首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two moderate magnitude earthquakes (M5.5 and M5.4) occurred in January 2010 with their epicenters at a distance of about 5?km between them, in the western part of the Corinth Gulf. The recordings of the regional seismological network, which is dense locally, were used for the location of the two main events and aftershocks, which are concentrated in three clusters beneath the northern coasts of the Gulf. The first two clusters accompany each one of the two stronger earthquakes, whereas the third cluster comprises only low magnitude aftershocks, located westward of the two stronger events. Seismic excitation started in January 18, 2010, with the M?=?5.5 earthquake in the area occupied by the central cluster. Seismicity immediately jumped to the east with numerous aftershocks and the M?=?5.4 earthquake which occurred four days later (January 22, 2010). Cross sections normal to the long axis of each cluster show ruptures on north dipping faults at depths of 7?C11?km. Focal mechanisms of the stronger events of the sequence support the results obtained from the spatial distribution of the aftershocks that three different fault segments activated in this excitation. The slip vectors of all the events have an NNW?CSSE to NNE?CSSW orientation almost parallel to the direction of extension along the Corinth Gulf. Calculation of the Coulomb stress changes supports an interaction between the different clusters, with the major activity being coincided with the area of positive induced stress changes after the first earthquake.  相似文献   

2.
Dissolution of evaporite formations, emergence of salty water springs, and intrusion of deep saline waters are important causes in changing the quality of surface water. The study area is part of the reservoir and downstream of Chamshir Dam, which is located in watershed of the Zohreh River 20?km southeast of Gachsaran City (southwest Iran). To construct powerhouse and related structures for supplying water to agricultural lands located in downstream of dam, water quality of Zohreh River was studied by eight sampling stations in the study area. Early studies showed that water quality of the Zohreh River decreases severely downstream of the Chamshir Dam. Spatial variations diagram of major ions, Piper and composition diagrams of water samples in selected stations mark the presence of two slight and major contaminating zones at sampling station R4 and R5. In these zones, concentration of Ca, SO4 and Na, Cl ions increase suddenly. Results of hydrogeological, hydrochemical, lithological and tectonics studies showed that even though there are several low discharges springs in the contaminated zone they cannot be related to surface dissolution of evaporate layers by Zohreh River. There is an important fault zone including Chamshir faults I and II in the contamination zones through which intrusion of sulfate brackish and chloride brine waters occur along the fault zone and then enter Zohreh River below its base level. In the absence of any surface evidence, the fault zone is the main cause of salinity. Evaluation of water balance salinity in contaminated zones shows that the discharge rate of saline waters to the river is not low and cannot be separated. These findings show that there are serious restrictions upon the purposes of the project.  相似文献   

3.
On September 18, 2004, a 4.6 mbLg earthquake was widely felt in the region around Pamplona, at the western Pyrenees. Preliminary locations reported an epicenter less than 20 km ESE of Pamplona and close to the Itoiz reservoir, which started impounding in January 2004. The area apparently lacks of significant seismic activity in recent times. After the main shock, which was preceded by series of foreshocks reaching magnitudes of 3.3 mbLg, a dense temporal network of 13 seismic stations was deployed there to monitor the aftershocks series and to constrain the hypocentral pattern. Aftershock determinations obtained with a double-difference algorithm define a narrow epicentral zone of less than 10 km2, ESE–WNW oriented. The events are mainly concentrated between 3 and 9 km depth. Focal solutions were computed for the main event and 12 aftershocks including the highest secondary one of 3.8 mbLg. They show mainly normal faulting with some strike-slip component and one of the nodal planes oriented NW–SE and dipping to the NE. Cross-correlation techniques applied to detect and associate events with similar waveforms, provided up to 33 families relating the 67% of the 326 relocated aftershocks. Families show event clusters grouped by periods and migrating from NW to SE. Interestingly, the narrow epicentral zone inferred here is located less than 4 km away from the 111-m high Itoiz dam. These hypocentral results, and the correlation observed between fluctuations of the reservoir water level and the seismic activity, favour the explanation of this foreshock–aftershock series as a rapid response case of reservoir-triggered seismicity, burst by the first impoundment of the Itoiz reservoir. The region is folded and affected by shallow dipping thrusts, and the Itoiz reservoir is located on the hangingwall of a low angle southward verging thrust, which might be a case sensible to water level fluctuations. However, continued seismic monitoring in the coming years is mandatory in this area to infer more reliable seismotectonic and hazard assessments.  相似文献   

4.
Geologic problems related to dam sites in Jordan and their solutions   总被引:1,自引:0,他引:1  
The geologic structures associated with several selected dam sites in Jordan and the tectonic effects on dam foundations and reservoir margins are reviewed. Rock defects, especially discontinuities represented by faults and closely spaced, open joints are investigated. Related problems, such as loss of water from the reservoir by seepage and leakage within the dam foundation are evaluated. The regional seismicity is analyzed and a design earthquake is established for each dam site.

Two major embankment dams are investigated, together with two large proposed dams and several small dams.

This paper discusses in some detail the regional setting and site-specific geology, and the occurrence, size and inclination of faults and joints at each dam site. Moreover, the effects of the faults on the operational performance of each dam are described and specific techniques are used or proposed for remediation are outlined.

The study shows that the combination of faults and joint features cause leakage problems at the operational dams in Jordan. Although, preventive measures such as grouting have been implemented, further leakage and/or seepage problems are anticipated and a monitoring system is needed to control and foresee such problems.

Jordan is an earthquake-prone region. Consequently, it is recommended that the design of embankment dams in the vicinity of the Dead Sea-Jordan Valley Rift should include such considerations as dynamic loading and associated hazards, including embankment acceleration zoning, foundation liquefaction risk and rockhead rupture. The magnitude of the design earthquake at each dam site can be estimated following the guidelines of ICOLD (1989), which are based on probabilistic seismic hazard analysis.  相似文献   


5.
The main objective of this paper is to estimate the water seepage from Lar dam reservoir based on a combination of the geological structure study results and identification of the flow conduits in the right bank of the reservoir. From the beginning of impounding the dam in 1980, heavy seepage was observed at two karstic springs, Haraz and Galugah, located about 9 km downstream of the dam. During the first impounding, the discharge of the Haraz spring abruptly increased from 0.5 m3/s to around 5 m3/s. The results of piezometers and dye tests indicate that seepage occurs mainly through the right abutment of the dam where there is a structural wedge between the north dipping North Tiz Kuh and the south dipping Lar Valley faults. F1, F2, and F3 faults are the most important faults in vicinity of the structural wedge. Based on the dye test results, the North Tiz Kuh and F3 faults along which caves No. 1 and 2 are formed are regarded as two isolated conduits for seepage and conveyance into Lar Valley Fault at downstream of Lar dam. After identifying the conduits, water seepage from the Lar dam reservoir has been calculated using finite element method. According to the results of numerical method, when the reservoir water level is at 2485 m a.s.l, the average of water seepage is around 8.51 m3/s (this amount of water is related to the seepage along the Lar Valley Fault). The average discharge of springs downstream of the dam has been used to verify the numerical method. The results show a very close relation between estimated and observed discharge.  相似文献   

6.
长江三峡水电站坝址区断裂新活动年龄及地壳稳定性   总被引:13,自引:2,他引:13       下载免费PDF全文
李兴唐 《地质科学》1991,(2):111-119
长江三峡水电工程坝址区断裂新活动年龄分为两类:(1)>220×104a BP.和(2)(131-54)×104aBP.。坝区15公里范围内不存在近代活动断裂。地震基本烈度为Ⅵ度。地壳稳定性等级属稳定区。  相似文献   

7.
The study of spatial and temporal variations of some hydrochemical properties in the Oued Issen watershed, Morocco, has revealed their close relation to the area's lithologic and geologic characteristics and to variations in hydroclimatological cycles. High concentrations of sodium chloride are measured during flood periods, when the outcrops of the basin are leached by streams draining the rather dense hydrographic network. These variations depend also on the relative abundance of tributaries on both sides of the Oued, their respective contributions being hydrochemically very different: (1) northern-side tributaries, which mainly leach evaporitic terranes dating from the Late Triassic and Late Liassic periods and which are rich in gypsum and halite, increase the mineralization of the Oued Issen waters flowing toward the Abdelmoumen Dam; (2) the low salinity of water observed in the upstream portion of the watershed is due to dilution by waters from the southern-side tributaries, which are derived from snowmelt and the leaching of the high Paleozoic massif; (3) in the middle part of the basin, the increase in mineralization of the Oued Issen becomes substantial between the Abdelmoumen Dam and the Dkhila Dam, the next dam downstream, due to the absence of dilution by waters from the southern-side tributaries, which are sparse in this part of the basin. In addition, during flood periods, the outflow from the first dam is stopped. Thus, the main contribution of NaCl to the Oued is from the very salty Tirkou spring, which is situated downstream from the first dam. The geological characteristics of the basin have induced the development of high-salinity zones, which are particularly evident in the southwestern part of the basin in the vicinity of the confluence of the Oued Boulebaz with the Oued Issen. The discharge of very salty springs is controlled by faults that offset the formations that underlie the hydrographic network and degrade the quality of the Oued Issen. This water later recharges the unconfined aquifer along the Oued where it flows on the Oued Souss Plain. Received, July 1998/Revised, July 1999, September 1999/Accepted, November 1999  相似文献   

8.
边毓  唐亦川 《地下水》2019,(1):205-207
自强水库位于陕南秦巴山地中低山地貌区,水库为镇巴县备用水源地及旅游观光风景区,属小(1型水库。通过对库坝区地质构造、地层岩性、岩溶发育等工程地质条件分析可知,对工程建设及坝线选址有影响的工程地质问题主要为库区内发育逆冲叠瓦小断裂以及岩溶发育可能导致水库渗漏等。库区内无大型活动性断裂构造,构造较为稳定,且库区蓄水范围小,蓄水量不大,不易诱发地震。而拟选坝址位于自强河段,沟谷对称顺直,综合水库坝址区地形地貌、工程地质等条件进行坝线比选,推荐下游坝线为较为理想的坝线位置,可满足工程建设要求。  相似文献   

9.
The Talala (Sasangir) area in the Saurashtra region of Gujarat, western India, is experiencing tremors since 2001. The swarm type of earthquake activity in 2001, 2004, and every year from 2007 onward has occurred after the monsoon and lasted 2?C3?months each time. In 2007 some 200 shocks (largest Mw 5.0) and in 2011 about 400 shocks down to M1 are well recorded with 1?C2?km location error. The focal depths are about 2?C10?km and shocks are accompanied by blast-like subterranean sounds. The epicenter (21.09?N 70.45E, focal depth: 5?km from location program, 3?km from MTS) of the October 20, 2011 mainshock occurred about 12-km WNW of Talala town or 8-km SSW of the 2007?M w 5.0 earthquake epicenter. The epicentral trends deciphered from local earthquake data indicate two ENE trends (Narmada trend) for about 50?km length and a conjugate 15-km-long NNW trend (Aravali trend). The focal mechanisms by moment-tensor analysis of full wave forms of two 2007 events of Mw 4.8 and 5.0 and the 2011 event of Mw 5.1 indicate rupture along either of the two trends. The ENE trends follow a gravity low between the gravity highs of Girnar mounts. Seismic reflections also indicate a fault in the area named Girnar Fault. Most of Saurashtra region including the Talala area is covered by Deccan Trap Basalt forming plateaus and conical ridges. There is no major fault within Saurashtra Peninsula though it is believed to have major faults along the boundaries that are non-seismic. The intensity of the October 20, 2011 Talala earthquake is estimated to be 6.5 in MM scale while isoseismals of 6, 5, and 4 and felt distance give Mw 5.1 based on Johnston??s 1994 empirical regressions. The source parameters of the 2011 Talala earthquake are estimated using data from 14 broadband seismograph stations. Estimated seismic moment, moment magnitude, stress drop, corner frequency, and source radius are found to be 1016.6 N-m, 5.1, 1.6?MPa, 1.3?Hz, and 2,300?m, respectively. The b and p values are obtained to be low, being 0.67 and 0.71, respectively. PGA of 35?cm/sec2 is noted and the decay rate of acceleration has been estimated from strong motion data recorded at 5 stations with epicentral distances ranging from 32 to 200?km.  相似文献   

10.
Latian dam is located in the North East of Tehran in Elburz Mountain. It falls in the category of large dams according to the International Committee on Large Dams (ICOLD). It was constructed in 1967 for agricultural purposes, drinking water, and power generation. Producing triggered earthquakes may be a consequent result of dam construction. In this paper, the complete seismic statistics of the region from 1996 onwards has been studied to understand the seismic condition of Latain region. For this purpose, frequency of earthquakes within a radius of 30/60 km around the dam is studied considering its relationship with the reservoir volume variation. Using Gutenberg-Richter rule, parameter b of the region was determined within the same region. The results of this study show the existence of triggered seismicity around the reservoir of Latian dam. Considering the tectonic-geological condition of the region, the existence of triggered earthquakes may create landslides in the reservoir and around it.  相似文献   

11.
Gravity data were analysed in the Northern Tunisian Atlas (case study of Oued Zarga area) to better understand the organization of its underlying structures. The gravity data analysis included the construction of a gravity anomaly maps and two and a half dimensional gravity model. The qualitative analysis of gravimetric maps served for the foundation of a new structural map of the study region that constitutes a new contribution of the gravimetry in this present work. In addition, the complete Bouguer and residual gravity anomaly maps indicate a negative gravity anomaly over the Triassic evaporitic outcrops of Jebel Guerouaou and prominent NE?CSW-trending features associated with the boundary of the Triassic rocks and surrounded layers. A NW?CSE-trending gravity model that crosses the Triassic evaporitic outcrop at Jebel Guerouaou can be explained by a deep-rooted salt diapir.  相似文献   

12.
The north Egyptian continental margin has undergone passive margin subsidence since the opening of Tethys, but its post-Mesozoic history has been interrupted by tectonic events that include a phase of extensional faulting in the Late Miocene. This study characterizes the geometry and distribution of Late Miocene normal faulting beneath the northern Nile Delta and addresses the relationship of this faulting to the north–northwestwards propagation of Red Sea–Gulf of Suez rifting at this time. Structural interpretation of a 2D grid of seismic reflection data has defined a Tortonian–Messinian syn-rift megasequence, when tied to well data. Normal fault correlations between seismic lines are constrained by the mapping of fault-related folds. Faults are evenly distributed across the study area and are found to strike predominantly NW–SE to NNW–SSE, with some N–S faults in the north. Faults are interpreted to be <10 km in length, typically in the range 3–6 km. This suggests that rifting in the northern Nile Delta did not proceed beyond a continental rift initiation phase, with distributed, relatively small-scale faults. This contrasts with the Gulf of Suez Rift, where faulting continued to a more evolved fault localization phase, with block-bounding faults >25 km in length. Results suggest that future studies could quantify fault evolution from rift initiation to fault linkage to displacement localization, by studying the spatial variation in faulting from the northern Nile Delta, south–southeastwards to the Gulf of Suez Rift.  相似文献   

13.
This report of the Swiss Seismological Service summarizes the seismic activity in Switzerland and surrounding regions during 2011. During this period, 522 earthquakes and 92 quarry blasts were detected and located in the region under consideration. With a total of only 10 events with M L????2.5, the seismic activity in the year 2011 was far below the average over the previous 36?years. Most noteworthy were the earthquake sequence of Sierre (VS) in January, with two events of M L 3.3 and 3.2, the M L 3.3 earthquake at a depth of 31?km below Bregenz, and the M L 3.1 event near Delémont. The two strongest events near Sierre produced shaking of intensity IV.  相似文献   

14.
Iran has long been known as one of the most seismically active areas of the world, and it frequently suffers destructive and catastrophic earthquakes that cause heavy loss of human life and widespread damage. The Alborz region in the northern part of Iran is an active EW trending mountain belt of 100 km wide and 600 km long. The Alborz range is bounded by the Talesh Mountains to the west and the Kopet Dagh Mountains to the east and consists of several sedimentary and volcanic layers of Cambrian to Eocene ages that were deformed during the late Cenozoic collision. Several active faults affect the central Alborz. The main active faults are the North Tehran and Mosha faults. The Mosha fault is one of the major active faults in the central Alborz as shown by its strong historical seismicity and its clear morphological signature. Situated in the vicinity of Tehran city, this 150-km-long N100° E trending fault represents an important potential seismic source. For earthquake monitoring and possible future prediction/precursory purposes, a test site has been established in the Alborz mountain region. The proximity to the capital of Iran with its high population density, low frequency but high magnitude earthquake occurrence, and active faults with their historical earthquake events have been considered as the main criteria for this selection. In addition, within the test site, there are hot springs and deep water wells that can be used for physico-chemical and radon gas analysis for earthquake precursory studies. The present activities include magnetic measurements; application of methodology for identification of seismogenic nodes for earthquakes of M ≥ 6.0 in the Alborz region developed by International Institute of Earthquake Prediction Theory and Mathematical Geophysics, IIEPT RAS, Russian Academy of Science, Moscow (IIEPT&MG RAS); a feasibility study using a dense seismic network for identification of future locations of seismic monitoring stations and application of short-term prediction of medium- and large-size earthquakes is based on Markov and extended self-similarity analysis of seismic data. The establishment of the test site is ongoing, and the methodology has been selected based on the IASPEI evaluation report on the most important precursors with installation of (i) a local dense seismic network consisting of 25 short-period seismometers, (ii) a GPS network consisting of eight instruments with 70 stations, (iii) magnetic network with four instruments, and (iv) radon gas and a physico-chemical study on the springs and deep water wells.  相似文献   

15.
The 162 m high Talbingo dam was the last of a number of dams to be completed as part of the extensive Snowy Mountains Hydro‐electric scheme in southeastern New South Wales. During a thirteen year monitoring period prior to the filling of the reservoir in May 1971, no seismic activity had been detected in the immediate area. Three weeks after impounding commenced, the first of a long series of events was recorded. The earthquake activity was not distinguished by one main shock, but rather by several sequences, all of which included events up to magnitude 3.5. The first activity occurred in the region of the reservoir, but over a period of three years, the events migrated to a region about 5 km downstream of the damsite. Subsequent activity, whch has been sporadic to the present day, has encompassed both regions. Fault‐plane solutions indicate normal dip‐slip faulting along the line of the reservoir, and indicate that the activity could have been triggered either by the reservoir load or by an increase in pore pressure.  相似文献   

16.
An extreme rainfall event on August 9, 2009, which was close to setting a world record for 48-h accumulated rainfall, induced the Xiaolin deep-seated landslide, which was located in southwestern Taiwan and had volume of 27.6?×?106?m3, and caused the formation of a landslide dam. The landslide dam burst in a very short time, and little information remained afterward. We reconstructed the process of formation and failure of the Xiaolin landslide dam and also inferred the area of the impoundment and topographic changes. A 5?×?5-m digital elevation model, the recorded water stage of the Qishan River, and data from field investigation were used for analysis. The spectral magnitude of the seismic signals induced by the Xiaolin landslide and flooding due to failure of the landslide dam were analyzed to estimate the timing of the dam breach and the peak discharge of the subsequent flood. The Xiaolin landslide dam failure resulted from overtopping. We verified the longevity of the Xiaolin landslide dam at about 2 h relying on seismic signals and water level records. In addition, the inundated area, volume of the impoundment behind the Xiaolin landslide dam, and peak discharge of the flood were estimated at 92.3 ha, 19.5?×?106?m3, and 17?×?103?m3/s, respectively. The mean velocity of the flood-recession wave front due to the dam blockage was estimated at 28 km/h, and the peak flooding velocity after failure of the dam was estimated at 23 km/h. The Xiaolin landslide provides an invaluable opportunity for understanding the mechanism of deep-seated landslides and flooding processes following a landslide dam failure.  相似文献   

17.
阿尔泰山活动断裂   总被引:13,自引:0,他引:13  
沈军  李莹甄  汪一鹏  宋方敏 《地学前缘》2003,10(Z1):132-141
文中介绍了位于亚洲腹地阿尔泰山地区的活动断裂。中国阿尔泰山 (阿尔泰山西南麓 )和蒙古阿尔泰山 (阿尔泰山的东麓 )以NNW向大型走滑断裂为主 ,科布多断裂是阿尔泰山东麓的一条主要NNW向走滑断裂 ,长度近 70 0km。第四纪中晚期右旋走滑速率可达 6 10mm/a ,其上发现有长逾2 0 0km的古地震形变带。富蕴断裂则是阿尔泰山西南麓的一条主要NNW向断裂 ,中晚第四纪的走滑运动速率为 (4± 2 )mm/a ,在中国阿尔泰山的西端还发育规模相对较小的NNW向右旋走滑断裂 ,中晚第四纪走滑速率为 (2± 1)mm/a。中国阿尔泰山 (阿尔泰山的西南麓 )还发育NWW向右旋走滑逆断裂 ,其规模相对较小 ,至中国阿尔泰山西端NWW向的额尔齐斯断裂具有明显的右旋走滑性质。蒙古阿尔泰山的南端则发育近东西向的左旋走滑逆断裂。在与戈壁阿尔泰山交汇部位 ,左旋走滑运动具主导作用。戈壁阿尔泰山发育的戈壁阿尔泰断裂带断续延伸可达 10 0 0km以上 ,目前的研究认为 ,其滑动速率为 12mm/a。其中的博格德断裂上 195 7年发生了戈壁阿尔泰 8.3级地震 ,形变带长约 2 5 0km。阿尔泰山活动断裂的规模、运动强度和强地震活动表明这里不仅受到遥远的印度板块北向推挤作用的影响 ,而且受到较近的地球动力学过程的影响或控制。  相似文献   

18.
Based on remote sensing, geological data, geomorphologic analysis, and field observations, we determine the fault system which is a potential source of earthquakes in Hoa-Binh reservoir. It is the sub-meridian fault system composed of fault segments located in the central part of the eastern and western flanks of the Quaternary Hoa-Binh Graben: the Hoa-Binh 1 fault is east-dipping (75–80°), N-S trending, 4 km long, situated in the west of the Hoa-Binh Graben, and the Hoa-Binh 2 is a west-dipping (75–80°), N-S trending; 8.4 km long fault, situated in the east of the Hoa-Binh Graben. The slip rate of normal fault in Hoa-Binh hydropower dam was estimated at 0.3–1.1 mm/yr. The Maximum Credible Earthquake (MCE) and Peak Ground Acceleration (PGA) in the Hoa-Binh hydropower dam have been assessed. The estimated MCE of HB.1 and HB.2 is 5.6 and 6.1 respectively, and the maximum PGA at Hoa-Binh dam is 0.30 g and 0.40 g, respectively. The assessment of seismic hazard in Hoa-Binh reservoir is a typical example of seismic hazards of a large dam constructed in an area of low seismicity and lack of law of seismic attenuation.  相似文献   

19.
Abstract: There are two co-seismic faults which developed when the Wenchuan earthquake happened. One occurred along the active fault zone in the central Longmen Mts. and the other in the front of Longmen Mts. The length of which is more than 270 km and about 80 km respectively. The co-seismic fault shows a reverse flexure belt with strike of N45°–60°E in the ground, which caused uplift at its northwest side and subsidence at the southeast. The fault face dips to the northwest with a dip angle ranging from 50° to 60°. The vertical offset of the co-seismic fault ranges 2.5–3.0 m along the Yingxiu-Beichuan co-seismic fault, and 1.5–1.1 m along the Doujiangyan-Hanwang fault. Movement of the co-seismic fault presents obvious segmented features along the active fault zone in central Longmen Mts. For instance, in the section from Yingxiu to Leigu town, thrust without evident slip occurred; while from Beichuan to Qingchuan, thrust and dextral strike-slip take place. Main movement along the front Longmen Mts. shows thrust without slip and segmented features. The area of earthquake intensity more than IX degree and the distribution of secondary geological hazards occurred along the hanging wall of co-seismic faults, and were consistent with the area of aftershock, and its width is less than 40km from co-seismic faults in the hanging wall. The secondary geological hazards, collapses, landslides, debris flows et al., concentrated in the hanging wall of co-seismic fault within 0–20 km from co-seismic fault.  相似文献   

20.
Cambay basin is an intra-cratonic rift graben formed as a result of rifting which was occurred in late Cretaceous with Deccan lava eruption through linear trending NNW to SSE directional basin. The Deccan basalt forms the basement over which more than 7–11 km thick piles of Tertiary sediments have been deposited during syn-rift and post-rift phases of basin development. Cambay basin has been considered as one of the significant hydrocarbon prolific basin in India. The biggest challenge in current days for this basin is further exploration or exploration under development stage in small marginal field or unexplored left out areas in the basin part as most of the areas are already explored/discovered by various small to big E&;P (exploration &; production) industrial players. In this present study one such small marginal field has been chosen for “Exploration under Development” portfolio in mid Cambay basin. The amount of oil-in-place volume, investment and techno-economics analysis of small marginal field has made this study area. In view of further hydrocarbon exploration in this area this kind of study will provide a robust support in limited dataset. The reservoir sand quality of the study area is discrete, thin and less permeable. This kind of sand body detection through classical seismic interpretation approach is difficult and there will be always a big amount of uncertainties for findings the pay reservoir sand. In view of the limitation of available data and challenging geological setup of the reservoir, a quantitative approach has been taken to detect the thin reservoir sand in this study area. Primarily coloured inversion technique has been applied on post-stack seismic data based upon well to seismic correlation and reservoir sand detection in seismic interpretation and well log property analysis. This technique has produced higher detectability impedance/property volume with respect to normal post-stack seismic data signature. Based on high contrast impedance/elastic property further seismic based attribute analysis on reservoir section has been performed. The attribute analysis has been made along surface and 3D seismic data level, provided clear image about the thin hydrocarbon sand reservoir. Based upon quantitative interpretation approach coloured inverted volume the prospect was chosen for further drilling in the study area and drilling of that sand was turned to be a hydrocarbon discovery prospect. The unconventional approaches e.g. coloured inversion with limited dataset for this kind of small marginal field has potential to find the hydrocarbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号