首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The classic $F$ and $G$ Taylor series of Keplerian motion are extended to solve the Stark problem and to use the generalized Sundman transformation. Exact recursion formulas for the series coefficients are derived, and the method is implemented to high order via a symbolic manipulator. The results lead to fast and accurate propagation models with efficient discretizations. The new $F$ and $G$ Stark series solutions are compared to the Modern Taylor Series (MTS) and 8th order Runge–Kutta–Fehlberg (RKF8) solutions. In terms of runtime, the $F$ and $G$ approach is shown to compare favorably to the MTS method up to order 20, and both Taylor series methods enjoy approximate order of magnitude speedups compared to RKF8 implementations. Actual runtime is shown to vary with eccentricity, perturbation size, prescribed accuracy, and the Sundman power law. The method and results are valid for both the Stark and the Kepler problems. The effects of the generalized Sundman transformation on the accuracy of the propagation are analyzed. The Taylor series solutions are shown to be exceptionally efficient when the unity power law from the classic Sundman transformation is applied. An example low-thrust trajectory propagation demonstrates the utility of the $F$ and $G$ Stark series solutions.  相似文献   

2.
Lie-integration is one of the most efficient algorithms for numerical integration of ordinary differential equations if high precision is needed for longer terms. The method is based on the computation of the Taylor coefficients of the solution as a set of recurrence relations. In this paper, we present these recurrence formulae for orbital elements and other integrals of motion for the planar $N$ -body problem. We show that if the reference frame is fixed to one of the bodies—for instance to the Sun in the case of the Solar System—the higher order coefficients for all orbital elements and integrals of motion depend only on the mutual terms corresponding to the orbiting bodies.  相似文献   

3.
A three-dimensional (non-axisymmetric) model for the solar mean magnetic field generation is studied. The sources of generation are the differential rotation and mean helicity in the convective shell. The system is described by two equations of the first order in time and the fourth order in space coordinates. The solution is sought for in the form of expansion over the spherical function Ynm. The modes of different m are separated. A finite-difference scheme similar to the Peaceman-Rachford scheme is constructed so to find coefficients of the expansion depending on the time and radial coordinates. It is shown that a mode with a smaller azimuthal number m is primarily excited. The axisymmetric mode m = o describes the 22 year solar cycle oscillations. The modes of m o have no such periodicity, the oscillate with a period of rotation of the low boundary of the solar convective shell, The solutions which are symmetric relative to the equator plane are excited more easily compared with the antisymmetrical ones. The results obtained are confronted to the observational picture of the non-axisymmetric large-scale solar magnetic fields.  相似文献   

4.
As a preparation step to compute Jacobian elliptic functions efficiently, we created a fast method to calculate the complete elliptic integral of the first and second kinds, K(m) and E(m), for the standard domain of the elliptic parameter, 0 < m < 1. For the case 0 < m < 0.9, the method utilizes 10 pairs of approximate polynomials of the order of 9–19 obtained by truncating Taylor series expansions of the integrals. Otherwise, the associate integrals, K(1 − m) and E(1 − m), are first computed by a pair of the approximate polynomials and then transformed to K(m) and E(m) by means of Jacobi’s nome, q, and Legendre’s identity relation. In average, the new method runs more-than-twice faster than the existing methods including Cody’s Chebyshev polynomial approximation of Hastings type and Innes’ formulation based on q-series expansions. Next, we invented a fast procedure to compute simultaneously three Jacobian elliptic functions, sn(u|m), cn(u|m), and dn(u|m), by repeated usage of the double argument formulae starting from the Maclaurin series expansions with respect to the elliptic argument, u, after its domain is reduced to the standard range, 0 ≤ u < K(m)/4, with the help of the new method to compute K(m). The new procedure is 25–70% faster than the methods based on the Gauss transformation such as Bulirsch’s algorithm, sncndn, quoted in the Numerical Recipes even if the acceleration of computation of K(m) is not taken into account.  相似文献   

5.
The possibility of using a generalized perfect resonance for the study of libration motions of asteroids near the (p+ q)/p-type commensurabilities of the mean motions of asteroids and Jupiter is considered. Based on the equations of the planar circular restricted three-body problem, the libration-motion equations are derived and their solutions for the intermediate Hamiltonian, as well as a solution taking into account perturbations of the order O(m 3/2), are determined.  相似文献   

6.
7.
We build high order numerical methods for solving differential equations by applying extrapolation techniques to a Symplectic Integrator of order 2n. We show that, in general, the qualitative properties are preserved at least up to order 4n+1. This new procedure produces much more efficient methods than those obtained using the Yoshida composition technique. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Expansions of the functions (r/a)cos jv and (r/a)m sin jv of the elliptic motion are extended to highly eccentric orbits, 0.6627 ... <e<1. The new expansions are developed in powers of (e–e*), wheree* is a fixed value of the eccentricity. The coefficients of these expansions are expressed in terms of the derivatives of Hansen's coefficients with respect to the eccentricity. The new expansions are convergent for values of the eccentricity such that |e–e*|<(e*), where the radius of convergence (e*) is the same of the extended solution of Kepler's equation. The new expansions are intrinsically related to Lagrange's series.  相似文献   

9.
The theory of optimal control is applied to obtain minimum-time trajectories for solar sail spacecraft for interplanetary missions. We consider the gravitational and solar radiation forces due to the Sun. The spacecraft is modelled as a flat sail of mass m and surface area A and is treated dynamically as a point mass. Coplanar circular orbits are assumed for the planets. We obtain optimal trajectories for several interrelated problem families and develop symmetry properties that can be used to simplify the solution-finding process. For the minimum-time planet rendezvous problem we identify different solution branches resulting in multiple solutions to the associated boundary value problem. We solve the optimal control problem via an indirect method using an efficient cascaded computational scheme. The global optimizer uses a technique called Adaptive Simulated Annealing. Newton and Quasi-Newton Methods perform the terminal fine tuning of the optimization parameters.  相似文献   

10.
Spatially well resolved prominence spectra of the three lines Ca+ K, H, and Ca+ 8542 are analysed. It is confirmed that the branching in the emission relations of Ca+ versus H correlates with the magnitude of non-thermal (turbulent) broadening.  相似文献   

11.
The solutions of \(\ddot x = F(x,t)\) , and also \(\dot x = F(x,t)\) , are developed in truncated series in timet whose coefficients are found empirically. The series ending in thet 6 term yields a position at a final prechosen time that is accurate through 9th order in the sequence size. This is achieved by using Gauss-Radau and Gauss-Lobatto spacings for the several substeps within each sequence. This timeseries method is the same in principle as implicit Runge-Kutta forms, including some not described previously. In some orders these methods are unconditionally stable (A-stable). In the time-series formulation the implicit system converges rapidly. For integrating a test orbit the method is found to be about twice as fast as high-order explicit Runge-Kutta-Nyström-Fehlberg methods at the same accuracies. Both the Cowell and the Encke equations are solved for the test orbit, the latter being 35% faster. It is shown that the Encke equations are particularly well-adapted to treating close encounters when used with a single-sequence integrator (such as this one) provided that the reference orbit is re-initialized at the start of each sequence. This use of Encke equations is compared with the use of regularized Cowell equations.  相似文献   

12.
Numerical and analytical comparisons are made between three methods of obtaining stability information on satellite motion using the model of the restricted problem of three bodies. Kuiper's (1961) and Szebehely's (1978) approximate results are compared with computer solutions obtained by successive iterations. The three methods show close agreement regarding the maximum values of the orbital radii for stability. The lowest result and therefore the most conservative estimate is obtained by the simplest formula, max=(/81)1/3 where is the ratio of the satellite's orbital radius to the distance between the primaries with massesm 1>m 2 and is the mass-ratio given bym 2/(m 1+m 2).  相似文献   

13.
In this paper we study the asymptotic solutions of the (N+1)-body ring planar problem, N of which are finite and ν=N−1 are moving in circular orbits around their center of masses, while the Nth+1 body is infinitesimal. ν of the primaries have equal masses m and the Nth most-massive primary, with m 0=β m, is located at the origin of the system. We found the invariant unstable and stable manifolds around hyperbolic Lyapunov periodic orbits, which emanate from the collinear equilibrium points L 1 and L 2. We construct numerically, from the intersection points of the appropriate Poincaré cuts, homoclinic symmetric asymptotic orbits around these Lyapunov periodic orbits. There are families of symmetric simple-periodic orbits which contain as terminal points asymptotic orbits which intersect the x-axis perpendicularly and tend asymptotically to equilibrium points of the problem spiraling into (and out of) these points. All these families, for a fixed value of the mass parameter β=2, are found and presented. The eighteen (more geometrically simple) families and the corresponding eighteen terminating homo- and heteroclinic symmetric asymptotic orbits are illustrated. The stability of these families is computed and also presented.  相似文献   

14.
A method is presented for the accurate and efficient computation of the forces and their first derivatives arising from any number of zonal and tesseral terms in the Earth's gravitational potential. The basic formulae are recurrence relations between some solid spherical harmonics,V n,m, associated with the standard polynomial ones.  相似文献   

15.
The24MgH+ (A 1+X 1+) molecular lines have been identified in the photospheric spectrum. The rotational excitation temperature determined from the analysis of molecular line intensities of24MgH+ is found to be of the order of 4850 K which corresponds to the photospheric temperature of the Sun. The CNDO/2 dipole moments of24MgH+ for internuclear distance range: (1.3–2.1) Å in theX 1+ state can be approximated byM(R)=4.92+1.33R. Estimations for the spontaneous emission Einstein coefficients (A v v ) and the absorption oscillator strengths (f v v ) for the (1, 0), (2, 0), and (2, 1) transitions in theX 1+ state of the24MgH+ ion are also made.Work partially supported by the CNPq, Brasilia under contract number 30.4076/77.  相似文献   

16.
17.
The model of extended Sitnikov Problem contains two equally heavy bodies of mass m moving on two symmetrical orbits w.r.t the centre of gravity. A third body of equal mass m moves along a line z perpendicular to the primaries plane, intersecting it at the centre of gravity. For sufficiently small distance from the primaries plane the third body describes an oscillatory motion around it. The motion of the three bodies is described by a coupled system of second order differential equations for the radial distance of the primaries r and the third mass oscillation z. This problem which is dealt with for zero initial eccentricity of the primaries motion, is generally non integrable and therefore represents an interesting dynamical system for advanced perturbative methods. In the present paper we use an original method of rewriting the coupled system of equations as a function iteration in such a way as to decouple the two equations at any iteration step. The decoupled equations are then solved by classical perturbation methods. A prove of local convergence of the function iteration method is given and the iterations are carried out to order 1 in r and to order 2 in z. For small values of the initial oscillation amplitude of the third mass we obtain results in very good agreement to numerically obtained solutions.  相似文献   

18.
The zero points of the period-luminosity relations for the classical cepheids are calibrated based on the HIPPARCOS parallaxes of these stars. The calibrations are used to determine the distance moduli of the LMC and SMC: DM LMC = 18m.569 ± 0m.117 and DM SMC = 19m.070 ± 0m.119, respectively. It turns out that a calibration of the PL relations based on the distances of 25 FU classical cepheids in the galaxy by Gieren et al. yields a distance scale that is shorter by approximately 0m.20 than the calibrations based on the HIPPARCOS parallaxes.  相似文献   

19.
A new optimal, explicit, Hermite–Obrechkoff method of order 13, denoted by HO(13), that is contractivity-preserving (CP) and has nonnegative coefficients is constructed for solving nonstiff first-order initial value problems. Based on the CP conditions, the new 9-derivative HO(13) has maximum order 13. The new method usually requires significantly fewer function evaluations and significantly less CPU time than the Taylor method of order 13 and the Runge–Kutta method DP(8,7)13M to achieve the same global error when solving standard $N$ -body problems.  相似文献   

20.
Recently, Breiter et al. [Celest. Mech. Dyn. Astron., 2004, 88, 153–161] reported the computation of Hansen coefficients X k γ ,m for non-integer values of γ. In fact, the Hansen coefficients are closely related to the Laplace b s (m), and generalized Laplace coefficients b s,r (m) [Laskar and Robutel, 1995, Celest. Mech. Dyn. Astron., 62, 193–217] that do not require s,r to be integers. In particular, the coefficients X 0 γ ,m have very simple expressions in terms of the usual Laplace coefficients b γ +2 (m), and all their properties derive easily from the known properties of the Laplace coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号