共查询到20条相似文献,搜索用时 0 毫秒
1.
受海冰自身特性、成像系统特性和环境因素的影响,合成孔径雷达SAR海冰图像具有非平稳、尺度依赖的空间结构,现有的单马尔可夫随机场MRF模型分割方法只能较好地适应非平稳性,对海冰场景的多尺度结构考虑仍然是全局的。为此,本文提出了一种区域分裂过程与二叉树分层结构自适应更新相结合的单MRF图像分割方法。首先利用单MRF模型的全局迭代权值完成初始区域合并,同时以二叉树形式保护合并过程的记录。所设计的分层合并算法可保证二叉树结构的节点数与场景中的对象尺度具有正相关性。随后的细化分裂并不产生新的区域,只是返回到初始配置。依据场景中不同区域对象的尺度,自适应地调整空间语境模型中的尺度权值,实现区域更新。实验表明,该方法有效提高了带有多尺度结构SAR海冰场景的分割精度。 相似文献
2.
针对海冰遥感分类问题,使用我国首颗民用合成孔径雷达卫星环境一号星(HJ-1C)图像的S波段VV极化SAR数据进行辽东湾海冰分类,提出了一种针对单极化SAR数据的海冰分类方法。使用基于SAR数据的3种海冰信息作为分类依据,即灰度信息、灰度共生矩阵纹理信息及基于平整冰面积百分比提取的平整冰密集度信息。研究结果表明,平整冰密集度信息是区分碎冰和风致纹理粗糙开阔水的有效信息。使用最大似然法与决策树融合的分类方法可以有效地识别封冻期辽东湾海域的碎冰、平整冰和开阔水3种类型,为海冰分类提供了一种新思路。 相似文献
3.
为充分利用高光谱遥感影像中丰富的光谱和空间信息,提出了一种基于多核支持向量机(multiple kernel support vector machine,MKSVM)和马尔科夫随机场(markov random field,MRF)的影像分类方法。该方法首先利用MKSVM分类器对影像进行分类处理,再利用MRF对初始分类结果进行空间结构规则化,得到最终分类结果。通过对AVIRIS高光谱影像的分类实验表明,该方法有效地消除了分类结果中同质区域内的"噪声",分类精度提高了3%左右。 相似文献
4.
合成孔径雷达(SAR)海冰图像分割对全球气候研究和保证船舶航行安全具有重要意义。现有的基于区域的马尔可夫随机场(MRF)多极化SAR分割方法,由于受相干斑噪声影响,其区域划分不尽合理,不能有效完成分割。因此,提出一种噪声抑制的多极化SAR海冰图像分割算法,首先在极化总功率图上引入降低噪声的滤波算法,合理划分初始区域,其次考虑区域之间的差异度,从而实现多极化SAR海冰图像的准确分割。以RADARSAT-2和SIR-C获得的全极化海冰图像为实验数据进行验证,结果表明:和其他较先进算法相比,本文算法优势明显,既能高效保持图像连通性,又能增强图像的细节信息,具有更高的分割精度。 相似文献
6.
一种基于退化模型的高分辨率SAR去噪算法 总被引:1,自引:0,他引:1
为了保持高分辨率合成孔径雷达(SAR)图像中的纹理结构,提出了一种基于高斯.马尔可夫模型(Gauss-Markov Model)的方法来抑制SAR图像的斑点噪声。通过引入贝叶斯分析框架,建立Markov随机场的退化图像恢复模型,从而将图像的恢复问题转化为求解最大后验概率(MAP)问题,并直接从噪声图像中估计随机场模型参数进行有效的噪声抑制。实验结果表明,对所研究的高分辨SAR图像,基于退化模型的去噪算法(RMBD)不论是在噪声的去除上还是在结构信息等细节的保持上均不同程度地优于其他常用斑点去噪方法。 相似文献
7.
随着全球变暖和全球贸易的增长,西北航道的经济效益日渐突出.但是西北航道内浮冰的存在对船舶的航行有一定的影响.鉴于此,利用遥感影像的灰度和灰度共生矩阵组成组合特征构建训练样本,利用支持向量机(Support Vector Machine,SVM)对样本进行训练,实现海冰、海水的分类,并借助蚁群算法进行可通行性分析.实验结果证明,相比较传统单一特征分类结果,本文提出的组合特征的方法能够在一定程度上提高分类正确率,有效区分遥感影像中的海水、海冰,为船舶航行的可行性提供依据. 相似文献
8.
9.
常规高光谱影像逐像素分类往往没有考虑空间相关性,分类结果未体现地物的空间关联和分布特征。为了在分类中充分利用空间特征,利用聚类信息并结合隐马尔可夫随机场模型讨论了高光谱遥感影像光谱-空间分类方法。首先,在不同特征提取方法(最小噪声分离、独立成分分析和主成分分析)下,使用不同聚类方法(k-均值、迭代自组织分析算法和模糊c-均值算法)借助隐马尔可夫随机场获取优化的分割图;然后,采用4连通区域标记法对分割区域标记生成图像对象,并根据支持向量机的逐像素分类结果采用多数投票法对图像对象进行分类;最后,借助凹槽窗口邻域滤波技术改进分类结果,削弱“椒盐”现象。该方法综合了监督分类和非监督分类的优势,通过聚类引入地物空间相关性信息,通过隐马尔可夫随机场引入上下文特征,较好地弥补了单纯基于光谱信息分类的不足。 相似文献
10.
11.
在已有的极化合成孔径雷达(PolSAR)图像恒虚警(CFAR)检测方法中,存在着高分辨下杂波模型适用性差的难题。为解决此问题,提出了一种G_0分布下虚警概率具有闭合解析表达形式的CFAR检测方法,并定义虚警损失率(CFAR Loss, C_L)参数用以量化评估CFAR检测方法的恒虚警保持效果。首先,在乘积模型框架下,引入了逆Gamma纹理变量假设,推导出了多视极化白化滤波(MPWF)检测量的概率密度函数(PDF)。然后,对MPWF检测量的概率密度函数积分得到了虚警概率关于CFAR检测阈值的解析表达式,并设计了相应的CFAR检测流程。最后,采用仿真数据和AIRSAR实测数据对已有方法和新方法进行了算法运行时间、检测量拟合性能及目标检测性能对比。实验结果表明,方法运行时间比已有方法缩短3至30倍,具有良好的实时性;日本玉野地区的AIRSAR实测数据结果表明G_0分布对高分辨不均匀海区具有良好的拟合性能,且新方法在G_0分布和非G_0分布海区均能有效检测出目标,鲁棒性较强,相比其他检测方法品质因数(FoM)平均高出15.78%;C_L分析结果表明新方法具有良好的恒虚警保持性能,同时指出杂波对数累积量散点距离G_0分布曲线越近,新方法的恒虚警保持效果越好。 相似文献
12.
杨圣 《测绘与空间地理信息》2018,(5):66-72
为了实现对纹理图像的分割,需利用建模像素间相互作用关系,因此本文利用在标号场和特征场中分别建模邻域多边形和邻域像素之间的作用关系,并提出一种基于马尔科夫随机场(Markov Random Field,MRF)的区域化纹理图像分割方法。即利用Voronoi划分技术,将图像划分为若干个多边形;在标号场上利用Gibbs分布建模相邻多边形标号间的相互作用,在特征场上利用高斯分布建模多边形内邻域像素间光谱测度的相关性;结合贝叶斯定理建立分割模型;通过最大期望值(Expectation Maximization,EM)算法来估计模型参数,进而获得最优分割结果。本文分别对合成纹理图像、自然纹理图像和遥感图像进行分割实验,并对分割结果进行定性和定量评价。通过计算混淆矩阵得出Kappa值为0.97,满足了优秀分类器的标准。本文提出的算法具有很强的抗噪和描述复杂光谱测度的能力,可行性好,准确性高。 相似文献
13.
全极化SAR获取的信息量远多于传统SAR,但信息量的增加并不能确保分类精度的提高,如何有效进行特征选择至关重要。针对自适应特征选择问题,提出一种顾及分类器参数的特征选择和分类方法。该方法以支持向量数为评估依据,结合遗传算法进行特征选择,并同时对分类器参数进行寻优;最后利用优选的特征集和模型参数进行分类。为验证算法的有效性,利用两组全极化数据进行了监督分类实验。实验结果表明,提出方法降低了SVM分类器对自身参数的敏感性,而且能在较少特征个数下具备良好的泛化性能,分类精度优于未经过特征选择和参数优化的方法。 相似文献
14.
应用分水岭变换与支持向量机的极化SAR图像分类 总被引:1,自引:0,他引:1
结合分水岭变换与支持向量机的特性,提出一种新的极化SAR图像分类算法。其基本思想是先通过分水岭变换及区域合并处理,将极化SAR图像分割成一系列同质区;再以同质区为基本单元,进行特征提取及样本选择后采用支持向量机分类。实验结果表明,该算法可有效降低相干斑对分类的影响,与传统基于像素的SVM算法相比,其分类精度有显著的提高,且结果也更易于理解。 相似文献
15.
表达和利用目标空间下文及语义信息是高空间分辨率图像分类的一项关键技术。而条件随机场(CRFs)在空间上下文建模以及分类预测方面有其独特优势。但是基于单尺度分析的CRFs模型存在“不能描述大尺度的空间上下文信息”的问题。因此,针对高分辨率图像分类问题,本文提出了一种两级空间上下文特征分析的CRFs模型。该模型描述如下:先对图像进行分层及逐层特征提取,并进行“对象层-目标层”特征关联;再用支持向量机(SVM)的概率输出定义CRFs模型的关联势函数,利用分层特征加权的Potts函数定义交互势函数。最后采用分段学习及最大-积消息传递算法对该模型进行训练和推理。用Quickbird及大比例尺航空图像城区场景进行实验,结果表明:与单尺度下的基于像素、对象层或目标层分割的SVM-CRFs相比,本文提出的模型其分类精度均有所提高,分类效率较高。 相似文献
16.
基于主动学习和空间约束的高光谱影像分类 总被引:1,自引:0,他引:1
高光谱影像具有数据量大、波段数多和信息冗余等问题,其分类一直是目前的一项研究热点。针对高光谱影像分类存在的问题,本文提出了一种利用主动学习和空间约束的高光谱影像分类方法。首先利用样本的先验分布状态建立样本的置信度模型,迭代选择最有"价值"的样本扩充训练样本库,以此训练最优的支持向量机分类器对高光谱影像进行分类,然后利用马尔科夫随机场(Markov Random Fields,MRF)引入空间信息,优化分类结果。文中在Indian Pines数据集上验证提出方法的有效性。实验结果表明,本文提出的方法通过样本的先验信息训练最优的SVM模型,能够有效地分类不同地物,总体分类正确率达到88%以上。 相似文献
17.
针对经典的小波纹理不能准确地表达影像纹理特征的问题,以及影像分割结果缺少对像元空间相关性和分布关系的考虑。本文提出了结合双树复小波(DT-CWT)纹理和马尔可夫随机场(MRF)模型的高分辨率遥感影像分割方法。首先,通过双树复小波变换提取影像纹理特征,联合光谱特征形成表达影像信息的混合特征向量;然后,将混合特征向量高斯归一化处理,并用K-means聚类的方法对特征空间中的混合特征向量聚类得到初始分割图;最后,借助马尔可夫随机场模型在初始分割结果中引入上下文信息,基于贝叶斯最大后验概率准则得到最终的分割结果。本文通过双树复小波纹理提高了特征表达的准确度,同时使用马尔可夫随机场模型减弱了分割结果中同质区域的“椒盐噪声”,从而进一步提高了高分辨率遥感影像分割的精度。 相似文献
18.
改进的ELU卷积神经网络在SAR图像舰船检测中的应用 总被引:1,自引:0,他引:1
随着航天技术的发展,我国SAR载荷的探测体系呈现多种类、多分辨率的发展趋势。传统的检测识别方法很难适应多分辨率、多种类的SAR图像数据,从而需要寻求一种能从多分辨率的图像数据中提取有效特征的方法。智能化发展非常迅速,本文基于SAR图像的特点,提出了改进的ELU激活函数卷积神经网络的方法,建立了结合ELU激活函数和二次代价函数的深度学习模型。同时,在训练样本中建立样本特征与所在分类中心的距离函数,用模糊支持向量机(FSVM)对提取的特征进行了分类。试验结果表明,本文方法提高了SAR图像舰船检测的抗噪性,并且检测率达到了98.6%。 相似文献
19.
利用主题模型的遥感图像场景分类 总被引:1,自引:0,他引:1
提出了一种基于主题模型与特征组合相结合的遥感图像分类方法。该方法首先对图像进行尺度不变特征变换(SIFT)、几何模糊特征(GB)和颜色直方图特征(CH)提取,接着利用潜在概率语义分析(pLSA)模型分别对所得到的图像特征进行潜在主题的挖掘,然后对所得到的主题概率特征进行组合,最后利用支持向量机(SVM)分类器进行场景分类。实验表明,与传统分类方法相比,主题模型更具优势;与使用单特征相比,特征组合具有更高的分类准确率。 相似文献
20.
高维遥感图像的快速分类算法 总被引:1,自引:0,他引:1
为了实现对高维遥感图像的快速准确分类,提出了一种基于k均值二叉树支持向量机(SVM)的分类方法。该方法通过对选取的训练样本进行k均值聚类,生成支持向量机分类二叉树,作为确定最佳分类顺序的依据,以降低分类过程中的误差累积并提高整体分类精度,而且可缓解由样本数量不均衡导致的分类误差。该方法可在不进行降维处理的情况下,对高维遥感图像进行快速准确分类。测试结果表明,其分类速度和分类精度都优于传统的支持向量机分类结果。 相似文献