首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
尹滔  张伟  尹显科  裴亚伦 《地球科学》2020,45(11):4128-4142
目前对班公湖-怒江蛇绿混杂岩带的中酸性侵入岩的报道相对较少,对其成因和形成机制的研究有助于揭示班公湖-怒江特提斯洋构造带的岩浆作用过程和动力学背景.对西藏班公湖-怒江蛇绿混杂岩带江玛地区的闪长玢岩进行了年龄分析、岩石地球化学研究.闪长玢岩的LA-ICP-MS锆石U-Pb年龄为121±1 Ma,表明其形成于早白垩世晚期.岩石地球化学特征表明,闪长玢岩具高Al2O3含量(18.2%~19.3%),属高铝玄武岩,岩石富集轻稀土元素和大离子亲石元素Rb、K等,亏损高场强元素Nb、Ta、Ti,属典型的岛弧玄武岩.综合区域地质资料认为,江玛地区闪长玢岩可能形成于俯冲带前缘增生的岛弧环境,是早白垩世期班公湖-怒江特提斯洋壳岩石圈南向俯冲消减背景下,板片脱水形成的流体与地幔楔橄榄岩发生交代作用的产物.   相似文献   

2.
大兴安岭北段新林地区晚古生代花岗岩主要出露在大乌苏和富西里附近,岩性主要为二长花岗岩,另有少量花岗闪长岩。对其中二长花岗岩样品进行LA-ICP-MS锆石U-Pb测年表明,大乌苏和富西里岩体侵位年龄分别为(303.7±2.2)和(300.5±0.5)Ma,均为晚石炭世岩浆活动的产物。花岗岩具有富硅(w(SiO2)为66.77%~75.85%)、富碱(w(Na2O+K2O)为7.41%~8.69%)、高铝(w(Al2O3)为12.90%~16.22%),低MgO、CaO、TiO2的特点,属于钙碱性系列;铝饱和指数(A/CNK)为1.06~1.44,为过铝质岩石;镜下未见原生白云母、堇青石、石榴石等富铝矿物,不同于富铝的S型花岗岩;而w(P2O5)与w(SiO2)负相关,呈I型花岗岩特征;富集LREE和Ba、Rb、K等大离子亲石元素,亏损Nb、Ta、Ti等高场强元素,与后造山I型花岗岩特征相似,应形成于拉张的构造环境。花岗岩的87Sr/86Sr为0.712 938、143Nd/144Nd为0.512 386,(87Sr/86Sr)i值为0.704 4,εNdt)值为-1.09,TDM2=1 172 Ma,源区物质主要为中-新元古代从亏损地幔增生的地壳物质。结合区域研究成果,大兴安岭新林地区晚石炭世岩浆侵位活动与额尔古纳-兴安地块和松嫩地块碰撞拼合后岩石圈伸展环境有关。  相似文献   

3.

昌宁-孟连缝合带是中国西南三江特提斯重要的古特提斯洋残余,但其消减过程仍然存在争议。南澜沧江构造带曼兵岛弧花岗岩体为探究古特提斯洋俯冲过程提供了新的线索。本文对曼兵花岗岩体内的片麻状黑云花岗闪长岩和斜长角闪岩进行了锆石U-Pb年代学、Hf同位素和全岩元素地球化学研究。二者的LA-ICP-MS锆石U-Pb年龄分别为251.5±2.7Ma、253.8±1.1Ma和241.8±0.8Ma、259.5±1.9Ma,指示其为晚二叠世-早三叠世的岩浆活动产物。曼兵花岗闪长岩属于钙碱性到高钾钙碱性系列I型花岗岩,富集轻稀土元素和大离子亲石元素,亏损Nb、Ta、Ba、Sr和高场强元素,具有Eu的负异常(δEu=0.45~0.69)。花岗闪长岩和斜长角闪岩176Hf/177Hf平均值分别为0.2829035和0.2829762,锆石εHft)平均值为11.0和12.5;地壳模式年龄tDMC加权平均值分别为578.4Ma和469.3Ma,类似俯冲相关的新生下地壳演化的岛弧花岗岩。曼兵花岗岩具有低的Ce/Pb(3.89~6.57)、Th/La(0.32~0.58)和Sm/La(0.11~0.15)指示了新生下地壳被上部围岩的混染。综合区域古特提斯洋演化历史,认为曼兵岛弧花岗岩体形成于洋陆俯冲向地块增生转换的构造环境,提出三江地区古特提斯主洋盆的闭合延续至早三叠世才完成。

  相似文献   

4.
古特提斯洋在东昆仑造山带的闭合时间仍存在争议.对东昆仑东段海德乌拉地区产出的辉绿岩开展了系统的研究工作.LA-ICP-MS锆石U-Pb同位素定年的结果显示,海德乌拉辉绿岩形成于238±2 Ma.在地球化学组成上,该辉绿岩具有较高的Ti O2(1.75%~2.46%)、Fe2O3T(8.88%~12.30%)含量和较低的Mg O含量(2.76%~6.34%);富集不相容元素,相对亏损Nb、Ta、Sr、Ti;Sr-Nd同位素组成较为富集且均一,(87Sr/86Sr)i为0.711 61~0.712 95,εNd(t)为-3.2~-2.8.上述特征表明海德乌拉辉绿岩形成于板片俯冲环境,其源区为由俯冲板片释放的流体交代所形成的富集地幔.结合前人的研究成果,认为古特提斯阿尼玛卿洋的北向俯冲至少持续到中三叠世末期;随后,洋盆在晚三叠世早期闭合;在不晚于228 Ma时,东昆仑东段地区进入后碰撞伸展的环境.  相似文献   

5.
对桂南钦防构造带西南段印支早期花岗岩的地质调查发现,该区存在含变质矿物和不合变质矿物两类花岗岩。岩石学、地球化学和Sr-Nd同位素的分析结果表明:这些花岗岩均属于高钾钙碱性系列岩石,在岩石化学成分上明显富集大离子亲石元素(LILE,包括Rb、Th、U、K和Pb等),而相对亏损高场强元素(HFSE,包括Nb、Ta、P和Ti等),并具有较高的锶同位素初始比值((87Sr/86Sr)i=0.715 2500.716 316)和较低的εNd(t)值(-10.80-9.92),反映其具有俯冲消减作用形成的岛弧岩浆岩地球化学特征。锆石SHRIMP U-Pb定年结果显示,含紫苏辉石花岗斑岩和黑云母二长花岗岩的锆石206Pb/238U加权平均年龄分别为(248.8±1.9)Ma(MSWD=1.5)和(246.0±3.4)Ma(MSWD=2.2)。结合本区存在有早古生代MORB型变质基性火山岩和二叠纪弧后扩张中心环境形成的E-MORB型玄武岩的资料,认为扬子板块和华夏板块结合带(称之为钦—杭结合带)西南段有古生代洋盆的存在。本区印支早期花岗岩很可能是在扬子板块和华夏板块之间的洋壳岩石圈向北俯冲的地球动力学背景下,幔源岩浆诱发俯冲板片中古老地壳物质重熔并受到地幔源区岩浆不同比例的交代作用的产物。  相似文献   

6.
大滩盆地位于华北克拉通北缘隆起带和沽源—红山子铀成矿带西南段,盆地内五里营铀矿点赋存在义县期(早白垩世晚期)二长斑岩中。二长斑岩全岩为高钾、富碱、低钛、贫铁,富集轻稀土元素和大离子亲石元素,无明显Eu负异常,具有碱性系列和钙碱性系列的特征,属典型的钾玄岩系列;[n(87Sr)/n(86Sr)]i为0.707290~0.707399(平均值为0.707343),[n(143Nd)/n(144Nd)]i为0.511849~0.511895(平均值为0.511876),εNd(t)值变化范围是-12.38~-11.49,[n(206Pb)/n(204Pb)]i为17.236~17.343(平均值17.296),[n(207Pb)/n(204Pb)]i为15.407~15.428(平均值为15.416),[n(<...  相似文献   

7.
特提斯喜马拉雅北亚带江孜地区上古新统-下始新统甲查拉组记录了喜马拉雅碰撞造山带的早期地壳加厚和沉积历史。本文我们报道了甲查拉组详细的碎屑锆石U-Pb年龄和全岩Sm-Nd同位素数据。甲查拉组由青灰色厚层的岩屑砂岩夹泥岩组成,不整合覆盖在宗卓组之上,碎屑锆石主要的峰值介于350~80 Ma, 900~470 Ma以及1 300~950 Ma,次要的峰值介于2 800~1 500 Ma。全岩87Sr/86Sr介于0.707 505~0.713 174,143Nd/144Nd介于0.512 206~0.512 355,εNd(0)介于-5.52~-8.43。甲查拉组物源区以再循环的日喀则弧前盆地和上三叠统郎杰学群为主,少量物质来自雅鲁藏布江缝合带。上述研究表明,甲查拉组沉积在周缘前陆盆地的背景下,且特提斯喜马拉雅北亚带在始新世期间经历了明显的地壳加厚。  相似文献   

8.
位于西藏泽当地区的雅鲁藏布江蛇绿岩在我国研究程度较高,该蛇绿岩东西延伸约2 000 km,代表了印度和亚洲之间消失的新特提斯洋,是确定上述两大板块间缝合线存在的重要岩石学标志。文章对西藏泽当地区雅鲁藏布江蛇绿岩带中的斜长花岗岩特征及构造环境进行了研究。斜长花岗岩具有钙碱性特征;轻重稀土分异明显,LREE富集,HREE亏损,具有明显的正Eu异常,大离子亲石元素Rb、K、Ba、Sr富集,高场强元素Nb、Ti亏损;地球化学研究表明,斜长花岗岩应形成于俯冲造山的构造环境下,是俯冲洋壳部分熔融的产物,具有岛弧特点。  相似文献   

9.
对侵位于萝北地区麻山群中的含钍花岗岩脉开展了单颗粒锆石U-Pb定年(LA-ICP-MS)和岩石地球化学特征研究,旨在查明岩脉形成时代并探讨其成因,并为佳木斯地块地质历史的重塑提供素材。结果显示,萝北含钍花岗岩形成年龄为(488.4±2.3)Ma,属晚寒武世产物;含钍花岗岩呈细粒花岗结构,出现黑云母和白云母等矿物,富钾、过铝质,富集轻稀土元素、大离子亲石元素(K、Rb)和高场强元素(Th、Ce、Zr、Hf和Sm),亏损Sr、Ba、P和Ti等元素;轻、重稀土分馏显著,Eu强烈亏损;岩石(87Sr/86Sr)i为0.70058~0.70780(平均0.70606),(143Nd/144Nd)i区间为0.51171~0.51175(均值0.51173),εNd(t)=-5.1~-5.8(平均-5.5)。研究认为,含钍花岗岩属S型,是后碰撞构造环境由麻山群副片麻岩部分熔融形成;萝北晚寒武世花岗岩的发现佐证了佳木斯地块在寒武纪-奥陶纪发生碰撞造山...  相似文献   

10.
昌宁-孟连结合带牛井山地区发育以构造岩片和透镜体形式产出的斜长角闪岩,其对于认识和恢复昌宁-孟连结合带特提斯演化历史具有重要意义。本研究对牛井山蛇绿混杂岩带内的斜长角闪岩进行了系统的岩石学、锆石U-Pb定年、Hf同位素及全岩地球化学研究。锆石CL图像揭示斜长角闪岩锆石为岩浆成因锆石。锆石U-Pb定年结果为272±1.2 Ma(MSWD=1.1,n=21),代表斜长角闪岩原岩时代。岩石地球化学分析表明,斜长角闪岩SiO2含量为51.83%~52.6%,全碱(Na2O+K2O)含量为3.33%~4.16%,Na2O/K2O比值为5.8~19.8,属于低钾拉斑玄武岩系列。微量元素结果表明斜长角闪岩具有N-MORB的地球化学特征。原岩恢复研究揭示斜长角闪岩的原岩为272±1.2 Ma的N-MORB型辉长岩。斜长角闪岩锆石初始(176Hf/177Hf)i值为0.282906~0.282956,对应的εHft)为10.7~12.5;单阶段亏损地幔Hf模式年龄tDM1为416~499 Ma (平均值为466Ma),明显老于原岩结晶时代。岩石地球化学特征和锆石Hf模式年龄揭示昌宁-孟连特提斯洋在272 Ma时具有一个长期亏损的地幔,地幔年龄为早古生代416~499 Ma。结合该带存在早古生代洋壳残余及洋壳俯冲成因埃达克岩的事实,我们认为昌宁-孟连带是一个连续演化的原-古特提斯洋,晚古生代272 Ma时还存在洋中脊扩张并产生具有N-MORB性质的洋壳。  相似文献   

11.
为了加深对粤西北地区加里东期岩浆岩演化的认识,对粤西北地区大桂山岩体进行了岩石学、岩相学、同位素年代学、岩石地球化学及Sm-Nd同位素地球化学等研究。研究显示:大桂山岩体位于广东佛冈复式岩体的北西缘,岩性为中粗粒含斑黑云母正长花岗岩;利用LA-ICP-MS锆石U-Pb法测得其年龄为(445.9±3.6) Ma,属晚奥陶世侵入岩;岩石地球化学具有高硅、富钾、高分异指数和低钙、低镁、贫铁的特征;稀土元素总量中等-偏低,轻重稀土元素分馏程度较低,具明显的负Eu异常;微量元素表现为大离子亲石元素Rb、Th、U、K、La、Ce、Nd等的富集,亏损P、Sr、Ba、Ti等高场强元素;(87Sr/86Sr)i为0.025 3~0.100 2,εNd(t)值较高,为-3.15~-5.26,TDM2值较低。以上特征表明大桂山岩体为高分异或低熔融程度的铝质A型花岗岩,其源区为成熟度较低的地壳物质或者是一定比例壳幔物质的混合,因造山带垮塌、软流圈上涌引起地壳伸展,由于地幔上隆,幔源基性岩浆岩和钾玄质岩浆岩上侵或底侵而形成。  相似文献   

12.
The shallow level pluton of Bressanone is a Late Hercynian multiple intrusion into the South Alpine basement of the Eastern Alps. Most of this complex is composed of anatectic granodiorites and granites intruded in separate stocks 282 ± 14 Ma ago; gabbros and leucogranites occur in smaller quantities. The chronological intrusion sequence is: layered gabbro, granodiorites and granites, two-mica cordierite leucogranite and fayalite leucogranites.

The granodiorites and granites may contain hornblende or garnet. The hornblende and garnet rocks differ both in chemistry and (87Sr/86Sr)i ratio, and may be identified as “I-type” and “S-type”, respectively, according to the Chappell-White classification.

Textural and chemical patterns show that the granites may be linked to the granodiorites by cumulate-like processes. The granodiorite → granite transition, attributed to filter pressing, expresses an increase in the liquid/xenolith ratio in a magma where the liquid fraction was a minimum melt and the solid fraction was restitic material.  相似文献   


13.
Isotope data and trace elements concentrations are presented for volcanic and plutonic rocks from the Livingston, Greenwich, Robert, King George and Ardley islands (South Shetland arc, Antarctica). These islands were formed during subduction of the Phoenix Plate under the Antarctica Plate from Cretaceous to Tertiary. Isotopically (87Sr/86Sr)o ratios vary from 0.7033 to 0.7046 and (143Nd/144Nd)o ratios from 0.5127 to 0.5129. εNd values vary from +2.71 to +7.30 that indicate asthenospheric mantle source for the analysed samples. 208Pb/204Pb ratios vary from 38.12 to 38.70, 207Pb/204Pb ratios are between 15.49 and 15.68, and 206Pb/204Pb from 18.28 to 18.81. The South Shetland rocks are thought to be derived from a depleted MORB mantle source (DMM) modified by mixtures of two enriched mantle components such as slab-derived melts and/or fluids and small fractions of oceanic sediment (EM I and EM II). The isotopic compositions of the subduction component can be explained by mixing between at least 4 wt.% of sediment and 96 wt.% of melts and/or fluids derived from altered MORB.  相似文献   

14.
为了研究南冈底斯晚三叠世-早侏罗世时期岩浆岩的成因类型和构造背景,针对墨竹工卡地区的松多黑云母二长花岗岩体进行岩相学、年代学、全岩地球化学研究.LA-ICP-MS锆石U-Pb定年结果显示,松多黑云母二长花岗岩结晶年龄为190.2±2.9 Ma,形成于早侏罗世.在地球化学组成上,黑云母二长花岗岩具有低TiO2(0.68%~0.75%),富SiO2(65.22%~66.13%)、Al2O3(16.26%~16.73%)、Na2O(4.05%~4.29%)、K2O(3.96%~4.24%)的特点,显示钾玄岩系列和弱过铝质(A/CNK=1.04~1.11)的主量元素地球化学特征;在微量元素蛛网图上,具有富集Rb、Th、K、Zr、Hf元素和亏损Ba、Nb、Ta、Sr、Ti、P元素的特征;锆石饱和温度介于805~835℃,FeOT/MgO比值高,样品显示出具有部分A型花岗岩特征.结合前人研究表明,晚三叠世-早侏罗世时期南冈底斯岩浆岩构造背景与新特提斯洋北向俯冲有关,松多黑云母二长花岗岩形成于新特提斯洋板片北向俯冲引起的弧后伸展环境;其成因与软流圈上涌导致幔源岩浆底侵引起下地壳的部分熔融有关.   相似文献   

15.
We report trace element and Sr–Nd isotopic compositions of Early Miocene (22–18 Ma) basaltic rocks distributed along the back-arc margin of the NE Japan arc over 500 km. These rocks are divided into higher TiO2 (> 1.5 wt.%; referred to as HT) and lower TiO2 (< 1.5 wt.%; LT) basalts. HT basalt has higher Na2O + K2O, HFSE and LREE, Zr/Y, and La/Yb compared to LT basalt. Both suite rocks show a wide range in Sr and Nd isotopic compositions (initial 87Sr/86Sr (SrI) = 0.70389 to 0.70631, initial 143Nd/144Nd(NdI) = 0.51248 to 0.51285). There is no any systematic variation amongst the studied Early Miocene basaltic rocks in terms of Sr–Nd isotope or Na2O + K2O and K2O abundances, across three volcanic zones from the eastern through transitional to western volcanic zone, but we can identify gradual increases in SrI and decreases in NdI from north to south along the back-arc margin of the NE Japan arc. Based on high field strength element, REE, and Sr–Nd isotope data, Early Miocene basaltic rocks of the NE Japan back-arc margin represent mixing of the asthenospheric mantle-derived basalt magma with two types of basaltic magmas, HT and LT basaltic magmas, derived by different degrees of partial melting of the subcontinental lithospheric mantle composed of garnet-absent lherzolite, with a gradual decrease in the proportion of asthenospheric mantle-derived magma from north to south. These mantle events might have occurred in association with rifting of the Eurasian continental arc during the pre-opening stage of the Japan Sea.  相似文献   

16.
Tertiary basaltic magmatism in Serbia occurred through three episodes: (i) Paleocene/Eocene, when mostly east Serbian mafic alkaline rocks (ESPEMAR) formed, (ii) Oligocene/Miocene, dominated by high-K calc–alkaline basalts, shoshonites (HKCA–SHO) and ultrapotassic (UP) rocks, and (iii) Pliocene episode when rocks similar to (ii) originated. In this study, the geodynamics inferred from petrogenesis of the (i) and (ii) episodes are discussed.

The ESPEMAR (62–39 Ma) occur mainly as mantle xenolith-bearing basanites. Their geochemical features, such as the REE patterns, elevated HFSE contents and depleted Sr–Nd isotope signatures, indicate a relatively small degree of melting of an isotopically depleted mantle source. Their mantle-normalized trace element patterns are flat to concave and “bell-shaped”, characteristic of an OIB source free of subduction component. 87Sr/86Sri and 143Nd/144Ndi isotope ratios (0.7030–0.7047 and 0.5127–0.5129, respectively) indicate a depleted source for the ESPEMAR similar to the European Asthenospheric Reservoir (EAR).

The HKCA–SHO rocks (30–21 Ma) occur as basalts, basaltic andesites and trachyandesites. They show enrichment in LILE and depletion in HFSE with all the distinctive features of calc–alkaline arc-type magmatism. This is coupled with somewhat enriched Sr–Nd isotope signature (87Sr/86Sri=0.7047–0.7064, 143Nd/144Ndi=0.5124–0.5126). All these features are characteristic of subduction-related metasomatism and fluxing of the HKCA–SHO mantle source with fluids/melts released from subducted sedimentary material.

UP rocks (35–21 Ma) appear as (i) Si-rich lamproites and related rocks and (ii) olivine leucitites and related rocks. UP rocks have high-LILE/HFSE ratios with enrichment for some LILE around 1000× primitive mantle, troughs at Nb and Ti, and peaks of Pb in their mantle-normalized patterns. They also show highly fractionated REE patterns (La/Yb up to 27, LaN up to 400). The isotopic ratios approach crustal values (87Sr/86Sri=0.7059–0.7115 and 143Nd/144Ndi=0.5122–0.5126), and that signature is typical for ultrapotassic rocks worldwide.

The Paleocene/Eocene episode and formation of the ESPEMAR is referred to as asthenospheric-derived magmatism. This magmatism originated through passive riftlike structures related to possible short relaxational phases during predominantly collisional and compressional conditions. The Oligocene/Miocene episode and formation of HKCA–SHO and UP rocks were dominated by lithospheric-controlled magmatism. Its origin is connected with the activity of a wide dextral wrench corridor generated along the axis of the Dinaride orogen which collapsed in response to thickened crust caused by earlier compressional processes.

To explain conditions of these two magmatic events, a three-stage geodynamic model has been proposed: (1) subduction–termination/collision stage (Paleocene/Eocene), (2) collision stage (Eocene) and (3) postcollision/collapse stage (Oligocene/early Miocene).  相似文献   


17.
Sr–Nd–Pb isotope ratios of alkaline mafic intra-plate magmatism constrain the isotopic compositions of the lithospheric mantle along what is now the eastern foreland or back arc of the Cenozoic Central Andes (17–34°S). Most small-volume basanite volcanic rocks and alkaline intrusive rocks of Cretaceous (and rare Miocene) age were derived from a depleted lithospheric mantle source with rather uniform initial 143Nd/144Nd ( 0.5127–0.5128) and 87Sr/86Sr ( 0.7032–0.7040). The initial 206Pb/204Pb ratios are variable (18.5–19.7) at uniform 207Pb/204Pb ratios (15.60 ± 0.05). A variety of the Cretaceous depleted mantle source of the magmatic rocks shows elevated Sr isotope ratios up to 0.707 at constant high Nd isotope ratios. The variable Sr and Pb isotope ratios are probably due to radiogenic growth in a metasomatized lithospheric mantle, which represents the former sub-arc mantle beneath the early Palaeozoic active continental margin. Sr–Nd–Pb isotope signatures of a second mantle type reflected in the composition of Cretaceous (one late Palaeozoic age) intra-plate magmatic rocks (143Nd/144Nd  0.5123, 87Sr/86Sr  0.704, 206Pb/204Pb  17.5–18.5, and 207Pb/204Pb  15.45–15.50) are similar to the isotopic composition of old sub-continental lithospheric mantle of the Brazilian Shield.

Published Nd and Sr isotopic compositions of Mesozoic to Cenozoic arc-related magmatic rocks (18–40°S) represent the composition of the convective sub-arc mantle in the Central Andes and are similar to those of the Cretaceous (and rare Miocene) intra-plate magmatic rocks. The dominant convective and lithospheric mantle type beneath this old continental margin is depleted mantle, which is compositionally different from average MORB-type depleted mantle. The old sub-continental lithospheric mantle did not contribute to Mesozoic to Cenozoic arc magmatism.  相似文献   


18.
SHRIMP zircon U–Pb ages and geochemical and Sr–Nd–Pb isotopic data are presented for the gabbroic intrusive from the southern Taihang Mountains to characterize the nature of the Mesozoic lithospheric mantle beneath the central North China Craton (NCC). The gabbroic rocks emplaced at 125 Ma and are composed of plagioclase (40–50%), amphibole (20–30%), clinopyroxene (10–15%), olivine (5–10%) and biotite (5–7%). Olivines have high MgO (Fo = 78–85) and NiO content. Clinopyroxenes are high in MgO and CaO with the dominant ones having the formula of En42–46Wo41–50Fs8–13. Plagioclases are dominantly andesine–labradorite (An = 46–78%) and have normal zonation from bytownite in the core to andesine in the rim. Amphiboles are mainly magnesio and actinolitic hornblende, distinct from those in the Precambrian high-pressure granulites of the NCC. These gabbroic rocks are characterized by high MgO (9.0–11.04%) and SiO2 (52.66–55.52%), and low Al2O3, FeOt and TiO2, and could be classified as high-mg basaltic andesites. They are enriched in LILEs and LREEs, depleted in HFSEs and HREEs, and exhibit (87Sr/86Sr)i = 0.70492–0.70539, εNd(t) = − 12.47–15.07, (206Pb/204Pb)i = 16.63–17.10, Δ8/4 = 70.1–107.2 and Δ7/4 = − 2.1 to − 9.4, i.e., an EMI-like isotopic signatures. Such geochemical features indicate that these early Cretaceous gabbroic rocks were originated from a refractory pyroxenitic veined-plus-peridotite source previously modified by an SiO2-rich melt that may have been derived from Paleoproterozoic subducted crustal materials. Late Mesozoic lithospheric extension might have induced the melting of the metasomatised lithospheric mantle in response to the upwelling of the asthenosphere to generate these gabbroic rocks in the southern Taihang Mountains.  相似文献   

19.
Volumetrically minor microsyenites, alkali microgranite and related trachytic dykes intrude early Pliocene OIB-like alkali basaltic and basanitic flows of the Meseta del Lago Buenos Aires in Central Patagonia (47°S–71°30′W), and occur together with scarce trachytic lava flows. Whole-rock K–Ar ages between 3.98 and 3.08 Ma indicate that the emplacement of these felsic rocks occurred more or less synchronously with that of the post-plateau basaltic sequence that they intrude, during a bimodal mafic–felsic magmatic episode devoid of intermediate compositions. Chemically, these rocks have A1-type granitoid affinities and are characterized by high silica and alkali contents (60–68 wt.% SiO2; 8.7–10.8 wt.% Na2O + K2O), major and trace elements patterns evidencing evolution by low-pressure fractional crystallization, and Sr and Nd isotopic signatures similar to those of coeval basalts ((87Sr/86Sr)o = 0.70488–0.70571; (143Nd/144Nd)o = 0.512603–0.512645). Nevertheless, some of them have the most radiogenic Sr values ever reported for a magmatic rock in the Meseta and even in the whole Neogene Patagonian Plateau Lavas province ((87Sr/86Sr)o = 0.70556–0.70571; (143Nd/144Nd)o = 0.512603–0.512608). In addition, very high contents of strongly incompatible elements in the most evolved rocks, together with Sr isotopic ratios higher than those of coeval basalts, suggest the occurrence of open-system magmatic processes. Continuous fractional crystallization from a primitive basaltic source, similar to post-plateau coeval basalts, towards alkali granites combined with small rates of assimilation of host Jurassic tuffs (AFC) in a shallow magmatic reservoir, best explains the geochemical and petrographic features of the felsic rocks. Therefore, A1-type magmatic rocks can be generated by open-system crystallization of deep asthenospheric melts in back-arc tectonic settings.

In Central Patagonia, these  3–4 Ma old alkaline intrusions occur aligned along a  N160–170 trending lineament, the Zeballos Fault Zone, stacking the morphotectonic front of one segment of the Patagonian Cordillera. Intrusion along this fault zone occurred during the onset of a new transtensional or extensional event in the area, related to major regional tectonics occurring in possible relation with the collision of one segment of the Chile Spreading Ridge with the trench.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号