are the résult of the degradation of humic substances. A number of potential indicators of source were isolated.  相似文献   

20.
A liquid-liquid partition, ligand exchange procedure involving the formation of copper(II) complexes with acetylacetone is presented for the determination of stability constants and concentrations of copper chelators in seawater. Acetylacetone competes with natural ligands for copper, and the equilibrium concentration of the copper acetylacetonate complex is used in speciation calculations. The concentration of the complex is calculated by partitioning a fraction of it into an organic phase and determining the total Cu concentration in that phase by back extracting with acid, and analyzing by flameless atomic absorption spectroscopy. The concentration of Cu acetylacetonate in seawater in equilibrium with the organic phase is calculated from the partition coefficient. The simple, thermodynamically well characterized procedure offers several advantages over previous techniques. Studies using organic free seawater and model ligands show good agreement between experimental and calculated conditional stability constants. Studies from seawater in Biscayne Bay, Florida, indicate two ligand types are present; type 1, K1 = 1.2 × 1012, CL1 = 5.1 × 10−9 M; type 2, K2 = 2.8 × 1010, CL2 = 1.1 × 10−7 M. Speciation is dominated by ligand type 1. Depth profiles of [Cu(II)]free/[Cu(II)]total measured with the procedure at ambient copper concentrations show an increase from < 5 × 10−5 at 50–60 m to > 1 × 10−3 at the surface at two stations off the Florida coast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号