首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To estimate the source and diagenetic state of organic matter reaching bottom sediments, fatty acids and sterols were measured in unconsolidated surface material (flocs) at 12 sites ranging from 600 to 2000 m across the mid-Atlantic continental slope off Cape Hatteras, North Carolina. Total free and esterefied fatty acids were similar in distribution and concentration to other coastal systems, with values ranging from 0.64 to 46.52 μg mg−1 organic carbon (1.10–68.85 μg g−1 dry sediment). Although shallow (600 m) stations contained significantly greater fatty acid concentrations than deep (> 1400m) stations, high variability observed at mid-depth (800 m) collections precluded a consistent relationship between total fatty acid concentration and station depth. At three sites where underlying sediments were also collected, decreases in total fatty acids, reduced amounts of polyenoic acids and significant presence of bacterial fatty acid suggest rapid reworking of labile organic material that reaches the sediment surface. The distribution of sterols was remarkably consistent among all sites even though there were large variations in concentrations (1.8–20.7 μg mg−1 organic carbon). Sterol composition indicated phytoplankton, principally diatoms and dinoflagellates, as the principal source of labile organic matter to sediments, together with a significant input of cholest-5-en-3β-ol typical of zooplankton and their feeding activity. A minor but widespread terrigenous input was also evident based upon significant concentrations of sterols dominant in vascular plants.  相似文献   

2.
一种饵料微藻的脂肪酸甾醇分析及化学分类的探讨   总被引:5,自引:1,他引:5  
对一种重要的未知生物饵料微藻在充气和瓶中静态两种生态条件下进行培养,设计了一种分步衍生化脂肪酸与甾醇的GC/MS连续分析法,对微藻脂肪酸甾醇进行了定性和定量分析,结果表明,这种微藻主要含有丰富的二十碳五烯酸(EPA),C14:0,C16:0,C16:1以及一定量的二十二碳六烯酸(DHA),C22:5(n-6)和C18不饱和脂肪酸;共鉴定出11种甾醇组分,主要是24-甲基(乙基)胆甾醇,碳数分布从27到30,特别含有甲基巴夫甾醇和乙基巴夫甾醇;可以把这种微藻归到Prymnesiophyceae纲Pavlovales目Pavlovaceae科.通过实例分析证明,脂类分析结果可以作为海洋微藻化学分类学的一个重要依据.  相似文献   

3.
《Marine Chemistry》2001,76(3):211-231
Small- and large-size particles were collected in January and August 1989 throughout the water column (50–3000 m) in a northeastern Atlantic area where deep Mediterranean waters outflowing through the Strait of Gibraltar are incorporated at mid-depth into Atlantic waters. Particles collected by water filtration (0.7 μm pore size) and by vertical hauls of a plankton net (50 μm mesh size) were analysed for their organic carbon and lipid composition, namely fatty acids, hydrocarbons, aliphatic and alicyclic alcohols and ketones, and pigments. Small-size particles exhibited POC concentrations two to three orders of magnitude higher (5–50 μg/l) than large particles (0.01–0.32 μg/l). Strong spatial and temporal variations were also observed. Surface small particles collected in January accounted for 15–50 μg/l of POC, whereas in August, these represented only 5–15 μg/l following the seasonal variability of primary production. Concurrently, the variety of lipid components was larger in January.The lipid components of large-size particles were dominated by zooplankton markers, whereas small particles showed evidence of a mixed algal composition (mainly of haptophytes and moderately of diatoms, prasinophytes, chrysophytes and dinoflagellates) with a bacterial contribution. The vertical profiles of the different lipid classes showed a general decrease with depth, particularly significant in the upper 200 m, consistently with the POC contents. Compositional changes were more evident in small particles and included the loss of unsaturated compounds and the increase of diagenetic and bacterial markers. Unusual increases were observed at mid-depths indicating additional particle inputs, either by in situ formation or by advective transport from the Mediterranean. The latter was recognized because small particles in Mediterranean waters entrained large quantities of continental detritic materials that were also found in the Mediterranean water lenses in the Atlantic. From these observations, it was inferred that the outflow of the Mediterranean deep-lying particulate organic matter might still preserve its signature in the mid-depth northeastern Atlantic waters.  相似文献   

4.
Organic chemistry of particulates has recently been developed with the increasing quality of analytical methods. Because of the low organic content in deep sea, most of the studies were dealing with the euphotic layer. So we have very little information about the purely detrital material. Particulate organic carbon range from about 100 μg/1 in the surface layer, to 5–30 μg/1 in deep sea. Total particulate organic carbon in the world ocean must be about 2 · 1016g.It is important to obtain more detailed information about this enormous quantity of organic matter, the relative stability of which suggests that it could be used as a geochemical tracer. The distribution of particulate organic carbon exhibits regional variations, especially in surface waters, and a sharp vertical gradient of limited extent down to 200–300 m.At this depth, the deep water situation is reached with a quite constant carbon concentration disrupted only by pronounced increases associated with particular water masses. Though particles are generally recovered by filtration on 0.45 μ pore size filters, many smaller particles are present in sea water. The dialysis of seawater demonstrated a recovery of non dialysable material of about six times the amount recovered by filtration. While we have to take into account the existence of soluble high molecular substances, it seems possible for a great part of them to be in the colloidal state. If we except the biological processes, most of the chemical reactions occurring in the sea must concern this fraction. The detritus are for the most part too inert to play an important role in chemical reactions, while the strictly dissolved compounds are rapidly degraded by organisms. This colloidal fraction is thus responsible for the metals fixation, aggregation and sedimentation processes. It has been proved that it plays a very important role in the fixation of pesticides and hydrocarbons and must be considered in all the studies dealing with pollution.Some works on the origin of suspensions, showed that they can be formed by bubbling. Large organic active molecules adsorb to bubbles and produce monomolecular film which may be aggregated into insoluble organic particles; the agitation results in a semi-stable colloidal suspension of organic materials.It is highly probable that most of the organic matter in the deep sea is in the form of heteropolycondensed molecules, containing important carbohydrates and protein chains. These molecules are in a colloidal state in the supposedly dissolved material, which can be adsorbed on, or aggregated with particles by physical or biological processes.  相似文献   

5.
The transfer of material through the twilight zone of the ocean is controlled by sinking particles that contain organic matter (OM) and mineral ballast. During the MedFlux field program in the northwestern Mediterranean Sea in 2003, sinking particulate matter was collected in time series (TS) and settling velocity (SV) traps and analyzed for amino acids, lipids, and pigments (along with ballast minerals) [Lee, C., Armstrong, R.A., Wakeham, S.G., Peterson, M.L., Miquel, J.C., Cochran, J.K., Fowler, S.W., Hirschberg, D., Beck, A. Xue, J., 2009b. Particulate matter fluxes in time series and settling velocity sediment traps in the northwestern Mediterranean Sea. Deep-Sea Research II, this volume [doi:10.1016/j.dsr2.2008.12.003]]. The goal was to identify how organic chemical compositions of sinking particles varied as a function of their in-situ settling velocity. The TS record was used to define the biogeochemical character and temporal pattern in flux during the period of SV trap deployment. Temporal variations in organic and mineral compositions are consistent with particle biogeochemistry being driven by the seasonal succession of phytoplankton. Spring diatom bloom conditions led to a high flux of rapidly sinking aggregates and zooplankton fecal matter; summer oligotrophy followed and was characterized by a higher proportion of slowly sinking phytoplankton cells. Bacterial degradation is particularly important during the low-flux summer period. Settling velocity traps show that a large proportion of particulate organic matter sinks at 200–500 m d−1. Organic compositions of this fast-sinking material mirrors that of fecal pellets and aggregated material that sinks as the spring bloom terminates. More-slowly sinking OM bears a stronger signature of bacterial degradation than do the faster-sinking particles. The observation that compositions of SV-sorted fractions are different implies that the particle field is compositionally heterogeneous over a range of settling velocities. Thus physical and biological exchange between fast-sinking and slow-sinking particles as they pass down the water column must be incomplete.  相似文献   

6.
Recently it has been observed that a strong quantitative relationship exists between asymptotic fluxes of particulate organic carbon (POC) to the deep ocean and asymptotic fluxes of “ballast” minerals (opal; calcium carbonate; dust). It has further been suggested that this relationship might provide a mechanistic basis for improved representations of remineralization in ocean carbon models. Since the depth scale of remineralization z* is the ratio k/v of a remineralization rate k and a settling velocity (SV) v, a mechanistic understanding of settling velocities will be crucial in developing such models.Historically, there have been two approaches to estimating the speed with which POC is transported to the deep ocean. First, settling speeds of single particles have been observed directly in both field and laboratory settings; estimates of fecal pellet sinking velocities tend to be higher and more variable than those of aggregates. Second, estimates have been made of the velocity at which temporal patterns in flux propagate between pairs of sediment traps separated in depth (the “benchmark approach”); recent studies have shown these results to be variable and to depend on mineral ballasting. Here we present SV estimates using a relatively new technology: indented rotating sphere (IRS) sediment traps run in settling velocity (SV) mode. In this approach, particles are separated into SV classes during settling to collection cups. In MedFlux, SV data were collected concurrently with time-series (TS) data; the latter were used to construct benchmark estimates for comparison to the SV estimates. From the SV data, the range of modal settling velocities (sinking velocities having the largest time-averaged mass flux densities on a logarithmic scale of SV) in the fast-sinking fraction was estimated to be 287–503 m/d; the average of these modal values is 353 m/d, with standard deviation 76 m/d. In contrast, mean settling velocities of the fast-sinking fraction depend on the range of settling velocity classes included in the estimate. If only SV classes settling at >50 m/d are included, the range of SVs at MedFlux was 214–298 m/d, with average mean value 242 m/d and standard deviation 31 m/d. These mean-velocity results are in excellent agreement with benchmark estimates of signal propagation velocities at Medflux (220±65 m/d); they are also well within the range of other recent benchmark studies. The agreement between the benchmark estimates and mean settling velocity estimates at MedFlux, but not with modal velocities, argues that the benchmark method estimates mean settling velocities.  相似文献   

7.
Sedimentation of food particles and fecal pellets under fish pens can lead to organic enrichment of the sediment. This study looked at the potential of lipid biomarkers as an indicator for the dispersal of organic waste from a fish enclosure. The lipid class and fatty acid composition of settling particles collected by sediment traps on a transect away from a cod enclosure was determined. The proportions of free fatty acids and of three long-chain monounsaturated fatty acids close to the fish pens were significantly higher (p<0.05) than before the fish enclosure was in operation and decreased moving away from the pens. This indicated a higher contribution of feces and/or uneaten feed to the settling particles at this location. Free fatty acids are the major lipid class in feces. Long-chain monounsaturated fatty acids are abundant in the feed and are also found in high proportions in feces because of their lower digestibility compared to other fatty acids.  相似文献   

8.
To study biological effects on the particulate removal of chemical elements from seawater, sediment trap experiments were carried out successively ten times throughout the spring phytoplankton bloom in Funka Bay. Sediment traps were deployed every one to two weeks at 1, 40 and 80 m depths. The settling particles obtained were analyzed for trace metals, phosphate and silicate. The propagation of diatoms in spring results in larger particulate fluxes than that of dinoflagellates. The biogenic silicate concentration is higher in the earlier period, when diatoms are predominant, than in the subsequent period, when dinoflagellates are predominant. The concentrations of aluminum, iron, manganese and cobalt in the settling particles comprising largely biogenic particles are lower during phytoplankton bloom. The concentration of copper is not reduced by the addition of biogenic particles, and its vertical flux is approximately proportional to the total flux, indicating that its concentration in the biogenic particles is nearly equal to that in the non-biogenic particles. The results for nickel and lead show the same tendency as for copper. Cadmium is more concentrated in biogenic particles than in non-biogenic particles, and the concentration of cadmium in the settling particles decreases with depth, similarly to phosphate and organic matter. Thus, metals in seawater are segregated by biological affinities, and the degree of incorporation into biogenic particles is in the order Cd > Pb, Ni, Cu > Co > Mn, Fe, Al. Biogenic particles are the most important agent controlling the vertical distribution of metals in the ocean. They remove the metals from the surface water, transport them through the water column, and regenerate them in the deep.  相似文献   

9.
Sediment traps were deployed at 5 depths of 100 through 5,250 m to collect suspended sediments in the northern North Pacific (47°51.1'N; 176°20.6'E, 5,300 m deep) in the summer of 1978. Fatty acid composition was determined in the samples of phytoplankton, particulate matter, trap sediment and bottom sediment.Fatty acid composition of the trap sediments revealed no significant vertical trend throughout the water column from depths of 100 to 5,250 m, and were also similar to those of the phytoplankton and the particulate matter from the euphotic layer. However, a marked difference in the fatty acid composition was observed between the trap sediments and the particulate matter from deep waters. Therefore, it can be concluded that the source of fatty acids in the trap sediments is the particulate matter from the euphotic layer but not from deep waters.Unsaturated fatty acids highly susceptible to biological agents were rather abundant in the trap sediments as well as in the phytoplankton and particulate matter from the euphotic layer, however no unsaturated fatty acid was found in the particulate matter from deep waters. From these findings, it is clear that the particulate matter of the euphotic layer is transported to deep waters very rapidly. As the sinking rate of fecal pellets produced by zooplankton is in the range of ten to hundreds of meters a day, fecal pellets are assumed to be the most likely carrier of rapid-transport of organic matter including fatty acids from the euphotic layer to deep waters.  相似文献   

10.
《Marine Chemistry》1987,21(3):267-299
Organic geochemical measurements of the lipid fraction, comprising saturated and aromatic hydrocarbons, fatty acids, alcohols and sterols, have been carried out on six sediment cores collected from the Atlantic shelf, slope and the rise areas to evaluate the cross-shelf transport of the organic carbon.The concentration of most of the organic compound classes studied is correlated with the total organic carbon, which decreases from the shelf through slope to the rise. Terrigenous carbon is recognizable even in the slope and rise sediments, but terrestrial influx decreases relative to marine generated lipids in the slope and rise organic matter. We estimate that ∼50% of the shelf organic matter is exported to the slope.Data of sediment trap material collected at 1200 m from 1250 m water depth are discussed and compared with that of surface sediment from 1280 m water depth (slope). Fluxes for specific organic compound classes have been computed. The fluxes are of the same magnitude as for equatorial North Atlantic trap particulates at comparable water depth, studied by other investigators.  相似文献   

11.
The detailed investigation of organic carbon cycling in estuarine and marine environments has stimulated the development of multidisciplinary concepts, research and sampling strategies as well as analytical tools in the last 10 years. Among other approaches, the molecular biomarker one has also undergone significant improvements. Some examples dealing with specific markers including sterols, alkenes and fatty acids are discussed in this paper in terms of source identification and transformation processes.Although some limitations exist for the elucidation of their stereochemistry, sterols have been used extensively to study biochemical processes affecting the organic matter in the water column and at the ocean/sediment interface. Sterols also appear as promising tracers of terrestrial vs. marine inputs in complex estuarine systems. The specificity of individual fatty acids or groups of acids has also been used to assess the origins and transformation processes of organic matter in marine samples. New approaches are presented including the investigation of intact lipid classes and the elucidation of the position of double bonds of unsaturated fatty acids and alkenes. Finally, we discuss the use of che-mometric techniques due to increasing chemical information and the interest of combining molecular-level and stable isotope approaches.  相似文献   

12.
《Progress in Oceanography》1986,16(3):147-194
During the past decade data from a variety of sources have been obtained which show conclusively that the relatively rare, large particles sinking through the water column are responsible for the majority of the downward vertical mass flux in the sea. This finding has important implications for understanding the transfer, distribution and fate of elements and organic compounds in marine waters. The “large” (> 100 μm) detrital particles responsible for vertical flux are primarily biogenic and range in size and composition from small, discrete fecal pellets and plankton hard parts to large, amorphous aggregates or “snow” which contain both organic and inorganic constituents. Depending on size, shape and density, these particles sink at rates ranging from <1 to >1000 m day−1. Several methods have been developed for sampling these particles of which in situ sediment trapping has probably furnished the most comprehensive qualitative and quantitative information on the role large particles play in material transport. Flux studies have highlighted the importance of marine heterotrophs in packaging fine, suspended particulate matter into large rapidly sinking particles which accelerate the movement of incorporated materials to depth. Large particle production via biological packaging is not restricted to the euphotic zone but can occur at all depths and information is now accruing on rates of production of large particles in the water column. Chemical analyses of sedimenting particles collected in sediment traps and those sampled by other means have allowed quantifying vertical fluxes and residence times of elements, radionuclides and organic compounds (natural and anthropogenic) in various oceanic regimes. Pertinent studies dealing with the above aspects are reviewed and several areas for future research are suggested.  相似文献   

13.
We investigated amino acids and pigments in particles settling through the water column of the Southern Ocean and showed that spatial and temporal differences in phytoplankton source and consumer population influence sinking particle composition. Sediment traps were deployed along 170°W from November 1996 to March 1998 as part of the United States Joint Global Ocean Flux Study (US JGOFS) Antarctic Environment Southern Ocean Process Study (AESOPS) program. Peak fluxes of amino acids and pigments occurred during austral spring and summer (November–April) and were highest in the Antarctic Circumpolar Current (ACC). Compositional changes in pigments and total hydrolyzed amino acids demonstrate how the source of sinking particles varies with latitude and suggest that sinking material was most degraded in relatively diatom-depleted regions and toward the end of the high-flux period (February–March). At the Subantarctic Front, high proportions of pheophytin and β-alanine illustrate the important role of microbes in degradation. Further south at the Antarctic Polar Front, glycine, pyropheophorbide, and pheophorbide enrichments reflected a greater contribution of diatoms and greater processing by zooplankton grazers. Even further south in the ACC, enrichments of the diatom pigment fucoxanthin, diatom cell wall indicators glycine and serine, and diatom frustule-bound amino acids suggested the settling of empty frustules and aggregates. Despite being protected by the mineral, diatom-bound amino acids were not preferentially preserved between shallow and deep traps, possibly because of silica dissolution and a relatively small amount of organic carbon remineralization. Our results show that organic matter at diatom-rich stations is removed by mechanisms that do not result in the appearance of organic matter degradation indicators. Recent observations that calcium carbonate has a higher carrying capacity for sinking organic matter than silica may be related to diatom silicification, physiological status and decomposition pathway.  相似文献   

14.
The membrane phospholipids of two barophilic bacteria, DB21MT-2 and DB21MT-5, isolated from sediments from the Marianas Trench at 11,000 m were structurally characterized and quantitatively determined by liquid chromatography/electrospray ionization/mass spectrometry (LC/ESI/MS). Phospholipids detected in the barophiles were distributed in five different classes: phosphatidylglycerol (PG), phosphatidylinositol (PI), phosphatidylcholine (PC), diphosphatidylglycerol (DPG), and phosphatidylethanolamine (PE) and its methylated forms phosphatidylmethylethanolamine (PME) and phosphatidyldimethylethanolamine (PDME). Concentrations of phospholipids/phospholipid groups range from 5.3 to 4.583 μg/g (dry weight). A unique aspect of the phospholipid profiles of the barophilic bacteria was the wide distribution of polyunsaturated fatty acids 20 : 5 (in DB21MT-2) and 22 : 6 (in both DB21MT-5 and DB1MT-2) on the sn-1 and mostly on the sn-2 position of the phospholipids. The results suggest that the adaptation of the barophiles to low temperature and high hydrostatic pressure influenced the synthesis of phospholipids containing polyunsaturated fatty acids. It was also observed that the polyunsaturated fatty acids were associated with almost every phosphatidylglycerol (PG) molecule. Presumably, the larger head group of PG would be expected to cause greater disruption in acyl chain packing within the membrane bilayer and thereby lower the transition temperature in response to the additive effects of low temperature and high pressure. The detection of phospholipids with polyunsaturated fatty acids also has important geochemical implications for paleoenvironment reconstruction and for determining the surface water biological productivity of the ocean. It seems that psychrophilic and barophilic bacteria may be major sources of polyunsaturated fatty acids to the deep-sea sediments, given the fact that the vertical flux of polyunsaturated fatty acids from surface water plankton decreased rapidly with depth.  相似文献   

15.
Within the framework of the European project EROS 21, a biogeochemical study of particles transported from the Danube Delta to the Northwestern Black Sea whose carbon cycle is dominated by riverine inputs was carried out in spring off the Sulina branch of the Danube Delta. The distribution of particulate organic carbon (POC), chlorophyll a (Chl a), C/N, and δ13C evidenced an omnipresent contribution of terrestrial organic matter throughout the study area together with a dilution of these inputs by freshwater and marine organisms. Four lipid series, n-alkanoic acids, n-alkanes, n-alkanols, and sterols were analyzed by gas chromatography and gas chromatography/mass spectrometry. Several signature compounds were selected to delineate dispersion of terrestrial organic carbon: (1) long-chain n-alkanoic acids in the range C24–C34, long-chain n-alkanes in the range C25–C35, long-chain n-alkanols in the range C22–C30, 24-ethylcholesta-5,22-dien-3β-ol (29Δ5,22) and 24-ethylcholesterol (29Δ5) for vascular plant-derived material and (2) coprostanol (27Δ0,5β) for faecal contamination associated with sewage effluents. A marked decrease was observed between the concentrations of different vascular plant markers characterizing the two end members: riverine at salinity 0.3 and marine at salinity 15.5. The decrease observed for marine/riverine end members (expressed as a function of organic carbon) varied in a large range, from 4% for n-alkanes to 18.6%, 20.4% and 24% for n-fatty acids, n-alkanols and sterols, respectively. These values reflect a combination of various processes: size-selective particle sedimentation, resuspension of different particle pools of different sizes and ages, and/or selective biological utilization. The multi-marker approach also suggested the liberation in the mixing zone of terrestrial moieties, tightly trapped in macromolecular structures of the riverine material. The greatest decrease for marine/riverine end members was observed for coprostanol (0.9%), underlining the efficiency of the mixing zone as a sink for sewage-derived carbon.  相似文献   

16.
Sterol and fatty alcohol biomarkers were analyzed in suspended and sinking particles from the water column (20–300 m) of the Almeria–Oran frontal zone to characterize the biogenic sources and biogeochemical processes. Diatom- and haptophyte-related sterols were predominant at all sites and vertical distributions of sterol, and fatty alcohol biomarkers in sinking particles were markedly different from suspended particles. In contrast to the relatively fresh sinking particles with elevated concentrations of phyto- and zooplanktonic sterols, suspended particles were extensively degraded with increasing depth and exhibited a more terrestrial and zooplanktonic signature with depth.Sterol and alcohol biomarkers distributions and δ13C values from the jet core and the associated gyre of Atlantic waters showed a decoupling between the sinking particles of 100- and 300-m depth, demonstrating the influence of lateral advection in the frontal zone. In contrast, vertical transport of the particulate organic matter in Mediterranean waters was interpreted from the similar isotopic and molecular composition at both depths. The high abundance of phytosterols and phytol below the euphotic zone at 100 m signified that downwelling of biomass occurred on the downstream side of the gyre. The high concentrations of phytosterols and POC, in combination with the high phytosterols/phytol ratio, indicated the accumulation of detrital plant material in the oligotrophic Mediterranean waters near the frontal zone.A higher contribution of phytol in the sinking particles collected during the night at the surface of the jet and at the upstream side of the gyre provided evidence of diel vertical zooplankton migration and important grazing by herbivorous zooplankton.Carbon isotope ratios of sterols confirmed that the 24-ethylcholest-5-en-3β-ol, commonly associated with terrestrial sources, was a substantial constituent of the phytoplankton in this area. However, the more δ13C depleted values obtained for this compound in suspended particles suggested that there was some terrestrial contribution that only becomes evident after degradation of the more labile marine organic matter.  相似文献   

17.
Since 1960 when I was a senior student, I have studied natural phenomena observed in the hydrosphere and atmosphere by means of chemical elements. Each of the phenomena is, in general, very complicated and so I have attempted to depict the whole picture of material circulation in the marine environment by studying its various aspects at the same time. My chief strategy has been to use natural radio-nuclides as clocks of various phenomena, and to use sediment traps for the determination of vertical fluxes in the ocean. The many results I have obtained can be summarized as follows. 1. I have found that several sporadic events control the material exchange through the atmosphere. These include the strong winter monsoon and typhoons that transport sea-salt particles to the Japanese Islands, theKosa episodes that transport soil dust to the ocean, and storms that result in exchange of sparingly soluble gases such as oxygen and carbon dioxide at the air-sea interface. I have also proved quantitatively that the source of aluminosilicate material in pelagic sediments is air-borne dust. 2. I have proposed a model,Settling model, for the removal of chemical substances from the ocean and found various lines of evidence supporting the model. This model predicts the reversibility in the existing state of insoluble chemical elements in seawater among large settling particles, small suspended particles and colloidal particles that pass through a membrane filter and explains well their behavior in the ocean. I have first precisely measured calcium and iodine in the ocean and have explained their distributions on the basis of the solution and redox equilibria. 3. Using chemical tracers, I have estimated the vertical eddy diffusion coefficients to be 1.2 cm2sec−1 for the Pacific deep water, 0.5 cm2sec−1 for the deep Bering Sea water and 3–80 cm2sec−1 for the Pacific surface water, and have studied the structure of water masses in the western North Pacific and the Sea of Japan. I have also invented and applied a method for the calculation of the age of deep waters using radiocarbon. 4. I have calculated the rates of decomposition of organic matter and the regeneration rates of chemical components in the deep and bottom waters as well as coastal waters by modelling water circulation and mixing. Particulate fluxes and regeneration rates are larger in the deep waters beneath the more biologically productive surface waters. I have stressed the role of silicate in the marine ecosystem, especially in the succession of phytoplankton species. 5. I have quantitatively studied the migration of chemical elements during the early diagenesis of bottom sediments especially manganese using chemical and radiochemical techniques. Manganese is being actively recycled not only in coastal seas but also in pelagic sediments except in the highly oligotrophic subtropical ocean. This recycling can explain the formation of manganese nodules and enables us to balance the manganese budget in the ocean.  相似文献   

18.
The organic matter of sinking particulate material collected in the Northeast Atlantic Ocean (ca. 49°N, 16°W) was investigated in order to determine temporal and depth-related variability in its composition. Three sediment traps were deployed at nominal depths of 1000 m (below the permanent thermocline), 3000 m (representing the deep-water fluxes) and at 4700 m, about 100 m above the seafloor (just above the benthic boundary layer). The samples span a 28-month sampling period from October 1995 until February 1998, each sample representing a period of between 7 and 28 days.Total organic carbon and total nitrogen contents decrease with depth, as did the absolute concentrations of most biochemicals measured in this study, such as intact proteins and individual lipids. However, concentrations of proteins relative to total organic carbon and total nitrogen did not show any significant change with depth, implying that they are not being rapidly degraded and so may provide an important supply of nitrogen to the benthos. Fluxes of protein, TN and TOC are significantly correlated at all depths.Lipid compositions vary temporally. During periods of high flux, particularly in the summer, the lipids are richer in ‘labile components’, namely unsaturated fatty acids and low molecular weight alcohols. During periods of low flux other compounds, such as sterols, steroidal ketones and a trisnorhopan-21-one are more abundant. One sample, taken close to the seafloor, was highly enriched in lipids, sterols and fatty acids in particular; this may represent detritus derived from bottom-dwelling invertebrates.  相似文献   

19.
In the context of a multidisciplinary study to determine current and past ecosystem health and the relative contributions of sources of organic matter (marine vs. terrestrial and natural vs. anthropogenic input), sterols were determined in plankton, settling particles and sediments from Trinity Bay, Newfoundland, a sub-polar Atlantic Ocean ecosystem. The centric diatoms Chaetoceros spp., Thalassiosira spp. and Leptocylindrus danicus were all prominent in the plankton samples, and centric diatoms predominated in the settling particles. Plankton samples contained 0.4±0.4 mg/g dw (1995) or 1.4±1.3 mg/g dw (1996) total sterols, with cholesta-5,24-dien-3β-ol (mean 26% of total sterols), cholest-5-en-3β-ol (24%) and cholesta-5,22(E)-dien-3β-ol (13%) chief among these, denoting diatom and zooplankton sources. In settling particles, the prominence of cholesta-5,24-dien-3β-ol (24%), cholest-5-en-3β-ol (24%), cholesta-5,22(E)-dien-3β-ol (13%) and 24-methylcholesta-5,22(E)-dien-3β-ol (9%) again suggested mainly marine sources. The sterol composition of plankton and settling particles from different sampling periods showed a high degree of consistency. Higher plant C29 sterols (notably 24-ethylcholest-5-en-3β-ol, 9–26%) were prominent in sediments from both inshore and offshore sites. No decreasing trend in total or individual sterols was observed down the 30-cm sediment cores, suggesting good overall preservation. No 5β-stanols such as 5β-cholestan-3β-ol (coprostanol) were detected in offshore sediments, plankton or settling particles, with only low levels (5β-cholestan-3β-ol max. 4.4%, 5β-cholestan-3α-ol max. 5.1%) in certain inshore sediments. This suggests that raw sewage discharges in rural Newfoundland are being efficiently degraded or dispersed, or that inputs are highly localized. Source apportionation of organic matter in the sediment samples based on sterol composition was attempted. This highlighted the large terrestrial contribution to the sterols in marine sediments (up to 58% of sterols inshore, 24% offshore) and suggests either degradation or effective recycling of marine sterols.  相似文献   

20.
Considerable attention has recently been focused on the role of eddies in affecting biogeochemical fluxes and budgets of the Sargasso Sea. In late November 1996, the Bermuda Testbed Mooring (BTM) and Bermuda Atlantic Time Series (BATS) shipboard sampling evidenced a fall phytoplankton bloom at the Bermuda time-series site which was strongly forced by the interplay between seasonal mixed layer destratification and perturbation of mixed layer dynamics due to passage of a warm mesoscale feature. The feature was characterized by clockwise current vector rotation from near the surface to about 200 m and a thick, warm, low salinity isothermal layer >180 m in depth. Nutrients, chlorophyll fluorescence and pigment profiles indicated high primary production stimulated by enhancement of nutrient entrainment and intermittent deep mixing down to the base of the feature's isothermal layer. Nearly coincident with the arrival of this productive feature at the BTM site, the Oceanic Flux Program (OFP) sediment traps recorded an abrupt, factor of 2.5 increase in mass flux at 3200 m depth. Even more dramatic was the observed increase in flux of labile bioreactive organic matter. Fluxes of primary phytoplankton-derived compounds increased by factors of 7–30, bacteria-derived compounds by 6–9, and early degradation products of sterols by a factor of 10. The covariation of early degradation products and bacteria-derived compounds with phytoplankton-derived compounds indicated that the settling phytoplankton bloom material contained elevated bacterial populations and was undergoing active degradation when it entered the 3200 m trap cup.The increase in the flux of bulk components, especially the residual silicate fraction, and refractory organic compounds clearly preceded the main pulse of the labile, surface-derived phytoplankton organic material. The coincident increase in the flux of refractory and zooplankton-derived compounds suggests that in the initial stage of the deep flux event, the mass flux increased largely as a result of an increase in the flux of refractory materials scavenged from the water column and repackaged into sinking particles and increased zooplankton inputs. These results imply that biological reprocessing of flux material within the water column acts to enhance the coupling between the surface and deep ocean environments.Our results show that transient, upper ocean forcing associated with variable upper ocean physical structure—which includes but is not limited to eddies—and variable meteorological forcing can have an enormous effect on the export flux of bioreactive organic material. The importance of pulsed fluxes of bioreactive material arising from transient physical forcing to the long-term average is not presently known. However, the occurrence of episodic high flux events throughout the OFP time-series record (also inferred from BTM time-series) suggests that such forcing, regardless of specific dynamics, may be responsible for a significant fraction of the total export flux of bioreactive carbon and associated elements to the deep oligotrophic ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号