首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Detrital gold particles in paleoplacer deposits develop recrystallised rims, with associated expulsion of Ag, leading to the formation of Ag-poor rims which have been recognised in most placer gold particles around the world. Recrystallisation is facilitated by accumulation of strain energy as the gold particles are deformed, particularly on particle margins, during transportation in a fluvial system. The recrystallisation process ensues after sedimentary deposition and can occur at low temperatures (<40 °C) over long geological time scales (millions of years). In the Otago placer goldfield of southern New Zealand, paleoplacers of varying ages contain gold with varying transport distances and these display differing degrees of rim formation. Narrow (1–10 µm) recrystallised rims with 0–3 wt% Ag formed on gold particles that had been transported <10 km from their source and preserved in Eocene sediments. Relict, coarse grained (∼100 µm) gold particle cores have 3–10 wt% Ag, which is representative of the source gold in nearby basement rocks. Gold in the Miocene paleoplacers was recycled from the Eocene deposits and transported >20 km from their source. The gold particles now have wider recrystallised rims (up to 100 µm), so that some particles have essentially no relict cores preserved. Gold in Cretaceous paleoplacers have wide (∼100 µm) recrystallised low-Ag rims, even in locally-derived particles, partly as a result of diagenetic effects not seen in the younger placers. Gold particles in all the paleoplacers have delicate gold overgrowths that are readily removed during recycling, but are replaced by groundwater dissolution and reprecipitation on a time scale of <1 Ma. The recrystallisation that leads to Ag-poor rim formation is primarily related to the amount of deformation imposed on particles during sedimentary transport, and is therefore broadly linked to transport distance, but is also partly controlled by the age of the paleoplacer on time scales of tens of millions of years. Gold particles that have been derived directly from basement sources can retain their original composition for long distances (tens to hundreds of kilometres) in a river system, with only minor recrystallised rim development. Gold particles that have been recycled through paleoplacer deposits can lose this link to source composition after relatively short transport distances because of extensive recrystallisation.  相似文献   

2.
Gold and platinum group minerals from the gold placers of the South Urals are studied in order to identify the metal sources. In placers from the Main Uralian fault zone (MUF), the primary gold contains Ag (up to 29 wt.%), Cu (up to 2 wt.%) and Hg (up to 4 wt.%) and its fineness ranges from 538 to 997‰. Tetra-auricupride and cupriferous gold (up to 20 wt.% Cu) are common for the Nizhny Karabash placer of the MUF zone. In the eastern part of the South Urals, the placer gold is mainly characterized by high fineness of 900–1000‰ and low Cu contents (max 1.38 wt.%). Most of the placer gold grains consist of the primary domains, which are rimmed by secondary high-fineness gold with diffuse and clear boundaries. The secondary gold also develops along the shear dislocations of primary gold. Gold contains microinclusions of geerite, balkanite, chalcopyrite, Se-bearing galena, sphalerite, pyrite, pyrrhotite, arsenopyrite and hematite.Twenty four (including five unnamed) platinum group minerals (PGMs) were found in 28 placers; those from the Kialim and Maly Iremel placers of the Miass placer zone were studied in details. In the Kialim placer, ruthenium is most abundant PGM, which hosts microinclusions of isoferroplatinum, ferroan platinum, laurite, cupriferous gold, a mineral similar in composition to tolovkite, heazlewoodite and unnamed RhSbS phase. The osmium contains microinclusions of erlichmanite and laurite. The iridium grains hosts various sulfides and arsenides of platinum group elements (PGEs). The inclusion-free PGMs form Ru compositional trend in contrast to Os–Ru trend of the Ir-depleted inclusion-hosted PGMs. The isoferroplatinum from the Maly Iremel placer hosts laurite, rhodarsenite, bowieite, a mineral similar in composition to miassite and unnamed sulfide of Pt (Pt1.11S2.00) and antimonide of Pd ((Pd2.41Rh0.43Fe0.17)3.01(Sb0.91Te0.09)1.00). Ruthenium is a host to isoferroplatinum, PGE sulfides and arsenides, and heazlewoodite. Osmium contains microinclusions of ferroan platinum; iridium is a host to a mineral similar in composition to hongshiite. Three types of PGM intergrowths were identified in the Maly Iremel samples: (1) the intergrowths of platy grains of ruthenium with isoferroplatinum and a mineral similar in composition to tulameenite; (2) the open-latticework intergrowths of platy crystals of ruthenium with interstitial aggregates made up of gold, isoferroplatinum and a mineral similar in composition to xingzhongite and (3) the intergrowths of osmium and irarsite and iridarsenite, which are developed along cleavage of the osmium grains. Nickel sulfides associated with some PGMs contain Ru (11.32 wt.%) and Rh (2.21 wt.%) in millerite and Ir (31.00 wt.%), Ru (5.81 wt.%) and Rh (2.87 wt.%) in vaesite.The primary metal sources were determined on the basis of the mineral assemblages and composition of minerals, taking into account the nearby mineral deposits and directions of rivers. The rodingite-associated gold, gold-bearing massive sulfide and chromite deposits are major sources of gold and PGMs in placers of the Miass placer zone confined to the MUF structure of the South Urals. In the southern part of this structure, gold was mainly originated from orogenic gold–sulfide deposits associated with volcanic/volcaniclastic rocks and listvenite-associated gold deposits. The placer PGMs were derived from the adjacent ultramafic massifs of ophiolitic origin. The distance between the placers and primary deposits varies from 2 to 5 km (up to 20 km in the extended valley of the Miass River). Usage of ore microinclusions and associated PGMs in study of placer gold is far more advanced than an ordinary consideration of gold composition alone. This approach allowed us to identify the concrete sources for individual placers and to predict some mineralogical findings in already known primary occurrences.  相似文献   

3.
The Vagran placer cluster is located on the eastern slope of Northern Urals. During > 100 years of gold mining history approximately 40 tons of gold have been extracted from the placer deposits.Bedrocks of the region consist of high metamorphic Upper Proterozoic and Paleozoic terrigeneous, terrigeneous-volcanogenic and igneous rocks. Gold placer deposits are mostly alluvial genesis deposits and of Quaternary to Oligocene (?) age. The alluvial deposits consist of gravel with pebbles, boulders, and sandy clay covered by sandy silt and a soil layer. The thickness of the alluvial sequence is usually 5–10 m and reaches 18 m in the main watercourses of the third order. Nearly all of the alluvial sediments are gold bearing but concentrations of economic importance prevail in the bottom part of the sequence above the bedrock.There are four different types of gold particles: (I) rounded and well-rounded particles of high fineness and homogeneous inner structure, (II) rounded to sub-rounded high fineness particles with a pure gold rim developed over a core, (III) crystallomorphic (idiomorphic) high fineness with a homogeneous inner structure, and (IV) irregular angular and subangular particles of medium fineness with a significant content of Ag (10–40 wt.%) and elevated Hg (up to 1.15 wt.%).The first type is prevalent and comprises up to 65% of the total gold particles; it is uniformly distributed throughout the territory. There are features with initially complicated dendritic and laminar shaped particles which were rounded during transportation. The second and third types have a propensity for zones of the inherited erosion–tectonic depressions. Apparently, types I, II and III are related with orogenic mesothermal gold-sulfide-quartz mineralization; the differences of these types depend on the primary zonation of ore bodies and supergenic transformation of the alloys. They were connected with middle-depth ore bodies of an orogenic gold-sulfide-quartz formation. The fourth type is evident of nearby transportation from primary sources and a short duration of supergenic influence. It is controlled by a zone of NW-SE orientation, diagonal to the main structures of Ural Fold Belt.The plot of Au content vs coefficient of heterogeneity (ratio of the Au content in the core and in the rim of the grains) is the distinguishing factor between the four types of gold grains both by primary hypogenetic characteristics and supergenetic features.No corresponding lode occurrence of gold-sulfide-quartz mineralization has been identified to date in this region. Placer gold concentrations are related to the intermediate hosts of the Mesozoic-Cenozoic surfaces of the Ural peneplain uplift in the Oligocene and eroded in Miocene-Quaternary time. This factor determines the widespread distribution of placer gold in the territory of the Vagran cluster.The large, Carlin-type Vorontsovsk gold deposit is located 60 km south-east from the Vagran area. It has a shallow erosional level, small size of native gold, and its distal location from the placer deposits makes it an unlikely primary source for the Vagran placers. However, mineralization of this type of deposit is noted within the cluster.Gold of the fourth type nearly resembles the gold of the Vorontsovsk deposit and, apparently, the source is related to the same hydrothermal mineralization event. ICP MS analyses of the quartz-sulfide lodes in the floor of gold-bearing valleys revealed a gold content of 2.0–6.9 g/t in the zone of type IV distribution. Therefore, gold of the fourth type can be used as an indicator for the exploration of primary bedrock mineralization. The geological setting and typomorphic features of this placer gold shows that the primary gold mineralization is similar to the Vorontsovsk deposit and within the zone of distribution of the placer gold of the fourth type.  相似文献   

4.
The Hattu schist belt is located in the western part of the Archaean Karelian domain of the Fennoscandian Shield. The orogenic gold deposits with Au–Bi–Te geochemical signatures are hosted by NE–SW, N–S and NW–SE oriented shear zones that deform 2.76–2.73 Ga volcanic and sedimentary sequences, as well as 2.75–2.72 Ga tonalite–granodiorite intrusions and diverse felsic porphyry dykes. Mo–W mineralization is also present in some tonalite intrusions, both separate from, and associated with Au mineralization. Somewhat younger, unmineralized leucogranite intrusions (2.70 Ga) also intrude the belt. Lower amphibolite facies peak metamorphism at 3–5 kbar pressures and at 500–600 °C temperatures affected the belt at around 2.70 Ga and post-date hydrothermal alteration and ore formation. In this study, we investigated the potential influence of magmatic-hydrothermal processes on the formation of orogenic gold deposits on the basis of multiple stable isotope (B, S, Cu) studies of tourmaline and sulphide minerals by application of in situ SIMS and LA ICP MS analytical techniques.Crystal chemistry of tourmaline from a Mo–W mineralization hosted by a tonalite intrusion in the Hattu schist belt is characterized by Fe3 +–Al3 +-substitution indicating relatively oxidizing conditions of hydrothermal processes. The range of δ11B data for this kind of tourmaline is from − 17.2‰ to − 12.2‰. The hydrothermal tourmaline from felsic porphyry dyke swith gold mineralization has similar crystal chemistry (e.g. dravite–povondraite compositional trend with Fe3 +–Al3 + substitution) and δ11B values between − 19.0‰ and − 9.6‰. The uvite–foitite compositional trend and δ11B ‰ values between − 24.1% and − 13.6% characterize metasomatic–hydrothermal tourmaline from the metasediment-hosted gold deposits. Composition of hydrothermal vein-filling and disseminated tourmaline from the gold-bearing shear zones in metavolcanic rocks is transitional between the felsic intrusion and metasedimentary rock hosted hydrothermal tourmaline but the range of average boron isotope data is essentially identical with that of the metasediment-hosted tourmaline. Rock-forming (magmatic) tourmaline from leucogranite has δ11B values between − 14.5‰ and − 10.8‰ and the major element composition is similar to that of the metasediment-hosted tourmaline.The range of δ34SVCDT values measured in pyrite, chalcopyrite and pyrrhotite is from − 9.1 to + 8.5‰, which falls within the typical range of sulphur isotope data for Archaean orogenic gold deposits. In the Hattu schist belt, positive δ34SVCDT values characterize metasediment-hosted gold ores with sulphide parageneses dominated by pyrrhotite and arsenopyrite. The δ34SVCDT values are both positive and negative in ore mineral parageneses within felsic intrusive rocks in which variable amounts of pyrrhotite are associated with pyrite. Purely negative values were only recorded from the pyrite-dominated gold mineralization within metavolcanic units. Therefore the shift of δ34SVCDT values to the negative values reflects precipitation of sulphide minerals from relatively oxidizing fluids. The range of measured δ65CuNBS978 values from chalcopyrite is from − 1.11 to 1.19‰. Positive values are common for mineralization in felsic intrusive rocks and negative values are more typical for deposits confined to metasedimentary rocks. Positive and negative δ65CuNBS978 values occur in the ores hosted by metavolcanic rocks. There is no correlation between sulphur and copper isotope data obtained in the same chalcopyrite grains.Evaluation of sulphur and boron isotope data together and comparisons with other Archaean orogenic gold provinces supports the hypothesis that the metasedimentary rocks were the major sources of sulphur and boron in the orogenic gold deposits in the Hattu schist belt. Variations in major element and boron isotope compositions in tourmaline, as well as in the δ34SVCDT values in sulphide minerals are attributed to localized involvement of magmatic fluids in the hydrothermal processes. The results of copper isotope studies indicate that local sources of copper in orogenic gold deposits may potentially be recognized if the original, distinct signatures of the sources have not been homogenized by widespread interaction of fluids with a large variety of rocks and provided that local chemical variations have been too small to trigger changes in the oxidation state of copper during hydrothermal processes.  相似文献   

5.
Numerous auriferous fluvial quartz pebble conglomerates (QPCs) are present within the Late Cretaceous–Recent sedimentary sequence in southern New Zealand. The QPCs formed in low-relief settings before, during, and after regional marine transgression, in alluvial fan and a variety of fluvial and near-shore depositional settings: In particular, during slow thermal subsidence associated with Late Cretaceous–early Cenozoic rifting, and during the early stages of orogenic uplift following mid Cenozoic marine regression. QPC maturity characteristics are complex and vary with sediment transport and recycling history, stratigraphic proximity to the transgressive Waipounamu Erosion Surface, and the amount of first-cycle detritus incorporated during recycling. For pre-marine QPCs, the amount of first cycle detritus varies with tectonic intensity and proximity of the depositional setting to remnant Cretaceous topography. For post-marine QPCs, it varies with tectonic intensity and proximity to Late Cenozoic uplift of basement ranges.QPCs do not form during a single bedrock erosion–sediment deposition cycle: Non-oxidised and/or oxidized groundwater alteration (kaolinisation) of labile minerals in immature sediment and the upper part of underlying basement, and repeated sedimentary recycling, are fundamental processes of QPC formation regardless of the tectonic or sedimentary settings. Altered immature rock disaggregates easily upon erosion, and alteration clays are winnowed to leave quartz-rich residues containing resistant heavy minerals such as zircon and gold. Detrital sulfide survives recycling if deposition and burial in saturated sediments are rapid. QPCs result only if sediment recycling is not accompanied by excessive erosion of fresh basement rock. Uplift of many parts of the Otago Schist belt since late Miocene has raised rocks above the water table, increased erosion rates, and inhibited groundwater alteration and QPC formation. QPC formation is still occurring in Southland, where the water table is high, sediments are saturated and undergoing alteration, and uplift and erosion rates, topography, and fluvial gradients are all low. The QPCs accumulate as residual gravel on the valley floors of low-competence streams that are slowly incising pervasively altered dominantly late Miocene–Pliocene immature conglomerates.QPCs formation essentially represents physical and chemical lagging of precursor strata. Accumulation of detrital gold and other heavy minerals is an inevitable consequence, and most QPCs contain some gold. Three types of significant gold placer have developed in the QPCs. Type 1 placers are essentially eluvial and/or colluvial in origin and form without significant fluvial transport, by residual accumulation in low-competence valleys during low-rate uplift, fluvial incision and QPC formation. Type 2 placers have formed during significant fluvial transport and subsequent fluvial incision, mainly in higher energy proximal and medial reaches of larger pre-marine (Eocene) and post-marine fluvial systems. Type 3 placers formed by wave-base and marine current winnowing in the shallow shelf setting during low-rate regional marine transgression, especially in the Eocene.  相似文献   

6.
Between 1978 and 2009, approximately 430,000 oz of placer gold were obtained from the Indian River and Black Hills Creek, which equates to roughly 20% of the production for the entire Yukon Territory during that period. The area is unglaciated, exposure is poor, and there are few known lode gold occurrences present. The technique of microchemical characterization of placer gold grains has been applied to illuminate the style(s) of source mineralization and their relationship to placer gold from the Klondike gold district immediately to the north. A total of 2,613 placer gold grains from 22 localities were characterised in terms of the Au, Ag, Cu, and Hg content of their alloy and associated suite of opaque mineral inclusions. A combination of alloy and inclusion mineralogy was used to define gold signatures which augmented the previous classification of orogenic gold in the Klondike. Gold type 3b (8–25% Ag) is the main component of the placers in lower Dominion Creek but is augmented and eventually replaced by type 3a gold (10–40% Ag) in placers in the main Indian River valley, probably through erosion of gold-bearing veins in the valley floor. Type 4 gold exhibits highly variable Ag which may contain Hg to a maximum of 11 wt.%. This gold type also hosts a distinctive inclusion assemblage of complex polymetallic sulphides, tellurides, sulfotellurides, and sulfosalts and has previously been ascribed to local low sulfidation epithermal mineralization. Placer gold in drainages radiating from Eureka Dome exhibits various proportions of types 3 and 4 gold depending on location, but type 3 gold forms the major component in Black Hills Creek and northerly flowing tributaries of the Indian River with the exception of Eureka and Montana creeks. Type 5 gold is found only in placers in the middle and lower Indian River. It is distinguished by slightly elevated (0.05–0.17%) Cu in the gold alloy, together with low (5–9%) Ag contents. Inclusions of Bi minerals, Cr-bearing magnetite and molybdenite within type 5 gold suggest derivation from an intrusion-related source. Candidates for such a source include undiscovered lode occurrences associated with Cretaceous age intrusions to the south of the Indian River, or deformed Cu-Au (−Mo) porphyry occurrences which are known to be present in the same area. This analysis of placer gold has indicated that the contribution of low sulfidation epithermal gold from Eureka Creek to the larger placers of the Indian River is minor. Consequently, the placer gold inventory of the Indian River is primarily orogenic in origin. Similarly, the characterization of placer gold in Blackhills Creek strongly suggests an orogenic source. This study has demonstrated for the first time that orogenic lode gold mineralization extends a considerable distance to the south of the southern Klondike goldfield. This information contributes to the regional models of gold mineralization in an area which is currently the focus of intensive exploration.  相似文献   

7.
The Song Hien rift basin is an important metallogenic area in NE Vietnam. This domain consists mainly of Triassic sulfide-rich black shale beds, which play a role as a sedimentary host for various mineral systems such as antimony, mercury and gold-sulfide deposits. Most of gold deposits are hosted in carbonaceous sedimentary rocks, however some deposits, which have similar characteristics, are hosted in fine-grained mafic magmatic rocks. An Ar-Ar isotopic dating of hydrothermal sericite from the sedimentary hosted Bo Va and Khung Khoang gold deposits and intrusion hosted orogenic Hat Han gold deposit yields plateau ages of 184.8 ± 2.1 Ma, 211.63 ± 2.3 Ma, and 209.12 ± 2.3 Ma, respectively. The obtained Ar-Ar ages convincingly show that the orogenic gold deposits in the Song Hien domain were formed in Late Triassic to Early Jurassic, while the age of the Bo Va deposit is at least older than 184.8 ± 2.1 Ma. Loss of argon by volume diffusion, supported by previously reported mineralogical and isotopic features of the Bo Va deposit may suggest that the Jurassic-Cretaceous (Yanshanian) tectonothermal events overprinted some deposits in the Song Hien domain. Formation of gold deposits in the Song Hien domain is linked to the same tectonic event as the Carlin-like gold deposits in SW China and is associated with an extensional tectonic regime that followed continental collision between the Indochina and South China Blocks. The similarity in geology setting and mineral composition of gold deposits of the Song Hien domain and the Golden Triangle region, as well as timing and kinematics of deformation, magmatic features, and stratigraphic sequence and bulk architecture, lead to conclusion that NE Vietnam and SW China is a single metallogenic zone. The study of gold deposits in Vietnam will provide a new data on the metallogenic history of this important part of SE Asia.  相似文献   

8.
Many alluvial placer deposits around the world occur in river systems that have been affected by tectonic events, causing drainage reorientation and severance of links between placers and their sources. This study documents tectonic rejuvenation of topography in the Otago giant placer goldfield, New Zealand, which has resulted in numerous river capture and drainage reorientation events. These events have induced changes to gold transport directions and numerous stages of separation of detrital gold from primary sources. Goldfield-wide reconstructions of drainage patterns through time are as yet only possible for Miocene–Recent, and numerous earlier drainage changes back to Cretaceous primary orogenic mineralisation are probable. Variations in basement lithologies permit auriferous gravel provenance determinations, facilitating paleodrainage pattern reconstruction and documentation of river capture events. River capture events and timing of these events for gold-bearing paleodrainages have also been documented using genetic divergences of populations of freshwater galaxiid fish that were isolated by drainage reorientation. Gold-bearing quartz pebble conglomerates had a southeastward drainage in the Miocene. This was disrupted in the Pliocene by mountain range uplift and gold placer recycling, with deposition of lithic conglomerates containing only minor gold placers. The most dramatic changes in gold transport directions occurred through the Quaternary, as antiformal ranges grew across the pre-existing drainages. Miocene and Pliocene placers were recycled with numerous local (1–10 km scale) changes in river directions and numerous capture events. Large axial rivers were segmented into a more complex drainage pattern, and on-going river capture resulted in growth of the main Clutha River catchment at the expense of neighbouring catchments. The most productive placers developed in the Clutha River in late Quaternary when increased discharge from captured mountain catchments enhanced gold transport and concentration. Similar river drainage reorientation has occurred in other placer fields around the world, but the lack of preserved evidence inhibits documentation of most such changes.  相似文献   

9.
The Klondike Schist that forms the basement rocks for the famous Klondike placer goldfield was emplaced as km-scale thrust slices in Early Jurassic time, along with some thin (10 to 30 m-scale) slices of greenstone and ultramafic rocks. Permian metamorphic fabrics in the schists were deformed during thrust emplacement by structures formed as the rocks passed through the brittle–ductile transition. Early-formed thrust-related structures were almost-pervasive recumbent folds that affected both the schist and greenstone/ultramafic slices and imposed a spaced cleavage with minor recrystallisation of micas. These structures gave way to shallow-dipping phacoidal cleavage near (within <100 m of) thrust structures. Thrust-related structures have been overprinted locally by well-defined steeply dipping reverse fault-fold zones, and associated upright folding on regional (km) to mesoscopic (m) scales. The fold-fault zones occur as two orthogonal sets of structures oriented NW to N and NE to E. Some of these steeply dipping fault zones have been reactivated by Late Cretaceous normal faulting. Orogenic (mesothermal) gold-bearing veins were emplaced in local sites of extension during or after formation of the compressional fault-fold zones and before normal fault reactivation. Over 400 veins (m to cm-scale) observed in this study imply a general NW strike for mineralised structures (W to N), but with a broad scatter of orientations. Vein emplacement was controlled principally by fold axial surfaces of kink folds of the fault-fold generation. However, some other local extension sites have opened along preexisting structures to host veins locally, including metamorphic foliation and spaced cleavage planes. In addition, irregular extensional fractures with no obvious structural control host some veins. The Klondike mineralised veins formed as swarms with broad regional structural control, but represent relatively diffuse mineralised zones, with numerous scattered small veins, compared to most orogenic vein systems. These diffuse vein swarms appear to be sufficient sources for the rich and geographically localised placer gold deposits that formed in overlying gravels during erosion of the Klondike Schist basement.  相似文献   

10.
Typomorphic features of placer gold in the eastern Siberian Platform were studied to determine its genesis. It was established that this region contains abundant alluvial bar placers, which were formed mainly by the erosion of gold reservoirs of different ages. Discovery of gold with the points of eolian reworking in the Quaternary sediments allows us to predict the eolian gold placers in individual areas of the northeastern and central parts of the eastern Siberian Platform. Identification of two types of gold on the basis of typomorphic features in the Cenozoic deposits indicates that placer gold was mainly derived from the Precambrian sources spatially confined to the exposure of ancient basement, as well as from local ore occurrences related to the Mesozoic tectonomagmatic activation. Thus, two main stages of ore formation (Precambrian and Mesozoic), were substantiated for the first time in the eastern Siberian Platform.  相似文献   

11.
New isotopic ages on zircons from rocks of the Peshawar Plain Alkaline Igneous Province (PPAIP) reveal for the first time the occurrence of ignimbritic Cenozoic (Oligocene) volcanism in the Himalaya at 26.7 ± 0.8 Ma. Other new ages confirm that PPAIP rift-related igneous activity was Permian and lasted from ∼290 Ma to ∼250 Ma. Although PPAIP rocks are petrologically and geochemically typical of rifts and have been suggested to be linked to rifting on the Pangea continental margin at the initiation of the Neotethys Ocean, there are no documented rift-related structures mapped in Permian rocks of the Peshawar Plain. We suggest that Permian rift-related structures have been dismembered and/or reactivated during shortening associated with India–Asia collision. Shortening in the area between the Main Mantle Thrust (MMT) and the Main Boundary Thrust (MBT) may be indicative of the subsurface northern extension of the Salt Range evaporites. Late Cenozoic sedimentary rocks of the Peshawar Plain deposited during and after Himalayan thrusting occupy a piggy-back basin on top of the thrust belt. Those sedimentary rocks have buried surviving evidence of Permian rift-related structures. Igneous rocks of the PPAIP have been both metamorphosed and deformed during the Himalayan collision and Cenozoic igneous activity, apart from the newly recognized Gohati volcanism, has involved only the intrusion of small cross-cutting granitic bodies concentrated in areas such as Malakand that are close to the MMT. Measurements on Chingalai Gneiss zircons have confirmed the occurrence of 816 ± 70 Ma aged rocks in the Precambrian basement of the Peshawar Plain that are comparable in age to rocks in the Malani igneous province of the Rajasthan platform ∼1000 km to the south.  相似文献   

12.
The Laowan metallogenic belt in China is an important metallogenic belt within the Tongbai orogenic belt, and contains the medium-sized Laowan and Shangshanghe gold deposits, the small Huangzhuyuan lead–zinc–silver–gold deposit and some gold and Cu–Pb occurrences. These deposits are hosted in Mesoproterozoic plagioclase amphibolite (or schist) and mica-quartz schist. The gold ores are mainly quartz veins and veinlets and disseminated altered ores. Subordinate ore types include massive sulfides and breccias. The Laowan gold deposit is characterized by three right-stepping en-echelon fracture-controlled alteration zones that dip gently to the south and includes disseminated, sheeted and stockwork ores. These lodes were formed by the interaction of ore-forming fluid with foliated-to laminated cataclasite within the transpressional faults. The Shangshanghe gold deposit is characterized by parallel ore lodes that dip steeply to the north, and includes quartz veins and breccias in addition to ores in altered wallrocks. These lodes were formed by focusing of fluids into transtensional faults. These ore controlling faults displaced early barren quartz veins 10 m horizontally with a dextral sense of motion. The ore-hosting structures at the Laowan and Shangshanghe deposits correspond to the P and R-type shears of a brittle dextral strike-slip fault system, respectively, which make angles of about 15° and − 15° to the Laowan and Songpa boundary faults. The ore-controlling fault system post-dated formation of a ductile shear zone, and peak regional metamorphism. This precludes a genetic relationship between hydrothermal mineralization and regional metamorphism and ductile shear deformation. These gold deposits are not typical orogenic gold deposits. The metallogenic belt displays district-scale-zoning of Mo  Cu–Pb–Zn–Ag  Au relative to Songpa granite porphyry dike zone, suggesting the mineralization may be closely related to the granite porphyry. Measured δ34S of sulfides and δ18O and δD of fluid inclusion waters in auriferous quartz also are consistent with a magmatic source for sulfur and ore fluids. The similarity of Pb isotope ratios between the ores and Yanshanian granitoids suggests a similar source. As the age (139 ± 3 Ma) of granite porphyry obtained by zircon U–Pb isotope overlaps the mineralization age (138 ± 1 Ma: Zhang et al., 2008a), the gold and polymetallic metallogenesis of the Laowan gold belt has close spatial, temporal and possibly genetic relationships with Yanshanian high level magmatism.  相似文献   

13.
Carbon (δ13CPDB) and oxygen (δ18OSMOW) isotopic compositions of auriferous quartz-carbonate veins (QCVs) of gold deposits from Sangli, Kabuliyatkatti, Nagavi, Nabapur and Mysore mining areas developed on the Central Lode system of the Gadag Gold Field (GGF) in the Neoarchaean Gadag schist belt of the Dharwar Craton, southern India have been examined for the first time to understand the origin of the mineralising fluids. In majority of the samples (46 out of 49), δ13Cpdb of carbonates of the QCVs fall in the range from − 2.2‰ to − 9.7‰ and the δ18O values range from 12.0‰ to 30.5‰ SMOW. The calculated fluid δ13C C compositions for these deposits range from − 2.1‰ to − 9.6‰ and δ18OH2O from 6.8‰ to 25.9‰, respectively. Carbonate δ13C and fluid δ13C C compositions of the carbonates of the QCVs of the GGF are not only distinct from the carbon isotope range of marine carbonates or meta-sedimentary carbonates of the Chitradurga schist belt, but are consistent with C-isotope values of magmatic (− 5 ± 3‰, Burrows et al., 1986) and/or mantle (− 6 ± 2‰, Ohmoto, 1986) carbonates. As dissolution/decarbonation reactions during metamorphism of pre-existing carbonate/carbonated rocks produce CO2 with δ13C values similar to or more enriched than parent rock, the carbonate or fluid δ13C ratios of the QCVs (which fall in the compositional range of mantle/magmatic derived CO2 or carbonates) obtained in this work cannot be the result of metamorphism. The present study corroborates our previous reports from Ajjanahalli and G.R. Halli gold deposits (Sarangi et al., 2012) occurring in the vicinity of the southern extension of the same crustal scale shear zone on which all the GGF deposits are located.The age of gold mineralisation in this area has been reported to be 2522 ± 6 Ma by Sarma et al., 2011. Chardon et al. (2011) have proposed large-scale remobilization of the older gneissic basement, as well as, emplacement of juvenile granites between 2559 Ma and 2507 Ma, close to the crustal scale shear zone along the eastern margin of the Chitradurga schist belt. Based on these observations and our isotope studies, it is proposed that gold mineralising fluids were derived from mantle/juvenile magmatic melts and were channelled through crustal scale shear zones to give rise to the gold deposits in the GGF.  相似文献   

14.
The Meso-Cenozoic geodynamic evolution of the eastern Pontides orogenic belt provides a key to evaluate the volcanogenic massive sulfide (VMS) deposits associated with convergent margin tectonics in a Cordilleran-type orogenic belt. Here we present new geological, geochemical and zircon U–Pb geochronological data, and attempt to characterize the metallogeny through a comprehensive overview of the important VMS mineralizations in the belt. The VMS deposits in the northern part of the eastern Pontides orogenic belt occur in two different stratigraphic horizons consisting mainly of felsic volcanic rocks within the late Cretaceous sequence. SHRIMP zircon U–Pb analyses from ore-bearing dacites yield weighted mean 206Pb/238U ages ranging between 91.1 ± 1.3 and 82.6 ± 1 Ma. The felsic rocks of first and second horizons reveal geochemical characteristics of subduction-related calc-alkaline and shoshonitic magmas, respectively, in continental arcs and represent the immature and mature stages of a late Cretaceous magmatic arc. The nature of the late Cretaceous magmatism in the northern part of the eastern Pontides orogenic belt and the various lithological associations including volcaniclastics, mudstones and sedimentary facies indicate a rift-related environment where dacitic volcanism was predominant. The eastern Pontides VMS deposits are located within the caldera-like depressions and are closely associated with dome-like structures of felsic magmas, with their distribution controlled by fracture systems. Based on a detailed analyses of the geological, geophysical and geodynamic information, we propose that the VMS deposits were generated either in intra arc or near arc region of the eastern Pontides orogenic belt during the southward subduction of the Tethys oceanic lithosphere.  相似文献   

15.
阿尔泰造山带砂金矿资源丰富,前人对河流中的砂金矿进行了详细研究,而对山间盆地中赋存的砂金矿研究较少.本文对哈萨克斯坦阿尔泰造山带南缘最东侧的戈尔诺耶古近纪含砂金盆地进行了初步研究,通过地质、自然重砂测量圈定了砂金异常,经浅井和砂钻等工程深部查证,结果显示砂金主要赋存在古近纪粗粒的石英砾石层中,砂金形态以片状为主,是以微...  相似文献   

16.
Holocene shallow (0.5–4.5 m, rarely more) and Pliocene–Pleistocene deep (> 25 m) placers occur within the China tectonic depression. The shallow placers are associated with the formation of the present-day drainage valleys of the China River under permafrost conditions, and the deep ones are localized within the preglacial paleovalleys of the river basin. An integrated geological and geochemical study was carried out at ten shallow commercial placers, eight of which are classified as poorly studied and “unconventional.” Placers are considered “unconventional” based on their technological characteristics (commercial gold is small (? 0.25 to + 0.1 mm), thin (? 0.1 mm), and micron-sized or “bound” (invisible)), geomorphologic conditions of formation, confinement to the oxidized zone of active permafrost, significant portion of fine hydrogenic gold, and several other minor features.The formation of shallow “unconventional” placers is controlled by the conditions of active permafrost. Under aerobic conditions, suprapermafrost waters form an oxidized zone, in which iron hydroxides impart a yellowish reddish color to water-bearing rocks. Long-lived geochemical barriers (biogenic, reduction, electrochemical, sorption, and others), including gravitational differentiation, play an important role in the concentration of small and thin gold.Alluvial deposits in Meso-Cenozoic tectonic depressions, such as the China basin, are the most promising in terms of “unconventional” placers. The main factors favoring the formation of these localities and the criteria for their assessment are large feeding sources of gold (mainly carbonaceous and sulfide) mineralization, endogenic and exogenic dispersion aureoles with thin and invisible gold; increased thickness of the suprapermafrost active layer and its temporal and spatial stability, contributing to the formation and functioning of oxidized horizons with the accumulation of ferric hydroxide and hydrogenic gold; specific morphologic varieties of hydrogenic gold, which are the fundamental criterion for primary gold mineralization with migratable metal; fine-clastic clay-rich composition of recent alluvial or alluvial-talus sediments, produced by water reworking of ancient gold-bearing weathering crusts; and development of broad floodplains filled with Holocene sediments and their junction with talus-solifluction erosional slopes.  相似文献   

17.
The Southern Alps of New Zealand are part of an active collisional orogen where metamorphism, hydrothermal fluid flow and the formation of orogenic gold deposits are ongoing. The Southern Alps are forming due to transpressional collision between continental crust fragments on the Pacific and Australian tectonic plates. The plate tectonic rates and geometries, the sources of fluid and broad-scale fluid pathways in the hydrogeological system, and the geochemical compositions of the Torlesse Terrane rock that is being advected through the orogen are well defined so that a mass balance of metal mobility during active orogenic processing in the Southern Alps of New Zealand can be calculated. Advection of a 10 km wide × 5 km deep section of Torlesse rock through the orogen at tectonic rates (0.01 m/yr) that is then metamorphosed up to amphibolite facies causes mobilisation of over 11,27 t Au, 10.1 Mt As, 47,000 t Hg, 560,000 t Sb and 14,000 Mt H2O in 1 Myrs. The masses of elements mobilised at the same rate along the length of the Southern Alps (> 200 km) for 5 Myrs would be more than 100 times greater. The metals were mobilised by the metamorphic fluid produced during the orogenic processing of the Torlesse Terrane rocks and the concentrations of Au, As, Hg and Sb in this fluid are calculated to be 0.08, 711, 3, and 40 mg/kg, respectively. The mobilised metals form the orogenic gold deposits that occur in the Southern Alps. Different styles of gold deposits form contemporaneously during the active orogenesis of the Southern Alps, including those with a fluid temperature > rock temperature that may appear to have formed after the peak of metamorphism but are instead just the product hydrothermal fluid mineralising rocks on their retrograde metamorphic path. The mass balance shows that there has been orders of magnitude more metal mobilised in the orogen than resides in the currently known deposits. There is a clear potential for large gold deposits occurring in the yet to be uplifted parts of the Southern Alps if there have been efficient enough fluid focusing and metal precipitation mechanisms occurring under the Southern Alps.  相似文献   

18.
《Ore Geology Reviews》2008,33(3-4):674-680
U–Pb SHRIMP results of 2672 ± 14 Ma obtained on hydrothermal monazite crystals, from ore samples of the giant Morro Velho and Cuiabá Archean orogenic deposits, represent the first reliable and precise age of gold mineralization associated with the Rio das Velhas greenstone belt evolution, in the Quadrilátero Ferrífero, Brazil. In the basal Nova Lima Group, of the Rio das Velhas greenstone belt, felsic volcanic and volcaniclastic rocks have been dated between 2792 ± 11 and 2751 ± 9 Ma, coeval with the intrusion of syn-tectonic tonalite and granodiorite plutons, and also with the metamorphic overprint of older tonalite–trondhjemite–granodiorite crust. Since cratonization and stable-shelf sedimentation followed intrusion of Neoarchean granites at 2612 + 3/− 2 Ma, it is clear that like other granite–greenstone terranes in the world, gold mineralization is constrained to the latest stages of greenstone evolution.  相似文献   

19.
The Urals is a complex fold belt, which underwent long geological evolution. The formation of most gold deposits in the Urals is related to the collision stage. In this paper, we review some relatively small listvenite-related gold deposits, which are confined to the large Main Uralian fault zone and some smaller faults within the Magnitogorsk zone. The Mechnikovskoe, Altyn-Tash, and Ganeevskoe deposits are studied in detail in this contribution. They comprise the ore clusters along with other numerous small gold deposits, and constituted the sources for the gold placers exploited in historical time. The gold is hosted by metasomatites (listvenites, beresites) and quartz veins with economic gold grades (up to 20 g/t Au). Listvenites are developed after serpentinites and composed of quartz, fuchsite, and carbonates (magnesite, dolomite) ± albite. Volcanic and volcanoclastic rocks are altered to beresites, consisting of sericite, carbonates (dolomite, ankerite), quartz and albite. Pyrite and chalcopyrite are major ore minerals associated with gold; pyrrhotite, Ni sulfides, galena, sphalerite, arsenopyrite and Au-Ag tellurides are subordinate and rare. Gold in these deposits is mostly high-fineness (>900‰). The lower fineness (∼800‰) is typical of gold in assemblage with polymetallic sulfides and tellurides. The ores have been formed from the NaCl–CO2–H2O ± CH4 fluids of low (∼2 wt% NaCl-equiv.) to moderate (8–16 wt% NaCl-equiv.) salinity at temperatures of 210–330 °C. The oxygen isotopic composition of quartz (δ18O) varies from 14.7 to 15.4‰ (Mechnikovskoe deposit), 13.2 to 13.6‰ (Altyn-Tash deposit) and 12.0 to 12.7‰ (Ganeevskoe deposit). The oxygen isotopic composition of albite from altered rocks of the Ganeevskoe deposit is 10.1‰. The calculated δ18OH2O values of the fluid in equilibrium with quartz are in a range of 5.7–6.3, 4.2–4.6 and 6.3–6.7‰ respectively, and most likely indicate a magmatic fluid source.  相似文献   

20.
《Gondwana Research》2014,26(4):1469-1483
China's largest gold resource is located in the highly endowed northwestern part of the Jiaodong gold province. Most gold deposits in this area are associated with the NE- to NNE-trending shear zones on the margins of the 130–126 Ma Guojialing granite. These deposits collectively formed at ca. 120 ± 5 Ma during rapid uplift of the granite. The Dayingezhuang deposit is a large (> 120 t Au) orogenic gold deposit in the same area, but located along the eastern margin of the Late Jurassic Linglong Metamorphic Core Complex. New 40Ar/39Ar geochronology on hydrothermal sericite and muscovite from the Dayingezhuang deposit indicate the gold event is related to evolution of the core complex at 130 ± 4 Ma and is the earliest important gold event that is well-documented in the province. The Dayingezhuang deposit occurs along the Linglong detachment fault, which defines the eastern edge of the ca. 160–150 Ma Linglong granite–granodiorite massif. The anatectic rocks of the massif were rapidly uplifted, at rates of at least 1 km/m.y. from depths of 25–30 km, to form the metamorphic core complex. The detachment fault, with Precambrian metamorphic basement rocks in the hangingwall and the Linglong granitoids and migmatites in the footwall, is characterized by early mylonitization and a local brittle overprinting in the footwall. Gold is associated with quartz–sericite–pyrite–K-feldspar altered footwall cataclasites at the southernmost area of the brittle deformation along the detachment fault. Our results indicate that there were two successive, yet distinct gold-forming tectonic episodes in northwestern Jiaodong. One event first reactivated the detachment fault along the edge of the Linglong massif between 134 and 126 Ma, and then a second reactivated the shears along the margins of the Guojialing granite. Both events may relate to a component of northwest compression after a middle Early Cretaceous shift from regional NW–SE extension to a NE–SW extensional regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号